
1474 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

3D-CNN and Autoencoder-Based Gas Detection in
Hyperspectral Images

Okan Bilge Özdemir and Alper Koz

Abstract—The detection of gas emission levels is a crucial prob-
lem for ecology and human health. Hyperspectral image analysis
offers many advantages over traditional gas detection systems with
its detection capability from safe distances. Observing that the
existing hyperspectral gas detection methods in the thermal range
neglect the fact that the captured radiance in the longwave infrared
(LWIR) spectrum is better modeled as a mixture of the radiance
of background and target gases, we propose a deep learning-
based hyperspectral gas detection method in this article, which
combines unmixing and classification. The proposed method first
converts the radiance data to luminance-temperature data. Then,
a 3-D convolutional neural network (CNN) and autoencoder-based
network, which is specially designed for unmixing, is applied to
the resulting data to acquire abundances and endmembers for
each pixel. Finally, the detection is achieved by a three-layer fully
connected network to detect the target gases at each pixel based
on the extracted endmember spectra and abundance values. The
superior performance of the proposed method with respect to the
conventional hyperspectral gas detection methods using spectral
angle mapper and adaptive cosine estimator is verified with LWIR
hyperspectral images including methane and sulfur dioxide gases.
In addition, the ablation study with respect to different combina-
tions of the proposed structure including direct classification and
unmixing methods has revealed the contribution of the proposed
system.

Index Terms—Autoencoders, convolutional neural networks
(CNNs), gas detection, hyperspectral unmixing.

I. INTRODUCTION

IMAGING spectroscopy has been used by physicists and
chemists for more than three decades to identify materials

and their compositions. The concept of hyperspectral remote
sensing started in the mid-80s and has been widely used by
geologists for mapping minerals to this day [1]. The detectability
of the material is determined depending on the spectral range of
the spectrometer, its spectral resolution, the abundance of the
material, and the strength of the absorption properties in the
measured wavelength region [2].

The gas leaks in particular in developed countries in the last
decade were one of the crucial environmental problems. Some

Manuscript received 19 September 2022; revised 6 December 2022; accepted
31 December 2022. Date of publication 10 January 2023; date of current version
27 January 2023. This work was supported by The Scientific and Technological
Research Council of Turkey (TUBITAK) under Grant 120E134. (Corresponding
author: Okan Bilge Özdemir.)

Okan Bilge Özdemir is with the Department of Computer Engineering, Artvin
Çoruh University, 08000 Artvin, Turkey (e-mail: okanozdemir@artvin.edu.tr).

Alper Koz is with the Center for Image Analysis, Middle East Technical
University (METU), 06800 Ankara, Turkey (e-mail: koz@metu.edu.tr).

Digital Object Identifier 10.1109/JSTARS.2023.3235781

gases are harmful to the environment and contribute to global
warming. They present both short-term risks such as explosions
and long-term risks such as cancer to workers or people living
close to the leaking facility. To minimize these effects, environ-
mental authorities need to monitor chemical and industrial plants
to control gas emission levels. Infrared remote sensing technol-
ogy, which offers many advantages over traditional gas detection
systems, is one of the proposed solutions for this aim as such
solutions allow monitoring the scene from a safe distance [3].

To this end, forward-looking infrared hyperspectral cameras
are placed in potentially dangerous areas for gas detection from
safe distances. These cameras, which are designed to capture
images at different wavelengths, can operate in two different
regions, which involve medium-wave infrared (3–5 µm) and
long-wave infrared (7–14 µm) bands. Until now, these cameras
have been utilized for the detection of different gases such as car-
bon dioxide, propane, methane, sulfur, butane, freon, ammonia,
difluoroethane, diethyl ether, sulfur hexafluoride, and phosgene
[4], [5], [6], [7]. The detection of gases in such studies is mainly
achieved by utilizing conventional statistical detection methods
along with the basic signal processing operations such as data
transformation, background suppression, dimension reduction,
linear regression, and matched filtering [4], [6], [7], [8], [9].

As one of the pioneer studies for gas detection, Pogorzala
[10] proposed a pixel-based method using linear regression in
synthetic images for the detection of ammonia (NH3) and Freon-
114. Later, Vallières et al. [4] presented a method that first con-
verts the hyperspectral radiance data to luminance temperature
data. After performing background removal on the temperature
data, the resulting cube undergoes spectral matched filtering
[11] to distinguish gas-containing pixels. Finally, the detection
is carried out by applying thresholding to the resulting scores
after matched filtering. In another study, Spisz et al. [12] first
applied principal component analysis for background removal,
and then utilized matched filter and spectral angle mapper to
detect various chemical compounds. A different study using
hyperspectral imaging [13] focused on the automatic detection
of waste gases. The proposed method first filters the possible
areas in the scene by means of detecting critical wavelengths
and using the correlation coefficient metrics to select pixels with
high concentration. The target gases are then detected using a
spectral matched filter algorithm on the selected pixels.

While the presented studies mainly utilize background in-
formation, Hirsch and Agassi [14] presented an algorithm for
gas detection without requiring background information. The
method first applies K-Means segmentation and performs a
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spectral analysis on each segment. The final decision is made by
applying thresholding on the correlation between the calculated
information and the target gas signature. Another method of
performing thresholding in the ultimate stage of gas detection
is proposed by Kastek and Piątkowski to reveal the gases in
turbulent stack fumes [15]. In particular, a spectral angle mapper
is utilized to reveal the correlation between the pixel spectra and
the signature of the target gas. Later, Kuflik and Rotman [16]
conducted a study aiming to find the minimum number of bands
required for gas detection with synthetically generated data. The
proposed methods by Sabbah et al. [17] and Safak et al. [18]
follow similar strategies. First, they convert the raw data into
luminance temperature data. Then, the correlation between the
pixel spectra and the signature of the target gas is computed and
thresholded for detection. In another study presented by Theiler
and Love [19], satellite images are employed for the detection
of NO2 plumes and SO2 plumes rather than the captured hyper-
spectral data from in-scene sensors.

Other than the correlation and thresholding-based conven-
tional methods, the new trend in gas detection is to exploit the
accumulated experience in deep learning-based detection. One
of the few examples of these studies proposed by Kim et al.
demonstrated the performances of classification-based deep
neural networks and convolutional neural networks (CNNs) for
different gases [20]. Among these studies, Zhang et al. [21]
developed a classification-based method using a CNN for the
detection of CO2. Kumar et al. [22] utilized an region-based
CNN (RCNN) structure, rather than CNN, in their work to detect
Methane gas plume emissions. The authors stated that their
hyperspectral mask-RCNN (H-MCRNN) method is suitable for
the rapid scanning of large areas. Finally, Gu [23] performed
a detailed study on the hyperparameter optimization of the
H-MCRNN method for the detection of methane gas.

In addition to these studies, there are also studies using
hyperspectral unmixing for gas detection. In the study presented
by Henrot et al. [24], they demonstrated the performance of the
hyperspectral unmixing-based model using the linear mixture
model by using synthetic and real-time series of hyperspectral
images. In another study, Shi et al. [25] presented a method based
on hyperspectral unmixing where low-degree mixed pixels in
the hyperspectral image were also used by using the sparse
greedy algorithm. In a similar study, Tochon et al. [26] performed
gas plume detection and tracking from hyperspectral video se-
quences using hyperspectral unmixing. A linear mixture model
was used in the study to extract information about the concen-
tration of the gas as well as the location information. Finally,
Fiscante et al. [27] proposed a method based on unsupervised
sparse unmixing for the detection of sulfur dioxide.

When these studies are examined, one of the common pro-
cesses for gas detection is the conversion of radiance data in
the thermal domain to the luminance temperature values. The
underlying reason for such a process is that the gases become
visible due to the emission and/or absorption when there is
a temperature contrast between the background and gas com-
ponents in the scene. In addition, almost all of the presented
methods utilize a thresholding operation in the final stage of the

processing chain for the ultimate detection. This thresholding
operation on the other hand is dependent on the statistical
characteristics of the utilized data, which in turn makes the
adaptation of these algorithms very challenging for a generic
application. It is thus essential to develop methods which do
not require changes in the threshold values with respect to the
changes in the data for the ultimate decision.

Another important aspect of the previous hyperspectral gas
detection methods is to work directly on the resulting data after
the luminance temperature conversion. However, the acquired
radiance data in the thermal LWIR range is always a mixture of
the thermal radiation of the background and the gas molecules in
the air. Therefore, the handling of the hyperspectral gas detection
in the LWIR spectrum as a combined problem of unmixing and
target detection is crucial for better detection performances.
Finally, the existing studies on hyperspectral image analysis
mostly handle the detection problem within a single stage. How-
ever, a two-stage detector, where the possible locations of the
target are found in the first stage and then the target is classified in
the second stage, is an alternative promising approach, as in the
case of the latest deep learning-based object detection networks
working on RGB images.

In this article, inspired by the latest two-stage deep learning-
based object detectors, we have proposed a deep learning-based
gas detection method combining unmixing with classification.
The proposed method first converts the radiance data to lumi-
nance temperatures and then performs unmixing on the resulting
data to detect endmembers and related abundance values for
each pixel. Considering the success of autoencoders for the
representation of complex scenes in deep learning, we have
utilized 3D-CNN and autoencoder for the unmixing part to
model the interactions in the thermal LWIR range, rather than
using conventional geometry-based unmixing methods. Then,
the proposed method further classifies the extracted endmembers
by using a three-layer fully connected network, which examines
the presence of the target gas signatures in the endmembers.

In this regard, the first contribution of the proposed 3D-CNN
and autoencoder-based gas detection method for LWIR hyper-
spectral images is to eliminate the need for the selection of
optimum threshold values in previous conventional methods.
Second, the proposed deep learning-based detection method
with hyperspectral unmixing significantly improves the detec-
tion performances for gases with respect to the existing gas
detection methods using statistical detection methods such as
spectral angle mapper (SAM) and adaptive cosine estimator
(ACE) in LWIR thermal range. Finally, the ablation study for the
possible different combinations of the proposed system reveals
its better performances with respect to similar structures using
conventional unmixing methods and also classification methods
directly working on the data without unmixing.

The rest of this article is organized as follows. Section II gives
the details of the proposed deep learning-based model for gas
detection. Section III describes the test data, distance metrics,
and performance metrics. Section IV presents the experimental
results and the comparisons with the baseline gas detection
methods. Finally, Section V concludes the article.
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II. PROPOSED METHOD

The proposed gas detection method mainly consists of three
stages. The first stage is preprocessing stage, where the raw data
is converted to luminance temperature data. In the second stage,
the pure materials in the data are determined by the proposed
3D convolution and autoencoder-based hyperspectral unmixing
network along with the abundance ratios of these materials in
each pixel. The proposed 3-D convolution and autoencoder-
based model in this stage is a special design which addresses
the essential constraints in unmixing problem, namely the pos-
itivity constraint and sum-to-one constraint for the weights of
the abundances. Given the multidimensional characteristics of
hyperspectral images and their specific features in LWIR range
it is clear that CNN structures without autoencoder cannot
sufficiently address these specific constraints for unmixing prob-
lem. In the last stage, it is determined whether there is gas
in the endmembers obtained from the data with the proposed
three-layer fully connected network for detection. Ultimately,
the class assignment is performed for each pixel according to
the abundance ratio. Every part in the proposed framework
addresses one essential problem for the deep learning-based gas
detection in hyperspectral images.

A. Radiance to Luminance Temperature Conversion

In the literature, most of the studies use luminance temper-
ature of hyperspectral data for gas detection applications [4],
[6], [7], [8], [9], [13], [14], [16], [18] as such information
indicates a more steady characteristic than the radiance data for
varying conditions. The conversion of hyperspectral radiance
data to luminance temperatures is carried out in three stages.
The data obtained in the first step is converted to the brightness
temperature value [28]. Then, the blackbody curve is calculated
in accordance with the Planck curve [29] with respect to the
maximum temperature inherited in the observed data. This curve
is then further processed to eliminate the atmospheric effects to
obtain the ultimate data for the detection [30].

The first step of luminance-temperature conversion can be
expressed as

T (λ, L) =
c2 λ

ln
(

c1λ3

L + 1
) (1)

where c1 and c2 are constants, λ is the wavenumber, and L
represents the spectral radiance data [30].

In the second step, the Planck formula, which is used to obtain
the blackbody curve, is calculated by using the luminance-
temperature data, as

B (λ, L) =
c1λ

3

exp
(
c2λ
L − 1

) (2)

where c1 and c2 are fixed values, and λ is the wavenumber.
The last step is the elimination of atmospheric effects from

the data with the resulting black body curve. To this aim, one
of the common methods, namely, the blackbody radiation curve
compensation algorithm [8] is adopted in this research. The final

TABLE I
RELATED PARAMETERS FOR THE PROPOSED MODEL

corrected data is calculated as

Cλ =
BBmax

B (λ, L)
Sλ, (3)

where λ is wave number, Cλ is the corrected brightness value at
λ, BBmax is the maximum brightness value in the Black-Body
curve, B(λ, T ) is the blackbody brightness value at λ and Sλ

is the radiance value measured by the hyperspectral sensor at λ

[30]. The corrected luminance temperature values are utilized
for gas detection in the further stages.

B. Proposed 3-D Convolution and Autoencoder-Based
Hyperspectral Unmixing

After the luminance temperature conversion, the next step is
unmixing to find the relevant endmembers and abundance ratios.
The proposed hyperspectral unmixing model for gas detection
consists of two main parts as 1) 3D-CNNs; and 2) autoencoder.
The 3-D convolution and autoencoder-based hyperspectral un-
mixing network is used both to obtain the signatures of the pure
pixels in the data and to calculate the abundance value in each
pixel.

Fig. 1 illustrates the general scheme of the proposed deep
learning-based network for hyperspectral unmixing. Table I
illustrates the more detailed structure of the proposed model
with the related parameters. In accordance with the table, the
main stages of the proposed network layout are as follows.

The convolution layer, which is the first part illustrated on the
left part of the figure, consists of a flattened layer followed by
three different 3-D convolution layers. 3-D convolution filters al-
low to include both spectral and spatial information. In the figure,
P is the input channel of the hyperspectral data corresponding to
the number of spectral bands in the hyperspectral image. L1, L2,
and L3 are the spectral dimensions of 3-D convolution filters.
The output of this section is a flattened layer of 1-D vectors
transformed from 3-D inputs. These 1-D vectors enter the next
section as input. The x, y, and z parameters in the definition of
the filters correspond to the terrestrial coordinates in the x and y
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Fig. 1. General scheme of the proposed model.

directions, and the third z dimension corresponds to the spectral
coordinate.

The second part of the proposed model, namely the autoen-
coder part shown on the right side of Fig. 1, basically consists of
two main stages: encoder and decoder. Autoencoders are often
used to reduce the dimension of the input to a smaller size and
learn data structures by restoring them to the input size. This
structure primarily reduces the spectral signal received in the
encoder part to the number of endmembers and performs the
abundance detection process. Then, hyperspectral unmixing is
performed by generating a signal again in the decoder layer.
Constraints such as positivity and sum to one in the hyperspectral
unmixing process can be applied in the last layer of the encoder
part. In the proposed model, the output of the 3-D convolution
section is given as input to the autoencoder section. Then,
the encoder–decoder structure is established, which provides
abundance estimation and endmember estimation operations. It
should be noted that the weights between the encoder network
and the decoder network correspond to the endmembers and
the nodes in the last layer of the encoder network gives the
abundance values for each endmember in the proposed design.

The most important factor in the proposed model, which
affects the performance in the autoencoder part, is the normaliza-
tion layer. This layer, which is applied before the encoder output,
enforces the two most important constraints in hyperspectral
unmixing. These are the constraint of positivity, which is the
positive encoder output provided by rectified linear unit (ReLU),
and the constraint of the sum to one. This layer is applied as
follows:

woutput, i =
winput, i∑T
j=1 winput, j

(4)

where i is the index of the node, w is the weight matrix, and T
is the length of the node. Finally, this layer provides both the
detection of pure materials in the data and their abundance to be
used in the ultimate decision.

TABLE II
DETAILS OF THE FULLY CONNECTED NETWORK

The proposed 3D-CNN encoder-based hyperspectral unmix-
ing algorithm is used to detect pure spectral signatures in data
and the abundance values of these materials in each pixel. The
detection of gas spectral signatures within these endmembers
is performed in this ultimate layer. For this purpose, a 3-layer
fully connected neural network is designed for gas detection
within the endmembers. The parameters of the network with 3
layers are given in Table II. The loss function of this network is
selected as the typical cross-entropy-loss metric. The proposed
network is trained using the spectrum of background and spectral
signatures of the gases which are determined as targets.

C. Gas Detection Over Endmembers and Abundances

The hyperspectral images in a natural scene can be represented
with two components, which are: 1) the background thermal
radiation; and 2) the radiation due to the targeted gas. Given
the input spectrum to the trained network, the network classifies
the test data as background or one of the gas classes. In the
proposed model, the endmembers are given as input to this
network to determine the class for each endmember. If a gas
signature is detected in one of the tested endmembers, the pixels
with more than 50% abundance values in the hyperspectral
data are marked as the detected gas type. Considering that the
background signature is very dominant in LWIR images, we
experimentally observed that the given threshold is the logical
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Fig. 2. (a) Grayscale image of the scene for the capturing of methane, (b) a
sample band image from the captured hyperspectral LWIR image for methane,
(c) the grayscale image of the scene for the capturing of sulfur dioxide, and
(d) a sample band image from the captured hyperspectral LWIR image.

threshold to decide whether the tested pixel is closer to the
background or the target gas signature.

III. DATASETS AND DISTANCE METRICS

Two different real hyperspectral LWIR gas images are used
in this study. These images are acquired with the Long Wave In-
fraRed camera manufactured by TELOPS. Images of the scenes
are given in Fig. 2. Since gas diffusion is not fully predictable,
ground truth data are roughly generated.

The Methane images in Fig. 2(a) are taken at 877 cm-1 and
1285 cm-1 spectral ranges. The methane image has 124 bands
and a spatial size of 200 × 200 pixels. The ambient temperature
was determined as 300 K. There is only Methane gas in this scene
shot from 2–3 m away. The sulfur dioxide images in Fig. 2 are
taken at 851 cm-1 and 1288 cm-1 spectral ranges. This image
has 171 bands, and the ambient temperature is determined as
302 K. This image also has 200× 200 pixels. There is only sulfur
dioxide gas in this scene shot from a distance of 5 m. Ground
truth maps for methane and sulfur dioxide gases are given in
Fig. 2. Method performance comparisons are performed using
the ground truth information given in the figure.

Fig. 3 also shows the spectral signatures of methane, butane,
and sulfur dioxide gases with their absorbance characteristics
between 851 cm-1 and 1290 cm-1 to cover both images. These
signatures are taken from the NIST database [31]. The gas
detection process which is carried out in the last stage of the
proposed system utilizes these signatures with the background
information.

Different distance metrics are used for abundance estimation
accuracy, endmember estimation accuracy, and the cost function
of the optimization algorithm. These metrics are selected as
mean squared error (MSE) and SAM. The distance metric SAM

Fig. 3. Brightness temperature signals for methane, sulfur dioxide, and butane
gases.

[32] has been used both as a cost function and for endmember
estimation accuracy. The formulation of SAM is given as

SAM = arccos

( 〈xi, x̂i〉
||xi||2||x̂i||2

)
(5)

where xi is the reference spectral signature, x̂i is the estimated
spectral signature.

IV. EXPERIMENTAL RESULTS

The experimental results and comparisons for the proposed
3-D convolution and autoencoder-based method and the con-
ventional gas detection methods are presented in this section.
The first part of the experiments illustrates the performance of
conventional gas detection methods, based on SAM and ACE
methods. The performances are given for both methane and
sulfur dioxide gases. The second part reveals the performance
of the proposed method in comparison with the conventional
methods. The performance of the endmember estimation and
abundance estimation processes are both discussed for different
distance metrics such as SAM and MSE for the optimization of
the proposed 3-D convolution and autoencoder-based network.

Due to the technical limitations to exactly determine the
position of the gas molecules in gas detection studies, it is
not possible to have a regular receiver operating characteristics
analysis as in the other detection studies for solid targets. There-
fore, the overall experimental evaluation goes over the score
images or approximate ground truth data extracted with visual
inspection. Rather than using uncertain ground truth data, we
perform the experimental evaluation over score images in the
performed study.

A. Experimental Results for Conventional Methods

The SAM [32] and ACE [33] algorithms are used for methane
and sulfur dioxide gas detection. The SAM method measures
the angle between two spectral signals in radians. The similarity
between the two vectors is high when the angle is small in the
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Fig. 4. Results for methane gas, (a) SAM and (b) ACE, and results for sulfur
dioxide gas, (c) SAM and (d) ACE.

SAM method. SAM metric ensures a more robust evaluation due
to its invariance to scaling compared to the MSE metric. Differ-
ent than the SAM algorithm, ACE suppresses the background
information by utilizing the covariance matrix of the data during
the detection. The conventional gas detection methods based on
SAM and ACE generally perform the detection process by com-
paring the reference target signature with the spectral signature
of each pixel. These methods are applied to the resulting data
cubes which are obtained after transforming the hyperspectral
cubes into luminance temperature data. In this regard, in this
study, the SAM-based method for gas detection was proposed
by Öztürk et al. [18] and the ACE-based gas detection method
proposed by Omruuzun and Cetin [8] are selected as the baseline
methods for the comparisons.

Fig. 4 shows the output scores for detection of methane and
sulfur dioxide gases with the SAM and ACE-based gas detection
methods for each pixel before the thresholding. The regions
where the sulfur dioxide gas is found seem to be more clearly
selected by the SAM method compared to ACE. In addition, the
background suppression is more apparent for sulfur dioxide in
Fig. 4(a) and (b) compared to the methane in Fig. 4(c) and (d).
The main problem for both of the output images obtained with
the statistical detection methods is to regularly determine the
threshold value for the decision. As such a selection is dependent
on the statistical characteristics of the utilized images, which
makes the generic application more challenging, there is a need
for a different method to determine the desired targets in the
data. One of the main motivations of this work was to eliminate
such a thresholding process by means of utilizing a deep neural
network-based approach.

B. Experimental Results for the Proposed Method

The experiments for the proposed method involve determin-
ing the parameters of the deep learning structure used in the

Fig. 5. Results for the methane gas. (a) After the unmixing stage in the
proposed system (distance metric is SAM), (b) after the unmixing stage in
the proposed system (distance metric is MSE), (c) estimated endmembers with
the proposed method. (distance metric is SAM), (d) estimated endmembers
with the proposed method. (distance metric is MSE.) (e) The obtained result
with the proposed framework.

hyperspectral unmixing part. For this purpose, the performance
of different cost functions with the proposed system has been
examined. The SAM and MSE are selected as cost functions.

1) Experimental Results for Methane Gas: The results ob-
tained with the proposed method are given in Fig. 5(a) and
(b) for the distance metrics SAM and MSE. The pure pixel
signatures obtained for these results are given in Fig. 5(c) and
(d), respectively. The spectral signature of one of the estimated
endmembers, illustrated with orange color in Fig. 5(c) and (b)
are similar to the spectral characteristics of methane gas taken
from the NIST database [31] which is illustrated in Fig. 3.
Although there is such similarity in both methods, the methane
gas characteristics are more apparent in the results obtained with
SAM. The SAM distances between the estimated endmembers
and the spectral signature of methane are 0.05 and 0.11 radians
when the SAM metric is utilized as the distance metric in the
proposed method. Accordingly, the SAM distances between the
estimated endmembers and the spectral signature of methane
are 0.07 and 0.12 radians for the case of the MSE metric. The
proposed method successfully extracts the endmembers for the
background and inscene gas.

The extracted endmembers are classified as described in
Section II-C. The results obtained after the classification pro-
cess g are given in Fig. 5(e). While the presented method can
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Fig. 6. Results for the sulfur dioxide gas. (a) After the unmixing stage in the
proposed system (distance metric is SAM), (b) after the unmixing stage in the
proposed system (distance metric is MSE), (c) estimated endmembers with
the proposed method. (distance metric is SAM), (d) estimated endmembers
with the proposed method. (distance metric is MSE.) (e) The obtained result
with the proposed framework.

successfully extract the gas regions more apparently, its perfor-
mance with respect to the SAM and ACE-based methods are also
superior as can be revealed from the comparison of Figs. 4 and 5.

2) Experimental Results for Sulfur Dioxide Gas: The exper-
imental results for sulfur dioxide are given in Fig. 6 for the SAM
and MSE metrics in the proposed method Similar to methane gas
results, the cost function SAM reveals more successful results
for sulfur dioxide gas. This can be explained by the fact that when
background and gas signatures are selected, the angle difference
when using SAM is greater than the one when using MSE.

The examples marked with red color among the results ob-
tained using the SAM and MSE distance metrics are given in
Fig. 6(a) and (b). The pure pixel signatures obtained for the
marked results are given in Fig. 6(c) and (d). Although the
spectral characteristics of the sulfur dioxide gas appearing in
the orange signatures are included in both methods, the sulfur
dioxide gas characteristic is more apparent in the results obtained
with SAM. 0.9 and 0.12 SAM were taken for 0.9 and 0.21 MSE.
The result of the automatic detection of sulfur dioxide gas is
given in Fig. 6(e).

Similar to methane gas, the proposed method also reveals a
successful detection performance for sulfur dioxide gas. The
proposed deep learning-based gas detection method eliminates
the need for thresholding. While such a thresholding operation
requires a delicate selection for different data in traditional

methods, the proposed method only utilizes the abundance val-
ues for such a selection with its deep learning-based structure
without being affected by data changes. This threshold value,
which is not affected by data changes, appears as a parame-
ter change in the proposed deep learning-based method. The
proposed deep learning-based method gives much better results
compared to the conventional gas detection methods. Without
loss of generality, the proposed method can also be easily
adapted to different gases. In addition, the experiments reveal
that the proposed method can successfully work for different
gases with the same system parameters such as learning rate,
batch size, and cost function.

V. DISCUSSION

The proposed deep learning-based gas detection method com-
bining unmixing with classification gives better performances
than the other gas detection methods proposed for hyperspectral
LWIR images as illustrated in the previous section. Another
important discussion for the performed study is however to
understand the contributions of the proposed system with respect
to its possible different combinations. To this aim, we have
performed an ablation study in this section by considering the
main parts of the proposed system.

The proposed system is composed of three main stages
namely, 1) luminance temperature conversion; 2) 3D-CNN
based autoencoder; and 3) a 3-layer fully connected network
for gas type detection. The first stage, luminance temperature
conversion, is one of the essential processes in gas detection to
suppress the variations in hyperspectral gas radiation in LWIR
thermal range. Therefore, the ablation study has skipped this part
and focused on the following two main aspects after temperature
conversion.

1) The proposed system combining unmixing with classi-
fication is compared with direct classification without
performing unmixing on the data to reveal the contribution
of unmixing to gas detection.

2) The proposed system using 3-D convolution and
autoencoder-based unmixing is compared with a similar
structure using conventional unmixing methods in order to
reveal the contribution of autoencoders for gas detection.

A. Comparison of the Proposed System With Direct
Classification Without Unmixing

In order to compare the proposed gas detection using hyper-
spectral unmixing with the direct classification, we have utilized
support vector machines (SVM) directly on the data after lumi-
nance temperature conversion. For the experiments, the SVM
algorithm [34] is trained with the average background signals
extracted from the data and predictions are made on the data with
the spectral signatures taken from NIST database [31]. The radial
basis function kernel is utilized for the SVM. Implementation is
carried out with the Python Sklearn library [35].

Fig. 7(a) and (b) illustrates the detection results for SVM
for the sulfur dioxide and methane, respectively. Although the
results for sulfur dioxide contain a gas region, the gas pipe
in the scene is also detected as the target, which significantly
decreases the performance. In the case of the LWIR image for



ÖZDEMIR AND KOZ: 3D-CNN AND AUTOENCODER-BASED GAS DETECTION IN HYPERSPECTRAL IMAGES 1481

Fig. 7. Classification results with SVM for (a) sulfur dioxide (b) methane.

methane, both the part, where the gas outlet is located and the
entire closed area are marked as methane. In both of the LWIR
images, SVM detects different small areas as gases in different
regions. The detection performances are lower compared to the
results in Figs. 5(e) and 6(e) for the proposed method, and the
results in Fig. 4(a)–(d) given for the state-of-the-art gas detection
methods.

B. Comparison of the Proposed System With the Similar
Structure Using Conventional Unmixing

The experimental results in the case of using a traditional end-
member estimation and abundance estimation method instead of
the utilized 3-D convolution and autoencoder-based unmixing
are presented in this section. Vertex component analysis [36] is
used for endmember estimation as one of the baseline methods
for endmember estimation in the literature. Fully constrained
least square [37] method is utilized for the abundance estimation
for the extracted endmembers.

Fig. 8(a) and (b) show the abundance estimation results for
Sulfur Dioxide and Methane data for one of the endmembers.
The conclusions for the abundance results for the other endmem-
ber are also similar. The threshold value used for the abundance
estimation is determined as 0.5 as in the proposed method while
presenting the gas dominant regions. The results indicate that
the abundances for the gas regions are not found correctly with
vertex component analysis (VCA). The pure pixel signatures
corresponding to the extracted endmembers are given in Fig. 8(c)
and (d). As observed in the figures, the two endmembers indicate
some similar characteristics with respect to each other. The
background signal in LWIR thermal range is selected as an
endmember by VCA. However, this background signal also
exists with different abundances in the other pixels as well. As
VCA selects endmembers from pure pixels in the data, the other
endmember also resembles the background.

Fig. 8(e) and (f) show the final decision images for sulfur
dioxide and methane, respectively. For both images, the gas exit
regions are detected instead of the gas regions. In the visual
examinations made for this experiment, it has been observed that
when different threshold values are used, very similar results to
the ones in the SVM experiments can be obtained as well. How-
ever, as in other methods involving manual threshold selection,
threshold selection is considered as a separate problem. For this
reason, the selection of the most abundant material in the pixel
was applied here as in the proposed method.

Fig. 8. Estimated abundances with conventional hyperspectral unmixing for
(a) sulfur dioxide (b) methanol (c) Estimated endmembers with VCA for sulfur
dioxide (d) Estimated endmembers with VCA for methane (e) Final result after
thresholding for sulfur dioxide (f) Final result after thresholding for methane.

VI. CONCLUSION

We have proposed a deep learning-based gas detection method
which combines 3D-CNN and autoencoder-based hyperspec-
tral unmixing with neural network-based classification. The
experiments reveal that a detection approach combining deep
learning based unmixing with classification is better than the
existing methods to handle the gas detection problem in LWIR
range. An ablation study with respect to the possible different
combinations for such a system, such as using direct classifica-
tion methods or using the same structure with other unmixing
methods are also performed. The proposed system combining
unmixing with classification has given better performances than
direct classification without performing unmixing. In addition,
the 3D-CNN and autoencoder-based unmixing has indicated
better results than the conventional unmixing for the proposed
gas detection framework. The experiments have revealed that
using SAM as a cost function in the proposed method yields
more successful results than the MSE metric. The performed
study does not require thresholding, unlike the conventional gas
detection methods. Finally, the proposed gas detection method
achieves better results than state of the art gas detection methods
in LWIR range due to its high learning capacity with 3-D
convolutional layers. Without loss of generality, the proposed
system can be adapted to different gases by integrating the target
gas signature into the classification module of the proposed
system in the last stage.
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