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Optical and SAR Image Dense Registration Using a
Robust Deep Optical Flow Framework
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Abstract—The coregistration of optical and synthetic aperture
radar (SAR) imageries is the bottleneck in exploring the comple-
mentary information from the two multimodal datasets. The diffi-
culties lie in not only the complex radiometric relationship between
them, but also the distinct geometrical models of the optical and
SAR imaging systems, which cause it nontrivial to explicitly depict
the spatial relationship between the corresponding image regions
when elevation fluctuations exist. This article aims to investigate
the optical flow technique for the pixelwise dense registration of
the high-resolution optical and SAR images, so as to get rid of the
outlier removal and geometric mapping procedures, which have to
be conducted in the classical image registration approaches that
are based on sparse feature point matching. Herein, a deep optical
flow framework is designed. First, a dilated feature concatenation
method is proposed to enhance the discriminability of the pixelwise
features for similarity measurement. An effective network training
strategy is used, based on a smoothed flow loss, and also a training
dataset that contains simulated elevation fluctuations. Second, we
propose a self-supervised optical flow fine-tuning strategy. It incor-
porates the strength of the blockwise matching approach, which
produces better matching precision, into the proposed pixelwise
matching procedure. In this way, the accuracy of the optical-SAR
dense registration is substantially improved. Extensive experiments
conducted on the 1-m resolution optical-SAR image pairs of differ-
ent land-cover types and distinct topographic conditions indicate
that the proposed optical-SAR optical flow network -Ft framework
is quite robust, and has the potential to perform the optical-SAR
image dense registration in practical applications. The Python code
of the proposed deep optical flow network will be made available.

Index Terms—Convolutional neural networks (CNNs),
dense registration, multimodal, optical flow, optical image,
self-supervised finetuning, synthetic aperture radar (SAR),
topographic relief.

Manuscript received 15 October 2022; revised 7 December 2022; accepted
27 December 2022. Date of publication 9 January 2023; date of current version
19 January 2023. (Corresponding author: Deliang Xiang.)

Han Zhang is with the College of Electronic Science and Technology, National
University of Defense Technology, Changsha 410073, China, and also with
the Northwest Institute of Nuclear Technology, Xi’an 710024, China (e-mail:
zhang.han@aliyun.com).

Lin Lei, Tao Tang, and Gangyao Kuang are with the College of Electronic
Science and Technology, National University of Defense Technology, Chang-
sha 410073, China (e-mail: alaleilin@163.com; tangtaonudt@gmail.com;
kuangyeats@hotmail.com).

Weiping Ni, Xiaoliang Yang, and Kenan Cheng are with the North-
west Institute of Nuclear Technology, Xi’an 710024, China (e-mail: niweip-
ing@nint.ac.cn; yangxiaoliang@nint.ac.cn; chengkenan@nint.ac.cn).

Deliang Xiang is with the Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China, and also with the Interdisciplinary Research Center for Artificial
Intelligence, Beijing University of Chemical Technology, Beijing 100029, China
(e-mail: xiangdeliang@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2023.3235535

I. INTRODUCTION

O PTICAL remote sensing imageries reveal very detailed in-
formation of the earth surface, which is a critical resource

for monitoring landscapes, natural disasters, structural changes,
or even smaller objects, such as vehicles, vessels, and airplanes.
However, optical imaging relies on the external circumstances
including lighting conditions and weather. On the other hand,
synthetic aperture radar (SAR) can image at both day and night,
in almost all-weather conditions. Although SAR imageries only
contain measures of polarization and intensity of backscatters,
they are sensitive to structure and material of the target surface
[1], which offers us more insight information. The combined use
of the multimodal optical and SAR imageries is able to present
more robust interpretation of image scenes or specific objects.
For example, in [2], the land cover classification accuracy on the
PoDelta1 Dataset [3] increases from 90.86% if using only the
optical image, or 80.17% if using use only the SAR image, to
97.86% when combining the information from both the optical
and the SAR images.

With the burst of the number of optical and SAR satellites on
orbit, we now have at our disposal, a regular time series of both
optical and SAR data. Images captured by high-resolution SAR
satellites like TerraSAR-X [4] exhibit an absolute geolocaliza-
tion accuracy in the order of a few decimeters. On the other hand,
the geolocation error of optical imageries ranges from several
tens to hundred meters due to the inaccurate measurements of
the attitude angles in space [5]. In order to fully explore the
complementary information from optical and SAR images, they
need to be geometrically coregistered robustly and with high
precision.

Image registration is the process of transforming two dif-
ferent imageries, the reference image and the sensed image,
into one coordinate system with matched contents. As for land
surface with negligible elevation variations, the affine or projec-
tive transform is sufficient to modal the geometric relationship
between the reference and sensed image pair. Therefore, the
majority of remote sensing image registration approaches try to
first identify sparse correspondences distributed across the input
imagery pair. Then, the affine [5], [6] or projective transform [7],
[8], [9] can be estimated based on the geometric locations of the
sparsely distributed corresponding feature points.

However, when topographic relief exists, which is quite com-
mon for the earth surface, the geometric relationship between
image pairs captured by different imaging sensors or in different
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Fig. 1. Example of optical and SAR image registration result for areas with elevation variation. (a) Reference SAR image (GaoFen-3 with 1m spatial resolution,
500 × 500 pixels). (b) Sensed optical image (Google Earth, 500 × 500 pixels) that has been coregistered to (a) using the global projective transformation. (c)
Mosaic image of (a) and (b), with the blue ellipse indicating the correctly matched region, while the red ellipse indicating the failure region.

viewpoints no longer obeys the affine or projective transform.
Specifically, for high-resolution optical and SAR images of
hilly area, the side-ways-looking acquisition of SAR sensors
causes typical geometric distortion effects, termed as layover and
foreshortening [10]. These effects further make the geometric
relationship between optical and SAR images not able to be
explicitly depicted. With the spatial resolution of remote sensing
image becomes finer, even slight elevation variations would lead
to non-neglectable local geometric distortions. For example, in
Fig. 1, the global projective transformation successfully coreg-
isters the optical-SAR image pair on the right part [as shown in
the blue ellipse of Fig. 1(c)], while fails in the left part (as shown
in the red ellipse).

A feasible solution for this issue would be to acquire much
more corresponding feature points that spread evenly and
densely across the whole image, and then estimate the geometric
formula within each small local area. This may be realizable for
optical–optical image registration. However, for optical-SAR
image pairs, especially the high-resolution ones, a high ratio of
mismatches is always obtained, caused by the vast modal dispar-
ity in-between. Therefore, in recent years, numerous researches
have been conducted in the field of optical and SAR sparse
feature point matching problem so as to increase the correctly
matching rate, including the traditional handcrafted approaches
[11], [12], [13], [14], [15], [16], [17], [18], [19], as well as the
learning-based methods [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34].

Since the classical SIFT [35] or SURF [36] like feature point
detector applied separately on optical and SAR images is not
able to identify adequate candidate correspondences of high
repeatability [7], most of the current feature point detecting and
matching methods tend to first apply the Harris operator [37] (or
other similar feature point detectors) on the optical image only.
Then, for each feature point on the optical image, its correspon-
dence on the SAR image is identified by the local searching
strategy [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34].
The searching range can be narrowed down by a precoarse-
registration procedure. Although with respectable amount of
researches, the outlier ratio is still quite high. Besides for the
local searching approach, a large proportion of mismatches
would present a much smaller displacement error, compared

to the SIFT-like feature point matching procedure, which seeks
for the correspondence feature points from across the whole
input image. The high outlier ratio and small displacement error
both make it nontrivial for the proceeding mismatching removal
process. Moreover, when the geometric consistency across the
input image pair does not hold, the outlier removal would be
even more challenging.

These issues make it necessary to explore the dense regis-
tration strategy, so as to find the displacement vector of each
pixel location, which is mostly conducted by the optical flow
technique [38]. Optical flow is the pattern of apparent motion of
objects in a visual scene caused by the relative motion between
the sensor and the scene [39]. It is a core computer vision
problem and has many applications, such as moving object
detection, object tracking [40], action recognition, autonomous
driving, and video editing [41]. Optical flow methods have also
been introduced into the remote sensing registration field to deal
with the topographic relief problem in the mountainous area [9],
[42], [43], [44], [45], [46], [47]. However, the researches on the
remote sensing image dense registration are quite few, while
much more efforts have been put in the sparse feature point
matching approach, considering its time efficiency for remote
sensing imageries that exhibit huge frame size.

The traditional optical flow algorithms always require bright-
ness constancy assumption, which apparently does not hold
for high-resolution optical and SAR image pairs. Fortunately,
the deep-learning technique has shown great potential to learn
homogenous features from heterogeneous image pairs [5], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34]. Furthermore, the deep-learning-based optical
flow methods have recently outperformed the best elaborately
designed traditional methods, and also been significantly faster
at inference time. Here, in this article, we try to explore the poten-
tial of deep-learning-based optical flow approach to deal with
the high-resolution optical and SAR image dense registration
problem. As far as we know, this is the first work to introduce
the deep flow network to the remote sensing image registration
issue. The novelties lie in two aspects:

First, an effective pseudo-Siamese network architecture is de-
signed as the feature extractor. By incorporating a novel dilated
feature concatenation strategy, the pixelwise features collected
from a very limited neighborhood become more representative
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for the pixelwise similarity measurement. The feature extractor
is followed by a gate recurrent unit (GRU) [48] that mimics
the iterative optical flow optimization procedure. For network
training, a smoothed flow loss is used to impose more penalty on
the image areas with larger displacement error. Besides, consid-
ering it is almost impossible to acquire the ground truth optical
flow value of optical and SAR image pairs with topographic
relief, we decide to simulate the elevation fluctuation using the
two-dimensional (2-D) Gaussian random surface (GRS) [49].

Second, we propose to further improve the matching precision
of the trained optical-SAR optical flow network (OSFlowNet)
during inference time in a self-supervised way. In this procedure,
a set of sparse feature point correspondences of high confidence
is first obtained using the blockwise deep feature matching
method proposed in the previous article [23], which is consid-
ered as the pseudo-ground truth matches, and then used for the
self-supervised finetuning of the GRU part of the OSFlowNet,
termed as OSFlowNet-Ft.

By properly incorporating the feature learning ability of
deep CNN network with the stepwise optimizing ability of
the GRU network, and also an effective network training and
self-supervised finetuning strategy, the accuracy of the optical-
SAR dense registration result is remarkably improved, com-
pared with the existing dense matching approaches. Extensive
experiment is conducted on the 1-m resolution optical and
SAR image pairs of different land-cover types and distinct
topographic conditions. The Python code of the proposed deep
optical flow network will be made available at out Github page
(https//github.com/zhanghan9718/).

The remainder of this article is organized as follows. Section II
presents the related works. In Section III, the proposed deep
optical flow based optical and SAR image registration method
is depicted in detail. Comparative experiments and discussions
are conducted in Section IV, and finally the conclusions are made
in Section V.

II. RELATED WORKS

A. Deep-Learning-Based Sparse Feature Point Matching for
Optical and SAR Image Registration

As mentioned previously, almost all the current applicable
remote sensing image registration methods first try to identify
sparse feature point correspondences that are evenly distributed
across the input images, and then calculate a globally or locally
unified geometric mapping formula for image registration. For
these approaches, the essential problem is to increase the match-
ing accuracy of the sparse correspondences.

Since the work of [5], the deep-learning-based sparse feature
point matching approaches have been extensively explored [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34] for optical and SAR image registration. In most of
these researches, the sparse correspondence feature points are
identified by extracting the deep feature vector from the local
image patch (mostly sized of 100 × 100 to 200 × 200 pixels),
and then the best matching is located through local searching.
The matching accuracy has been raised gradually by making
efforts on the network architecture designing [5], [21], [23],

loss function definition [21], [23], [31], hard negative sample
mining [20], [22], [26], training data augmentation [27], and
so on. Researches in [21] and [23] have demonstrated that the
deep-learning technique is much more effective to extract the
homogeneous features from heterogeneous optical and SAR
image pairs, compared to traditionally handcrafted methods.
In the previous articles [22], [23], we prove that not only the
high-level semantic features, but also the low-level fine-grained
features are essential for the feature point matching issue. Be-
sides, the loss function definition is also crucial for the image
matching network training. In [32], a residual denoising net-
work is first applied on the SAR images, followed by a deep
CNN feature extractor and template feature matching procedure.
Similar approach is applied in [33], which also first denoise the
SAR images for the subsequent optical-SAR patch matching. In
order to deal with the lack of training data problem, the authors
of [34] propose to transfer the deep matching models trained
with annotated source domains to nonannotated target domains,
so as to increase the generalization of the learned models.

However, these deep sparse feature point matching ap-
proaches are not able to solve the problem of spatially varying
geometric projection problem for image areas with topographic
relief. Furthermore, the use of only local appearance information
will unavoidably result in a large number of false matches [50],
which are not easy to be identified and removed, especially for
images with irregular topography [51], [52], [53].

B. Optical Flow Methods for Pixelwise Dense Matching

In order to deal with the topographic relief problem, the ideal
registration should be that, for each pixel on the sensed image,
find its corresponding pixel location on the reference image. The
optical flow technique is an effective tool to perform pixelwise
dense image registration. The traditional optical flow methods
can be divided into two categories [38]: the local method (e.g.,
the LK algorithm [53]), and the global method (e.g., the HS algo-
rithm [54]), which both formulate the optical flow estimation as
an optimization problem, by maximizing the similarity between
the matched pixels, and also the smoothness of the flow field.

Sophisticated optical flow approaches [40], [55], [56], [57]
mainly focus on the challenges of large displacement, occlusion,
illumination varying, and noise. For example, the LDOF method
[55] proposes a coarse-to-fine warping strategy to deal with
the large displacement problem. The EpicFlow [56] conducts
the dense matching by edge-preserving interpolation from a
sparse set of matches, and initializes the variational energy
minimization with the dense matches. The FlowFields [57] uses
the approximate nearest neighbor fields to find most inliers.
The SIFT-Flow [40] adopts the computational framework of the
traditional HS or LK algorithm, but by matching SIFT descrip-
tors instead of raw pixels. Although with all these refinements,
the basic formulation has changed little since the LK and HS
algorithms.

The deep-learning methods have outperformed the traditional
handcrafted methods in most computer vision fields. However,
for the first few years, the deep optical flow networks, such as the
representative FlowNet [58], SpyNet [59], and PWC-Net [41],



1272 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

are not on par with the top handcrafted methods. Besides, the
size of the network parameters is large, and has to be trained
elaborately in multiple stages.

The RAFT method [60] proposed in the year of 2020 is
the first deep flow architecture that noticeablely outperforms
the delicately designed top handcrafted optical flow methods.
Besides a CNN feature encoder that extracts the feature vector
for each pixel, the RAFT architecture also contains a correlation
layer that produces a 4-D correlation volume, as well as a
recurrent GRU-based update operator that iteratively updates the
flow field based on correlation volume values. The subsequent
GOCor method [61] proposes a differentiable neural network
module that acts as a replacement to the feature correlation
layer, but brings limited performance increase. The COTR [62]
is the first that brings the transformers into the deep flow field. It
proposes a functional correspondence architecture to combine
the strengths of dense and sparse methods. However, the COTR
network requires fixed input image size, considering that the
output is produced by a fully connected layer.

C. Optical Flow Methods for Remote Sensing Image Dense
Registration

The previous optical flow approaches are mostly evaluated
and applied in the object tracking, action recognition, and video
processing domains. Some classical approaches have also been
introduced into the remote sensing image dense registration
problems.

Back in 2000, the HS and LK methods have been incorporated
into the image processing system of the Landsat, JERS-1, and
CBERS-1 satellite imageries to conduct the image registra-
tion procedure [63]. In [64], the SIFT features are added as
a constraint into the classical LK model, so that the affine
coefficients are calculated as the initial value of the optical flow
field. In [65], the SIFT-Flow method, which has been proved to
be more robust to drastic appearance changes due to changes
of seasons, or variation of imaging condition, is applied on
the unmanned aerial vehicle image registration problem, which
often contains nonrigid transform between images captured by
different view-points. In order to deal with the land surface
change problem, the authors of [47] proposed to first find a sparse
set of feature correspondence, and then obtain the pixelwise
offset map by using bilinear interpolation based on the sparse
correspondences. Also, in [9], the abnormal optical flow results
caused by land cover changes are detected and corrected by the
weighted Taylor expansion of the nearby displacement values.

Specifically, for multimodal image registration issue, the
GeFolki method is proposed in [42], which modifies the classical
Lucas–Kanade algorithm with a rolling guidance filter, a rank
filter, and a local contrast inversion strategy, so as to deal with
the texture and contrast difference of multimodal images. The
GeFolki has been proved to be the most appropriate approach
for the registration of Sentinel-2 and Sentinel-3 multimodal im-
ageries [44], compared to the Phase-Only Correlation [66] and a
deep-learning-based approach [67]. A double-U-net architecture
is designed in [68] specifically for the pixelwise alignment of
the OSM building map with optical remote sensing images.

Mimic to the SIFT-Flow method, the authors of [43] proposed
the OS-Flow dense registration method. It extracts the pixelwise
optical and SAR image features using the optical-gradient loca-
tion and orientation histogram (GLOH) descriptor and the SAR–
GLOH descriptor, respectively, and therefore narrows down the
radiometric and geometric gap between image pairs of the two
different modal types.

However, when applied on the high-resolution optical and
SAR image pairs, the previous dense registration approaches
either tend to produce prominent local distortion results or even
totally fail the registration. The major reason is that it is very
challenging to depict the similarity between each optical and
SAR corresponding pixel pair using local features drawn from
only the nearby neighborhood. For example, the Gefolki method
uses the raw pixel values of the local 17 × 17 pixels surrounding
the central pixel for pixelwise similarity measurement. The
SIFT-Flow and the OS-Flow methods collect the pixelwise SIFT
or SIFT-like features from the local 16 × 16 pixels. On the
other hand, for the sparse feature point matching approaches,
no matter the handcrafted approaches or the learning-based
ones, local image block larger than 100 × 100 pixels is used
to identify each corresponding feature point pair, which is much
more discriminative.

III. METHODOLOGY

Our approach is driven by the RAFT deep optical flow archi-
tecture [60], but with a novel deep feature extraction network
and a refined flow loss definition, which both make it more
effective to learn pixelwise homogenous features from the close
neighborhood of the heterogeneous optical and SAR images.
Furthermore, we propose a self-supervised network fine-tuning
procedure, which combines the advantages of both dense and
sparse feature point matching techniques, and brings obvious
performance increase.

A. Deep Close Neighborhood Feature Extractor

The deep optical flow network produces a pixelwise dis-
placement map for the input image pair to be coregistered. The
displacement value of each pixel location is estimated based
on the local feature similarity, which is mostly measured by the
correlation value between the pixelwise image features for recent
deep optical flow frameworks [59], [60], [61], [62]. Therefore,
the essential problem for the learning-based optical flow estima-
tion is to let the network to learn to capture the distinguishing
pixelwise image features, which is especially important for
optical and SAR image registration problem, considering their
vast radiometric and geometric gaps.

However, it is nontrivial to measure the similarity between a
very small local patch of optical and SAR images, let alone using
only the pixelwise local features. Fig. 2 shows an experiment
conducted in [23], which presents the matching accuracy of the
corresponding optical and SAR image patches of different sizes.
We can see that the matching accuracy declines dramatically as
the template size decreases. Considering that the optical flow
framework is intended to find the correspondence pixel on the
sensed image for each pixel on the reference image, it has to
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Fig. 2. Illustration of optical and SAR patch matching results of different template sizes. (a) Correctly matching rate (CMR) with different training and testing
template size. This experiment has been conducted in [23]. (b) Feature similarity score maps of the first example. (c) Feature similarity score maps of the second
example. For both (b) and (c), the three template image pairs from top to bottom are sized of 21 × 21 pixels, 51 × 51 pixels, and 101 × 101 pixels, respectively.
In each score map image, the blue dot represents for the matching location that presents the best feature similarity, while the red dot is the ground truth matching
location.

Fig. 3. Proposed deep close neighborhood feature extractor with the dilated
feature concatenation strategy.

make a compromise between the feature discriminability and the
time efficiency. Therefore, current optical flow methods use only
the information from a very close neighborhood of the central
pixel to estimate the pixelwise displacement value, which is
much more challenging than using all the features collected from
a local optical and SAR image patches. Herein, we carefully de-
sign a pseudo-Siamese CNN-based close neighborhood feature
extractor with distinct weights for the optical and SAR branches,
which enriches the pixelwise image features with a limited
computation expense, so as to increase the discriminability of
the pixelwise features between optical and SAR images.

The proposed deep feature extractor is shown in Fig. 3. The
network consists of one 7 × 7 convolutional layer, six 3 × 3
residual blocks, and one 3× 3 convolutional layer. Each residual

block contains two 3 × 3 convolutional layers. In total, the
feature extractor is composed of 14 parametric convolutional
layers, which is quite light weighted. Except for the last 3 × 3
convolutional layer, all the previous ones are followed by a batch
normalization layer and a rectified linear unit.

The pooling or striding operations are effective tools to en-
large the receptive field size of the pixelwise deep features.
However, they would at the same time reduce the features’
localization precision. Similar to the original RAFT network, we
decide to produce a dense feature volume with a downsampling
factor of 8. Different from the RAFT architecture, which applies
the striding operation on the first, fourth, and sixth convolutional
layers, we put the three stride = 2 operations on the first 7 × 7
convolutional layer and the first two residual layers of the feature
extractor network, which are the first, second, and fourth convo-
lutional layers. In this way, the receptive field size of the output
features would increase from the original 163 × 163 pixels to
195 × 195 pixels. Furthermore, we propose to apply a dilated
feature concatenation operation to mimic the patch matching
approach. Instead of collecting all the pixelwise features within
the local image patch, which will lead to unbearable dimension
explosion, we collect the local features only in sparse locations,
as shown in the orange dashed rectangle in Fig. 3. In this way,
we cannot only enrich the feature diversity for pixel matching,
but also further enlarge the receptive field size of the pixelwise
features. Specifically, in our follow-up experiments, we use a
3 × 3 kernel with the dilation value set as 6. Therefore, the
output feature channel number would be 192 × 3 × 3 = 1728.
Also, the receptive field size would be 207 × 207 pixels.

B. Multiscale Correlation Similarity Measurement and
Supervised Network Training With Smoothed Flow Loss

The correlation cost volume has been repeatedly proven
to be more discriminative for visual similarity measurement
than raw images or features [59], [60], [61], [62]. Herein, we
also use the cost volume between the downsampled optical
and SAR pixelwise deep features for displacement field es-
timation, as shown in Fig. 4. For a pair of optical and SAR
images IO, IS ∈ RH×W to be coregistered, the corresponding
deep features would be FO, FS ∈ RK×L×D, where K = H/8,
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Fig. 4. Overall architecture of the proposed OSFlowNet. The optical and SAR feature extractor branches, as well as the optical context branch, are all composed
of the 14 convolutional layers as shown in Fig. 3, but with unshared weights. The 4-D correlation volume is illustrated in 3-D by reshaping the last two dimensions
into one. The 4-D correlation volume and the features produced by the optical context branch are fed into the GRU block, which contains not only the iterative
ConvGRU, but also several head encoders in terms of convolutional layers.

L = W/8. For each pixel location (i, j) on FO (or otherwise
FS), its correlation value with pixel (k, l) on FS would be∑D

d=1 FO(i, j, d) · FS(k, l, d). Therefore, a full correlation cost
volume C ∈ RK×L×K×L can be obtained more efficiently and
straightforwardly using the matrix multiplication operation

Cijkl =

D∑
d=1

FO(i, j, d) · FS(k, l, d). (1)

Considering the difficulty to illustrate the 4-D cost volume,
a 3-D sketch of C is presented in Fig. 4 by reshaping the last
two dimensions, which is a 2-D correlation similarity score map
into one dimension. Subsequently, the correlation cost volume
is fed into a GRU block to iteratively update a flow field by
emulating the first-order optimization procedure. Note that the
GRU block is composed of not only the iterative GRU, but also
several convolutional head encoders, as shown in the orange
dashed rectangle of Fig. 4.

In order to simultaneously deal with the small and large
displacement, the correlation pyramid strategy proposed in [60]
is also applied. Specifically, pooling operation with kernel size
1, 2, 4, and 8 are performed on the last two dimensions of C,
respectively, resulting in a four-scale correlation pyramid set
CMS = {C1, C2, C4, C8}, where Cs ∈ RK×L×K/s×L/s, with
each pyramid level reveals the similarity measurement of differ-
ent displacement range.

It is apparently unnecessary and also harmful to put the full
correlation cost volume into the GRU block for optical flow
estimation. Therefore, we collect the correlation information
from CMS with a predefined range of r pixels. Herein, for each
pixel on the reference image, a correlation similarity feature
vector sized of 4r2 is obtained. The similarity feature volume
Fc that fed into the GRU is actually sized of K × L× 4r2. Due
to the four-scale correlation pyramid strategy, the maximum
displacement value would be r × 23 × 8. In our subsequent
experiments, we set r = 3, which means that the largest dis-
placement of the estimated flow field would theoretically reaches
to 192 pixels.

Besides the correlation similarity feature vector, the context
information F c

O ∈ RK×L×D learned from the optical image is
also incorporated as the input of the GRU block. The archi-
tecture of context network is identical with the feature extractor
network as shown in Fig. 3, but with distinct network parameters.
Therefore, the input of the GRU is composed of three parts:CMS,
F c
O , and also the estimated flow field in the previous iteration

f t−1, with f0 initialized as 0 for all the pixel locations. Note that
the spatial resolution of the estimated flow image is only 1/8 of
the input image pair. The convex based upsampling operation
proposed in [60] is applied to upsample the flow image to the
same spatial resolution of the input images.

The network is trained in a supervised way, based on the latest
N sequence of the estimated flow field {f1, f2, . . . fN} with
exponentially increasing weights. Different from the common
practice of the supervised flow learning that directly uses the
l1 normed distance between the estimated flow and the ground
truth flow fgt, we propose to use a smoothed flow loss. Assuming
dtf = |f t − fgt|, the smoothed flow error is defined as

sdtf =

⎧⎨
⎩

(
dtf

)2

/4,(
dtf − 1

)a

,

dtf ≤ 2

dtf > 2.
(2)

Then, the smoothed flow error would be

L =

N∑
t=1

ωN−t · ∥∥sdtf
∥∥
1
. (3)

Here, we set a= 1.2 and ω= 0.8. The smoothed flow loss
would impose more penalty on the image areas with larger
displacement error, which mimics the hard negative mining
process, and brings flexibility into the optimization process and
makes noticeable performance improvement.

C. Self-Supervised Optical Flow Finetuning Based on Sparse
Matching Results of Higher Precision

The estimation of the pixelwise optical flow field relies on
two priors: 1) the similarity between corresponding feature
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Fig. 5. Workflow of the self-supervised optical flow fine-tuning method. The top branch presents the OSFlowNet architecture as in Fig. 4. The bottom branch
shows the sparse feature points matching procedure based on the OSMNet proposed in [23]. After the inliers of the sparse matches are identified, they are considered
as the pseudo-ground truth flow values that are used as the supervision of the subsequent optical flow fine-tuning step. The fine-tuning procedure is only conducted
on the GRU block shown in the dashed orange rectangle, while the network parameters shown in the dashed gray rectangles are fixed.

points and 2) the smoothness of the flow field. In the common
computer vision applications, the biggest obstacles for optical
flow estimation include the large displacement and occlusion,
which both fail to meet the smoothness prior conditions. On
the contrary, for the optical-SAR image registration issue, it is
the feature disparity between the input image pair of different
modal types that makes the similarity between correspondences
does not always hold. Herein, we propose a self-supervised
flow network finetuning approach, as shown in Fig. 5, which
takes advantage of sparse correspondences that are matched
with higher precision, so as to make up the deficiency of the
low confidence of pixelwise feature point matching.

Note that the fine-tuning procedure is conducted during the
test stage, instead of the network training procedure. Specifi-
cally, for an optical-SAR test instance IO, IS ∈ RH×W to be
coregistered, it is fed into the OSFlowNet that has been trained
supervisingly, resulting in the initially estimated optical flow
fields f ∈ RH×W×2. At the same time, the four-scaled correla-
tion cost volume CMS and the downscaled optical context fea-
tures F c

O ∈ RH/8×W/8×D are also recorded. In the proceeding
flow field fine-tuning step, the optical and SAR image feature
extractor networks are fixed, while only the GRU block is up-
dated. It means that theCMS andF c

O would act as the fixed inputs
of the GRU block, which is then finetuned in a self-supervised
manner.

As revealed by Fig. 2, it is reasonable to assume that the sparse
corresponding feature points generated by the block matching
method would present higher matching accuracy and precision,
compared with the pixelwise matching result. Herein, dozens
or hundreds of correspondences that sparsely distributed across
the input image pairs are identified, using the blockwise deep
feature matching method OSMNet, which is proposed in the
previous article [23]. These sparse matches are considered as

the pseudo-ground truth matches, and then used for the self-
supervised finetuning of the GRU block of the OSFlowNet.

As for the sparse feature point matching step, first of all,
the test image pair IO, IS ∈ RH×W is fed into the OSMNet,
and produces the pixelwise dense feature volumes VO, VS ∈
RH×W×9. Second, the evenly distributed sparse interest point
set PO = {po1, po2, . . . poK} is collected from the optical image
using the block-based Harris operator or simply using a fixed
step. Third, for each interest point poi ∈ PO, its initial corre-
spondence on the SAR image would be psi = poi + f(poi ). Then,
the local dense feature volumes surrounding the central points
poi and psi are extracted from V O, V S with fixed extent size e
and e+ sr, respectively, therefore V O

p ∈ R(2e+1)×(2e+1) and
V S
p ∈ R(2(e+sr)+1)×(2(e+sr)+1). Here, e stands for the extent

size of the extracted local feature volume and sr stands for the
search radius of the correspondence. Hereafter, a sum of squared
differences (SSD) score mapSp ∈ R(2×sr+1)×(2×sr+1) between
the local optical and SAR feature volumes is obtained

Sp (x) =
∑
i

[V O
p (x)− V O

p (x− u)T (u)]
2

(4)

where T (u) represents for the sliding window on location u
[22]. If the initial flow vector calculated by the OSFlowNet is
precise, the minimum value of S would locate at the center of
the score map. Otherwise, we consider the block-matching result
produced by (4) as the pseudo-ground truth matching location,
and then the flow vector would be updated by the offset vector
v = (vx, vy) of the minimum location. In this way, we are able
to obtain an initial sparsely distributed correspondence point set
{(poi , qsi )}i∈[1,K], where qsi = psi + v.

Although the previous blockwise matching results obtained
by the OSMNet are assumed to be more reliable, there still
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inevitablely exist some outliers that have to be identified and re-
moved. Herein, we propose a straightforward but quite effective
outlier removal method. First, the candidate correspondences
with the SSD values smaller than a strict threshold T0 are
assumed to be high confidential, and therefore all considered
to be inliers. As for the candidate correspondences with the
SSD values larger than T0 but smaller than a loose threshold
T1, the ones are taken as inliers if the l1 norm of the offset
vector v is smaller than a third threshold Tv , which means that
there is a good consistency between the blockwise matching
and pixelwise matching results. In this way, the inlier restraint
is defined as

inliers1 = {min (Sp) ≤ T0}p∈PO (5)

inliers2 =
{
T0 < min (Sp) ≤ T1 and ‖vp‖1 ≤ Tv

}
p∈PO .

(6)

Then, we obtain a correspondence sparse feature point set with
high matching confidence: cp = {(poi , qsi ), vi}i∈[1,Kc]

, where
vi = qsi − psi and Kc ≤ K. Therefore, the pseudo-ground truth
optical flow value for poi would be

fpgt (poi ) = f (poi ) + vi. (7)

Hereafter, we conduct the self-supervised optical flow fine-
tuning by taking the cp set as the pseudo-ground truth sparse
optical flow values. As mentioned previously, only the GRU
block is fine-tuned, while the parameters of the feature extractors
and image context branches are fixed. The loss function is
defined as the optical flow error of the sparse feature points
between the calculated flow vectors and the pseudo-ground truth,
termed as Lpt

Lpt =
1

Kc

Kc∑
i=1

|f (poi )− fpgt (poi )|. (8)

Besides, mimic to the traditional optical flow technique, we
bring in the l1 smoothness regularization termed as Ls

Ls (f) = 0.5 · (dfx + dfy) (9)

where dfx and dfy are the first-order gradient of the estimated
flow field f . Then, the final loss function for the self-supervised
flow fine-tuning is defined as

L = Lpt + λ · Ls (f) (10)

where λ is set as a number that makes the sparse optical flow
error Lpt and the smoothness term Ls on the same order of
magnitude. In the follow-up experiments, we set λ= 50.

IV. EXPERIMENTS AND RESULTS

This section evaluates the performance of our proposed deep
optical flow network. In Section IV-A, datasets used for network
training and testing are described. The details of network con-
figuration are also presented here. In Section IV-B, we conduct
an ablation study to evaluate the effectiveness of the proposed
OSFlowNet. Section IV-C evaluates the self-supervised network
fine-tuning strategy. Section IV-D compares the proposed deep

framework OSFlowNet-Ft with the existing optical flow meth-
ods that are also specifically designed for optical-SAR image
dense registration. The comparative experiments are conducted
on various scenes to test the robustness and generalization of
our approach.

A. Dataset Construction and Network Configuration

The lack of training dataset is the first obstacle to apply
learning to the optical flow issue. For areas with noticeable
topographic relief, the accurate coregistration between the cor-
responding optical and SAR image pair would require not only
the accurate geolocation and attitude of the satellite sensors, but
also precise digital surface model with high spatial resolution,
which are unavailable in most circumstances. Therefore, it is
almost impossible to acquire the ground truth optical flow maps
for optical and SAR image pairs of fluctuating surface.

Herein, we construct the training dataset using images of plain
areas, which can be coregistered with few, but accurate and
reliable sparsely distributed matching points [5], using the affine
or projective transformation. We propose to simulate the sensors’
geolocation and attitude errors using random affine transforms,
and further imitate the elevation fluctuation by generating a
smooth, and spatially varying 2-D optical flow fields using the
2-D GRS, which can be easily produced in the Fourier domain

H = exp
(−0.5× (

x2 + y2
)
/σ2

)
(11)

Rim = randn(M,N) (12)

fGRS = α · real
(
F−1 (H. ∗ F (Rim))

)
(13)

where H is the low-pass filter in frequency domain with σ as the
cut-off frequency that controls the fluctuating frequency. Rim is
a random image sized ofM ×N , with each pixel value sampled
from the standard normal distribution. α restrains the amplitude
of the generated 2-D GRS. In this article, we set σ = 0.5 and
α = 0.5e−4.

We use the OSdataset [69] that is publicly available to train the
proposed OSFlowNet, so as to ensure the reproducibility of our
experiment results. The OSdataset is collected from 20 different
scenes located at different cities around the world, with the SAR
images produced by the Chinese GaoFen-3 satellite and the opti-
cal images collected from the Google Earth platform. In total, the
OSdataset contains 2673 pairs of coregistered optical-SAR patch
pairs sized of 512 × 512 pixels, all with 1-m spatial resolution.
The dataset is divided into the training, validation, and test sets,
containing 2011, 238, and 424 patch pairs, respectively.

For each instance in the training set of the OSdataset, the opti-
cal patch is warped by two different transformations separately: a
random affine transformation and a GRS transformation which is
simulated using the random optical flow field produced by (13).
In this way, a training dataset containing 2011 × 2 instances is
constructed, termed as warped OSdataset (wOSdataset), which
is quite small. The validation and test sets of OSdataset are
also converted in the same way for the network evaluation.
Two examples are shown in Fig. 6. The left column shows two
coregistered optical and SAR image pairs randomly selected
from the OSdataset. The middle and the right columns present
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Fig. 6. Two examples of the simulated training dataset. (a1) and (b1) show two input image pairs that have been precisely coregistered. (a2) and (b2) show the
flow values in the x and y directions generated by random affine transforms, as well as the corresponding warped optical images. (a3) and (b3) show the flow values
in the x and y directions generated by Gauss random surface, as well as the corresponding warped optical images.

the flow values of the random affine and the GRS transformation,
respectively, as well as the transformed optical images.

The PyTorch framework is used to implement the OSFlowNet,
which is initialized with random weights. The AdamW opti-
mizer is adopted for network training, with the initial learning
rate set as 0.0003, and the maximum training iteration set as
100 000. During training, the batch size is set as 6, and the
input optical and SAR image pairs sized of 512 × 512 pixels are
randomly cropped into 384 × 384. For each training iteration,
the GRU block is unrolled for 12 times. Using 1 Tesla V100
GPU, the network training procedure would take about 10 h.

Since the proposed OSFlowNet is fully convolutional, the
input image size for network inference can be arbitrary. In the
self-supervised optical flow finetuning procedure, the sparse
feature points are sampled from the reference image by a fixed
step size of 128 pixels and the block size for feature matching is
193 × 193 pixels. After obtaining the sparse feature point cor-
respondences with higher precision, 50 updates are performed
on the GRU block, with each update unrolled for 6 times.

B. Ablation Study of the Deep Optical-SAR Flow Network
Architecture

We perform an ablation study to evaluate the performance of
the OSFlowNet for optical and SAR image dense registration.
Specifically, we test the effectiveness of the proposed dilated
feature concatenation strategy, and then the modified smoothed
loss function. Considering that our proposed optical-SAR dense
registration method is inspired from the RAFT network, the
registration results of the primary RAFT network after trained
with the same dataset are also presented here, as shown in
Tables I and II.

Note that the network is trained using the AdamW optimizer,
which gradually decays the initial learning rate by a fixed factor.
The training procedure is terminated until the learning rate is
decayed to 0. Therefore, neither the validation set nor the test set
of the wOSdataset is seen during the training phase. Herein, we
use both of them for the network evaluation and comparison. As

TABLE I
RESULTS ON OSDATASET VALIDATION SET

TABLE II
RESULTS ON OSDATASET TEST SET

presented previously, each optical and SAR image pair from the
validation or the test set is warped by a random affine transform,
and then a random flow field generated using the GRS transform.
The network is evaluated, respectively, based on these two types
of geometric transforms.

We use the matching accuracy and the end-point error (EPE)
to measure the precision of the predicted optical flow field.
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The matching accuracy is the percentage of matches whose l2
distance to the ground truth correspondence is smaller than a pre-
defined threshold, such as 1, 3, or 5 pixels as used here. The EPE
is the standard error measure between the predicted flow vector
and the ground truth, averaged over all pixels [55]. In order to
avoid the disturbing of boundary pixels, the experiment results
shown in Tables I and II are calculated using only the central
parts of the predicted flow maps, sized of 312 × 312 pixels.

As we can see, for both the validation and the test set, the
registration accuracies of the GRS transform are lower than the
random affine transform, which is much simpler in calculation
and the flow field presents a linear variation as shown in Fig. 6.
Compared with the test set, the validation set is more difficult
to be coregistered, considering its lower matching accuracy and
higher EPE. It is caused by that the test set is mostly composed
by image patches of rural areas, while the validation set contains
more image patches of urban areas, which comprise plenty
of man-made objects that present sharp height variations and
distinctly higher radar reflection intensity, compared with its
surroundings. Therefore, the optical and SAR image pairs of
urban area exhibit wider radiometric and geometric gap between
the corresponding optical and SAR images.

Compared with the registration results when the network is
trained without the dilated feature concatenation procedure, the
proposed OSFlowNet presents higher matching accuracy and
also lower EPE for all the four different test trials. We speculate
that the performance improvement is brought by the enriched
the pixelwise features and the enlarged receptive field size of the
proposed feature extraction network. The feature discriminabil-
ity is enhanced with very limited additional computation. When
the network is trained straightforwardly using the l1 normed
distance between the estimated flow and the ground truth flow,
other than the proposed smoothed flow error, the performance
is noticeably reduced. It verifies that paying more attention
on “hard negative” image areas with larger displacement error
during network training is helpful. Besides, the previous perfor-
mance superiorities are more distinct for the GRS transforms,
where the geometric relationship between the input image pair
is more complex.

We also evaluate the performance of the primary RAFT
optical flow network, which uses shared weights for the feature
extraction of the input image pair, and a wider network that dou-
bles the training time. Although a comparable image registration
result is obtained on the test set, its performance on the validation
set decreases significantly. It is likely because that, compared
with the rural images, sharing weights is more detrimental for
the matching of the optical and SAR images of urban areas,
which exhibit larger appearance difference in-between.

C. Parameter Sensitivity Analysis

The proposed OSFlowNet framework consists of three key
parameters as follows:

1) The predefined pixel range r, which is used to collect
the local correlation similarity feature vectors from the
multiscale full correlation cost volumes. Our default set is
r = 3.

TABLE III
PARAMETER SETTINGS FOR SENSITIVITY ANALYSIS

TABLE IV
PARAMETER SENSITIVITY OF r

TABLE V
PARAMETER SENSITIVITY OF a

TABLE VI
PARAMETER SENSITIVITY OF ω

2) a from (2), which determines the loss penalty exponent
on image areas with larger displacement errors during
network training. We set a = 1.2.

3) ω from (3), which is the exponentially weight of different
GRU unrolled iterations. The default set is ω = 0.8. In
order to inspect our parameter settings, herein we conduct
three independent experiments for parameter sensitivity
analysis.

As shown in Table III, in each independent comparative
experiment, only one parameter is variable, while the other two
are set as the default values. Tables IV–VI present the dense
matching results on the validation set of the OSdataset with GRS
transforms, after the network is retrained and evaluated under
different parameter settings. We can see that within the three
parameters, the network is most sensitive to the predefined pixel
range r for the correlation similarity feature vector collection,
as shown in Table IV. The default value r = 3 presents the best
matching accuracy. Setting r = 4 is also acceptable. However,
the matching performance would significantly decrease if r is
too small or too large. We assume that when r is set as only two
pixels, the maximum search range of the correlation similarity
features collected from the first and the second correlation
volumes C1, C2 would be too small. On the other hand, setting
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Fig. 7. Optical and SAR image pairs of seven different scenarios used for comparative test, with each image sized of 1600 × 1600 pixels. The top row shows the
optical images that have been warped by the simulated spatially varying geometric distortions, and the bottom row shows the corresponding SAR images. Similar
to [21], the optical-SAR pairs shown in subfigure (a), (b), (c), (d), (e), (f), and (g) are, respectively, denoted as 1.SH, 2.ZZ, 3.BJ, 4.XS, 5.MG, 6.HZ, and 7.SHJ,
which are short for 1-ShangHai, 2-ZhuoZhou, 3-BeiJing, 4-XiangShui, 5-MingGan, 6-HuiZhou, and 7-SongHuaJiang.

r = 5 would bring in too many distractions for each scale level,
which would also impair the matching performance. As for
the loss penalty exponent valuea , as well as the exponentially
weight of different GRU unrolled iterationsω, a smaller or bigger
value also decreases the matching accuracy, but with a quite
small margin.

D. Evaluation of the Self-Supervised Network Fine-Tuning
Procedure

As can be seen from Tables I and II, the EPE of the predicted
optical flow vectors averages about three pixels. Still, over 30%
pixels present a mismatching error of more than three pixels.
Further performance improvement is expected. Here, in this
subsection, we conduct an experiment to verify the effectiveness
of the proposed self-supervised network finetuning strategy.

1) Experiment Setup: Different from the previous ablation
study section that uses the small image patches sized of
512 × 512 pixels, here we prepare seven pairs of large op-
tical and SAR image pairs in various scenarios, all sized of
1600 × 1600 pixels with 1-m spatial resolution, as shown in
Fig. 7. They are images of the GaoFen-3 SAR and Google Earth
optical pairs of seven different cities from China, termed as 1.SH,
2.ZZ, 3.BJ, 4.XS, 5.MG, 6.HZ, and 7.SHJ, respectively. These
imageries have been used and described in detail in the previous
article on optical and SAR sparse feature point matching [23].

Note that these are all images of flat areas, and have been
coregistered using a half-manual strategy [20], [23]. Herein, a
random geometric transformation is conducted on each large
image pair, which is the combination of a random affine trans-
form and a GRS transform. In this way, an optical-SAR dense
registration test set is acquired, which exhibits complex spatially
varying geometric transforms, and also the ground-truth optical
flow vectors are preknown.

2) Comparison Between the Pixelwise Matching and Block-
wise Matching Results: First of all, we would like to check if the
blockwise matching method is able to produce better matching
precision than the pixelwise matching result. For each test pair
sized of 1600 × 1600 pixels, we collect the fixed feature points

TABLE VII
MATCHING ERROR COMPARISON BETWEEN PIXELWISE AND BLOCKWISE

APPROACHES

from the optical image using a fixed step of 128 pixels, along
both the horizontal and vertical directions, shown as the red
dots on the optical input image in Fig. 5. In this way, 100 sparse
points are obtained for the optical image. The corresponding
moving feature points on the SAR image can be located using
the initial flow vector estimated by the pretrained OSFlowNet.
Next, for each candidate point pair, block matching is conducted
to refine the initial flow vector, based on the blockwise feature
volumes extracted by the OSMNet [23]. Here, in the subsequent
experiment, we set the local searching radius as 32 pixels, with
the optical template features sized of 193 × 193 × 9, and SAR
search features sized of 257 × 257 × 9, resulting in a SSD score
map sized of 65 × 65 pixels.

Since the ground truth optical flow fields are preknown for the
seven test instances, we are able to calculate the matching error of
all the sparse locations, for both the initial pixelwise matching
results obtained by the OSFlowNet and the blockwise match-
ing results obtained by the OSMNet, as shown in Table VII.
Following (5) and (6), dozens of the sparse correspondences
are considered as outliers, and only the remaining ones are
used as the pseudo-ground truth for the subsequent optical flow
fine-tuning procedure. For example, 75 out of 100 corresponding
feature points are assumed to be high confidential for the 1.SH
test instance, while only 36 for the 2.ZZ test instance.

Table VII presents the matching error of both the horizontal
and the vertical directions, termed as E_fx and E_fy, respec-
tively. The EPE values are also calculated. Compared with
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Fig. 8. EPE plots of the self-supervised optical flow finetuning procedure on
the seven simulated test instances shown in Fig. 7. In each subfigure, the red
dot represents for the initial EPE value of the optical flow map estimated by
the pretrained OSFlowNet. The blue curves illustrate the variation of the EPE
value with increased finetuning iterations. The dashed cyan curves show the EPE
results when the sparse matching loss is ignored, and only the smoothness term
is used for the supervision of flow fine-tuning.

the initial pixelwise matching results, the blockwise matching
method decreases the EPE values by a significant margin, about
0.3 to 0.5 pixel for six out of the seven test instances. It
verifies that the block matching method is able to obtain higher
matching precision for the sparse feature points, and the matched
correspondences are indeed feasible to be considered as the
pseudo-ground truth, and be used to further refine the dense
optical flow field.

3) Self-Supervised Fine-Tuning Results: By taking the
sparse correspondences calculated by the blockwise matching
network as the supervision, the deep flow network can be fine-
tuned specifically for each test instance. Fig. 8 presents the EPE
plots of the self-supervised optical flow fine-tuning procedure on

TABLE VIII
EPE AND CMR (%, T≤1PX, 3PX, AND 5 PX) RESULTS BEFORE AND AFTER

SELF-SUPERVISED NETWORK FINE-TUNING

the seven test instances. In each subfigure, the red dot represents
for the initial EPE value of the optical flow map estimated by the
pretrained OSFlowNet. The blue curve illustrates the variation
of the EPE value with increased finetuning iterations.

We can see that the proposed self-supervised finetuning
method, termed as OSFlowNet-Ft, leads to a significant im-
provement in terms of EPE, ranging from 0.24 to 0.89 pixels.
The black dot denotes the position of the best EPE result, whose
location varies for different test instances. Therefore, in practical
application, it is implausible to preknow the optimal number of
fine-tuning iterations. On the other hand, we can see that for
all the seven instances, the EPE values decline noticeably for
the first 50 to 100 iterations. Accordingly, we record the optical
flow estimation result after 50 fine-tuning iterations, as shown
in Table VIII. Averagely on the seven different test instances,
the EPE value decreases by 20%, the CMR with T ≤ 1 pixel
increases by 64%, and the CMR with T ≤ 3 pixel increases by
17%.

Furthermore, we try to conduct the fine-tuning procedure
by ignoring the sparse matching loss Lpt, and using only the
smoothness regularization term Ls. The EPE results are also
presented in Fig. 8 with the dashed cyan curves. For the first
three datasets, noticeable performance improvement can still be
acquired. However, for the last four datasets, the EPE values
only decrease by a quite slight margin. Besides, when using the
smoothness term only, the EPE values blow up with increased
finetuning iterations for all the test instances. This phenomenon
further verifies the effectiveness of the proposed sparse matching
supervision strategy.

E. Comparison With Representative Optical Flow Based
Optical-SAR Dense Registration Approaches

Here in this subsection, we compare the proposed
OSFlowNet-FT framework with three representative optical
flow based optical-SAR image registration methods, including
the SIFT-Flow [40], GeFolki [42], and OS-Flow [43] algorithms,
which have been described in detail in Section II-C. They are all
handcrafted methods specifically designed for the optical and
SAR image pixelwise dense matching. Until recently, we have
not found any deep-learning-based approach in the particular
research field of optical-SAR dense registration.

Two different test sets are used in this comparative experi-
ment. The first one is the previously used seven optical-SAR
pairs with simulated ground surface fluctuations, as shown in
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TABLE IX
EPE/CMR (%, T≤3PX) RESULTS OF DIFFERENT REGISTRATION METHODS

Fig. 7. Since the ground truth optical flow maps are preknown,
we can evaluate the performance of different registration meth-
ods in both quantitative and qualitative ways. The second test
set consists of six optical-SAR pairs of real hilly land areas
for which the registration results are checked through visual
inspection.

As for the parameter settings of the three handcrafted optical-
SAR image dense registration methods, we follow the instruc-
tions of the OS-Flow paper [43], where the authors have con-
ducted extensive comparative experiments to find the proper
parameter configurations of all the three comparative algorithms.
For both the SIFT-Flow and OS-Flow methods, we choose to
conduct the optical flow optimization procedure using only the
global HS framework, considering that in the LK framework,
the interpolation and convolution operators on high-dimensional
feature descriptors are unbearably time-consuming, and also the
HS and LK approaches produce similar registration accuracy, as
presented in [43].

1) Experimental Results on the Simulated Test Set: The three
handcrafted methods and our proposed OSFlowNet-Ft method
are first applied on the seven optical-SAR image pairs that
present simulated locally varying geometric distortions. The
registration results are evaluated quantitatively in terms of regis-
tration precision using both the EPE and the matching accuracy
indicators, as shown in Table IX. Also, they are compared quali-
tatively in terms of the visual inspection of the estimated optical
flow field images, as shown in Fig. 9. The visualizing results of
the flow fields shown in Fig. 9 are produced by following the
instructions in [39], which takes the magnitude and orientation
of the corresponding flow vector as the hue and saturation of the
optical flow image.

From Table IX, we can see that the GeFolki method fails
in registration of both the 3.BJ and 5.MG test instances. We
assume it is caused by that both of the instances exhibit large
amount of repeated textures or even textureless areas, as shown
in Fig. 7(c) and (e). In this circumstance, the iterative optical
flow optimization procedure is easily to fall into the wrong
local optimal position, considering that the GeFolki algorithm
measures the pixelwise similarity merely based on the ranked
raw pixel intensities within a small local window.

The SIFT-Flow method also fails for the 5.MG test images, but
the 3.BJ optical and SAR image pair can be preliminarily coreg-
istered. By replacing the intensity value with the SIFT features,
the receptive field of the pixelwise descriptor is enlarged, and
therefore better discrimination can be obtained for images with
repeated textures. Furthermore, the OS-Flow method obtains

acceptable registration results for all the seven test images.
Especially for the 6.HZ and 7.SHJ test instances, more than
70% pixels are coregistered with the matching error smaller than
three pixels. Note that SIFT-Flow and the OS-Flow methods
share the same algorithm framework. The difference lies in
that the SIFT-Flow method applies the SIFT method for the
pixelwise feature extraction of both the optical and SAR images.
On the other hand, the OS-Flow method uses the optical-GLOH
descriptor on the optical image, while the specifically designed
SAR-GLOH descriptor on the SAR image. In this way, the
brightness constancy assumption between the optical and SAR
images can be satisfied to a certain degree.

As for our proposed OSFlowNet-Ft method, the EPE values
for all the seven test instances are smaller than three pixels.
Meanwhile, three out of them are even smaller than two pixels,
with more than 90% of the image pixels exhibiting a coregister
error smaller than three pixels. This way, the OSFlowNet-Ft
framework is able to satisfy most of the practical application of
the high-resolution optical and SAR image registration problem.

The registration results on the seven simulated test instances in
terms of the flow field visualizing images are presented in Fig. 9,
where each column presents the registration results of one test
instance using the Gefolki, SIFT-Flow, OS-Flow, the proposed
OSFlowNet-Ft method, as well as the ground truth flow image,
respectively, from top to bottom. It can be observed that the
flow field images produced by the OSFlowNet-Ft method are
quite alike to the ground truths. On the other hand, the flow
images of all the other three methods contain significant color
drift, and also unacceptable local distortions. Note that the flow
images of the SIFT-Flow and the OS-Flow methods both exhibit
similar color patterns with the ground truth, but comprise many
erroneous color fragment, indicating incorrect local registration
results. On the other hand, the flow images of the Gefolki method
are quite smooth, but sometimes present apparently different
color compositions with the ground truth image, which means
that the registration is totally failed.

2) Experimental Results on Images of Real Hilly Lands: The
previous experiments all use optical-SAR pairs with simulated
locally varying geometric distortions in between. Herein, the
proposed OSFlowNet-Ft framework as well as the other three
comparative approaches are applied on six optical and SAR
image pairs of real hilly lands, where the geometric relationships
between them are even more complex than the combination of
the random affine and GRS transforms. The six test instances are
shown in Fig. 10, where the optical images are from the Google
Earth platform, and the SAR images are also from GaoFen-3,
all with 1-m spatial resolution and size of 1600 × 1600 pixels.
The first two instances in the top row of Fig. 10 are images
of roughly plainness area with slight and smooth land surface
fluctuation. The middle two pairs contain a small part of hilly
lands, while the majority part of the last two optical-SAR pairs
are mountainous areas.

Fig. 11 shows the visualizing results of the flow fields calcu-
lated by different methods, where each column presents the flow
images of one test instance using the Gefolki, SIFT-Flow, OS-
Flow, and the proposed OSFlowNet-Ft methods, respectively,
from top to bottom. Similar to the experiment results on the
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Fig. 9. Visualizing results of the flow fields produced by different optical-SAR dense registration methods, including the Gefolki [42], SIFT-Flow [40], OS-Flow
[43], OSFlowNet-Ft, and the ground truth flow images, from top to bottom. In each row, the seven subfigures corresponds to the seven test optical-SAR image
pairs shown in Fig. 7, termed as 1.SH, 2.ZZ, 3.BJ, 4.XS, 5.MG, 6.HZ, and 7.SHJ.

simulated test set as shown in Fig. 9, there is a good continuity in
each flow field image produced by the OSFlowNet-Ft method.
On the other hand, plenty of unrealistic sudden flow changes
occur in the flow fields calculated by the other three methods,
especially for the Gefolki method.

The registration results in terms of mosaic images of the
six test instances are shown in Figs. 12–17. In each figure,
the mosaic results of the original geocoding images, the SIFT-
Flow method, the OS-Flow method, as well as the proposed
OSFlowNet-Ft method are presented in subfigures (a), (b), (c),
and (d), respectively. The full mosaic image of the Gefolki
method is left out for a better page make-up, considering that
it fails for most of the test instances. In addition, for each reg-
istration method, enlarged subimages of two randomly selected
locations of the full mosaic image, highlighted in a red and a
blue rectangle, are shown below, where the results of Gefolki
method are also presented as subfigure (e1) and (e2).

As for the first test instance shown in Figs. 10(a) and 12, all the
four different algorithms seem to produce acceptable coregistra-
tion results. After checking the enlarged subfigures, we can see
that both the SIFT-Flow and OS-Flow methods bring in severe
image distortions, which make the straight lines of the building
and road boundaries wrapped into curves with nonnegligible

twists and turns. On the other hand, the proposed OSFlowNet-Ft
framework is not only able to produce fine pixelwise matching
result, but also keeps the ground objects in good integrality,
as shown in Fig. 12(d), (d1), and (d2). The local twist problem
seems inconspicuous in the warped image of the Gefolki method.
However, the Gefolki fails to coregister the second subimage, as
shown in Fig. 12(e2).

Although the Gefolki method has been proven to be effective
for the registration of low resolution multimodal image pairs
[42], [44], it fails the registration in many test cases used in this
article, as shown in the first row of Fig. 11 and the subfigures
(e1) and (e2) of Figs. 12–17. It is probably caused by that the
radiometric and geometric disparity becomes larger as the spatial
resolution goes finer. Therefore, merely using the intensity value
is not sufficient to depict the similarity between corresponding
optical and SAR pixels of high spatial resolution.

For the second test instance, we can see from Fig. 13(a) that
the left 1/3 part of the original geocoded optical-SAR image pair
has already been roughly coregistered. Still, the right 2/3 part
exhibits apparent location deviation, which is caused by the ele-
vation fluctuation. Note that the roads in the SAR images show
relatively low intensities, whereas roads are high-reflectivity
lines in the optical images [43]. In this test case, the main roads
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Fig. 10. Optical-SAR image pairs of six different scenarios of real hilly lands used for comparative test, with each image sized of 1600 × 1600 pixels. (a) First
test instance. (b) Second test instance. (c) Third test instance. (d) Fourth test instance. (e) Fifth test instance. (f) Sixth test instance.

and the wide river that both north–south cross-cutting seem
to be fairly coregistered by all the SIFT-Flow, OS-Flow, and
the OSFlowNet-Ft methods. The subroads shown in the first
enlarged subimage are also basically coregistered. However, in
the second enlarged subimage, the roads are matched to the
building rows for both the SIFT-Flow and OS-Flow methods.
Moreover, severe local twists are produced, similar with the first
test instance. On the other hand, the OSFlowNet-Ft successfully
coregister the “dark” SAR roads to the “light” optical roads, as
shown in Fig. 13(d2), without any noticeable local distortion.

As can be observed from Fig. 10(c), there are two hills located
in the bottom-left corner and the top-right corner of the third
instance. In this case, the flow field images of the SIFT-Flow,
OS-Flow, and OSFlowNet-Ft methods present similar color
patterns, as shown in Fig. 11(c). The mosaic images shown in
Fig. 14(b), (c), and (d) indicate that these three methods are
all able to roughly coregister the third optical-SAR image pair.
However, as shown in the second subimage, only the SIFT-Flow
and OSFlowNet-Ft methods successfully matched the main road
and the rectangle man-made platform.

In all our experiments, the SAR images are taken as the fixed
reference one, while the optical images are warped to the SAR
images. Note that there is a very short distance between the two
subimages of the third test instance. By comparing the enlarged
mosaic images before and after registration, we can see for
the first subimages shown in Fig. 14(a1) and (d1), the optical
patch is registered to the SAR patch by moving to the top-left
direction. While for the second subimages shown in Fig. 14(a2)
and (d2), the optical patch has to be moved in the direction of
bottom-right. It indicates that the hill located in the top-right
corner of the third test instance presents a drastic topographic
relief, which is quite challenging for image registration. Still,
our proposed OSFlowNet-Ft method is able to present desirable
matching result.

For the fourth test instance shown in Figs. 10(d) and 15, the
OS-Flow method totally fails the registration. Surprisingly, the
SIFT-Flow method is able to obtain acceptable matching result.
This circs also happens for the second subimage of the third case.
It indicates that the optical-GLOH and SAR-GLOH features are
not robust enough for the optical-SAR image matching issue.
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Fig. 11. Visualizing results of the flow fields produced by different optical-SAR dense registration methods, including the Gefolki [42], SIFT-Flow [40], OS-Flow
[43], and the proposed OSFlowNet-Ft, from top to bottom. In each row, the six subfigures correspond to the six test optical-SAR image pairs of the real hilly lands
shown in Fig. 10.

As always, the proposed OSFlowNet-Ft method obtains excel-
lent coregistration result. Especially as observed from the middle
bottom of Fig. 15(d2), the “dark” SAR road is successfully
matched to the “bright” optical road, although on the SAR image,
there is a confusable “bright” line of field bank lying beside the
“dark” road.

The fifth test instance is composed of half urban district
and half hilly land. From the flow field color images shown
in Fig. 10(e) and the mosaic image shown in Fig. 16(b), (c),
and (d), it seems that except for the Gefolki method, all the
other three ones are able to generally coregister this optical-SAR
image pair. However, as shown in the first subimages shown in
Fig. 16(b1) and (c1), which is a dense building area, the local
distortions produced by the SIFT-Flow and OS-Flow methods
are too abominable to be applied in practice.

As shown in Fig. 10(f), most regions of the sixth test instance
are mountainous, for which, the optical-SAR image pair seems
impossible to be coregistered, due to the textureless ground
surface, and also the severe geometric distortions between them.
However, in most of the practical applications of high-resolution
optical and SAR images, we are chiefly concerned with image
regions that exhibit human activities, other than that of primi-
tive nature. As can be observed from Fig. 17(d) and (d1), the
proposed OSFlowNet-Ft method is able to properly coregister
the central residence area. Moreover, as shown in Fig. 17(d2),
the mountain road is also precisely coregistered. On the other
hand, as shown in the enlarged subimages of Fig. 16(b1), (b2),
(c1), (c2), and (e1), (e2), all the other three methods fail the
registration of this challenging test case.

Above all, the Gefolki method roughly coregister the first
and the sixth image pairs, but totally fails for all the other
four cases. The SIFT-Flow and OS-Flow methods are able to
coregister some local regions, but fail in the other parts of each
test instance. Besides, the severe local distortions produced by
the two methods make them unacceptable for practical applica-
tions. The OS-Flow method is tailor-made for the optical-SAR
image dense registration issue, and it has been proved to present
better registration performance on the simulated dataset shown
in Fig. 7. However, as for the six test instances of real hilly
lands, it does not outperform the SIFT-Flow method. Amazingly,
despite of the obviously different landcover types and distinct
topographic conditions of the six test instances, the proposed
deep optical flow framework OSFlowNet-Ft, which is trained
on a small dataset with only simulated elevation fluctuations,
is always able to produce satisfactory image dense registration
results.

Furthermore, we compare the computational time of different
dense registration methods on the six optical-SAR image pairs
of real hilly lands. Considering that the code of the three hand-
crafted methods is all running on CPU, we present both the GPU
and CPU times of the proposed OSFlowNet and OSFlowNet-Ft
frameworks, as shown in Table X. We can see that without
the self-supervised fine-tuning procedure, the proposed deep
framework takes only 3 s to accomplish the pixelwise dense
registration of the input image pair sized of 1600 × 1600 pixels
on GPU, and only 12 s on CPU, which makes the proposed
framework the most time efficient one when compared with
the other three handcrafted methods. When the self-supervised
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Fig. 12. Mosaic images of the first coregistered optical-SAR pair by different methods. (a) Geocoding. (b) SIFT-Flow. (c) OS-Flow. (d) OSFlowNet-Ft. (a1), (b1),
(c1), and (d1) are enlarged subimages from the red rectangle of (a), (b), (c), (d) respectively. (a2), (b2), (c2), (d2) are enlarged subimages from the blue rectangle
of (a), (b), (c), and (d), respectively. (e1) and (e2) are the enlarged mosaic subimages of the registration result by the Gefolki method.
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Fig. 13. Mosaic images of the second coregistered optical-SAR pair by different methods. (a) Geocoding. (b) SIFT-Flow. (c) OS-Flow. (d) OSFlowNet-Ft. (a1),
(b1), (c1), and (d1) are enlarged subimages from the red rectangle of (a), (b), (c), and (d), respectively. (a2), (b2), (c2), and (d2) are enlarged subimages from the
blue rectangle of (a), (b), (c), and (d), respectively. (e1) and (e2) are the enlarged mosaic subimages of the registration result by the Gefolki method.
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Fig. 14. Mosaic images of the third coregistered optical-SAR pair by different methods. (a) Geocoding. (b) SIFT-Flow. (c) OS-Flow. (d) OSFlowNet-Ft. (a1),
(b1), (c1), and (d1) are enlarged subimages from the red rectangle of (a), (b), (c), and (d), respectively. (a2), (b2), (c2), and (d2) are enlarged subimages from the
blue rectangle of (a), (b), (c), and (d), respectively. (e1) and (e2) are the enlarged mosaic subimages of the registration result by the Gefolki method.



1288 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 15. Mosaic images of the fourth coregistered optical-SAR pair by different methods. (a) Geocoding. (b) SIFT-Flow. (c) OS-Flow. (d) OSFlowNet-Ft. (a1),
(b1), (c1), and (d1) are enlarged subimages from the red rectangle of (a), (b), (c), and (d), respectively. (a2), (b2), (c2), and (d2) are enlarged subimages from the
blue rectangle of (a), (b), (c), and (d), respectively. (e1) and (e2) are the enlarged mosaic subimages of the registration result by the Gefolki method.
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Fig. 16. Mosaic images of the fifth coregistered optical-SAR pair by different methods. (a) Geocoding. (b) SIFT-Flow. (c) OS-Flow. (d) OSFlowNet-Ft. (a1),
(b1), (c1), and (d1) are enlarged subimages from the red rectangle of (a), (b), (c), and (d), respectively. (a2), (b2), (c2), and (d2) are enlarged subimages from the
blue rectangle of (a), (b), (c), and (d), respectively. (e1) and (e2) are the enlarged mosaic subimages of the registration result by the Gefolki method.
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Fig. 17. Mosaic images of the sixth coregistered optical-SAR pair by different methods. (a) Geocoding. (b) SIFT-Flow. (c) OS-Flow. (d) OSFlowNet-Ft. (a1),
(b1), (c1), and (d1) are enlarged subimages from the red rectangle of (a), (b), (c), and (d), respectively. (a2), (b2), (c2), and (d2) are enlarged subimages from the
blue rectangle of (a), (b), (c), and (d), respectively. (e1) and (e2) are the enlarged mosaic subimages of the registration result by the Gefolki method.
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TABLE X
COMPUTATION TIME (S) OF DIFFERENT REGISTRATION METHODS

fine-tuning method is applied, the computational time is still
acceptable on GPU, where about 50% of the computation time
is consumed by the sparse feature point matching procedure, and
about 50% consumed by the network finetuning process. While
the computation time of the one-pass dense matching process is
even neglectable.

V. DISCUSSIONS

A. Strengths of the Proposed Optical-SAR Dense Registration
Framework

The proposed OSFlowNet-Ft method is, as far as we know,
the first deep framework that is applied on the optical and SAR
image registration problem through pixelwise dense matching,
providing an effective and robust way to deal with the problem
of nonparametric geometric relationship between image pairs
with elevation fluctuation.

Herein, an efficient pseudo-Siamese network architecture is
designed, which incorporates a novel dilated feature concate-
nation strategy. Also, an effective network training strategy is
used, based on a smoothed flow loss and a training dataset that
contains simulated elevation fluctuations. In this way, the learned
pixelwise features present higher discriminative power for sim-
ilarity measurement. Furthermore, based on the observation
that the blockwise matching produces better matching precision
than the pixelwise way, we propose an effective self-supervised
flow field fine-tuning strategy. By first obtaining a set of sparse
feature point correspondences of high confidence based on the
blockwise deep feature matching network and taking them as the
pseudo-ground truth matches, the GRU part of the optical flow
network is fine-tuned and the matching accuracy is noticeably
improved.

Extensive experiments on the optical-SAR image pairs with
simulated and real ground surface fluctuations validate the ef-
fectiveness and robustness of our proposed dense registration
architecture. When compared with the existing representative
methods, our proposed OSFlowNet-Ft framework not only sub-
stantially increases the matching accuracy, but also solves the
local distortion problem to a large extent. Though our deep opti-
cal flow framework is demonstrated for 1-m resolution optical-
SAR image registration, which is already a quite challenging
situation, the proposed method can sure be employed for any
other remote sensing image dense registration applications, no
matter the single modal or multimodal types, considering the
required training dataset is not large and the spatially varying
optical flow fields can be easily simulated.

B. Limitations and Future Work

There are three apparent limitations of the dense registration
framework. First, since the dense registration requires to obtain
pixelwise matching result, it would probably fail in image areas
with land surface changes. When the change only occurs within
a small local region, acceptable pixelwise matching result may
still be obtained by taking advantage of the smoothness charac-
teristic of the optical flow field. However, when the change area
is large, the local dense registration would be doomed to fail.

The second limitation is that it cannot deal with the rotation
and scale variations. Experiments show that, when the rotation
difference between the input optical and SAR image pair is larger
than 5°, the EPE value would exceed three pixels. We assume
that the performance decrease is caused by the enlarged feature
disparity between the corresponding feature points when large
rotation variance exists. It is even more sensitive to the scale
variation. Acceptable registration result can only be obtained
when the scale variation is within the range of [0.9, 1.1]. Oth-
erwise, the matching accuracy would significantly decline. It
probably due to that when the scale variance occurs between
the optical and SAR image pair, the pixelwise features would
exhibit different receptive field size, which would significantly
deteriorate the similarity measurement result.

Third, similar to the other optical flow based dense matching
approaches, the large displacement issue is also a significant
challenge. Although the proposed OSFlowNet-Ft framework
estimates the pixelwise flow vector based on the four-scaled
pixelwise correlation cost volumes, the theoretically largest
displacement value, which is 192 pixels for our parameter set-
tings, can only be achieved by the coarsest scaled correlation
volume C8. At the same time, the maximum displacement
value of the feature vectors collected from C1, C2, C4 are 24,
48, and 96 pixels, respectively. It means that when the initial
displacement value is in the range of (96, 192] pixels, only the
information collected from C8 has the potential to identify the
correct matching location. At the same time, the correlation
features collected from the other three scales C1, C2, C4 are
all distractors. In this circumstance, the probability to identify
the correct matching location would be very slim. On the other
hand, when the displacement value is smaller than 48 pixels, at
least 3 out of the 4-scaled correlation cost vectors would contain
meaningful matching information, then reliable matching results
would be obtained.

Fortunately, since most of the remote sensing images contain
geolocation information recently, it becomes unnecessary to deal
with the large rotation and scale variations. As for the large
displacement issue, it would be essential to conduct a coarse
registration procedure beforehand, so as to reduce the initial
displacement value to be less than 48 pixels for our proposed
dense registration network, which actually is not a quite difficult
goal to achieve.

A feasible solution for the general remote sensing image
registration would be to properly combine the advantages of
the sparse and dense registration approaches. For example, the
precoarse registration can be first conducted using the sparse
registration approach. Then, the dense registration method can
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further be applied to produce more accurate pixelwise registra-
tion result, especially for image areas with elevation fluctuations.
Finally, the sparse registration can further be used to amend the
wrong registration results in image areas with ground surface
change. In our subsequent research, we would focus on solving
the detailed problems of this research direction.

VI. CONCLUSION

The dense registration approach based on the optical flow
estimation is not only able to get rid of the need of geometrically
transforming the whole image, but also takes full advantage of
the spatial smoothness of the pixelwise flow field, which is at
the core of the optical flow technique. Here, in this article, we
propose a robust deep optical flow framework for the optical and
SAR image dense registration problem. Our main effort is put
on two aspects. First, we try to better solve the brightness uncon-
stancy issue between corresponding optical and SAR pixels, so
as to meet the requirement of optical flow estimation. Second,
we further improve the accuracy of the estimated optical flow
field of each test instance using a self-supervised fine-tuning
strategy.

The ablation study validates the effectiveness of the pro-
posed network architecture and the network training strategy.
Also, substantial progress is made by adopting the proposed
self-supervised optical flow fine-tuning method during the net-
work inference phase. Although the network is trained on a
small optical-SAR dataset that contains only simulated spatially
varying geometric distortions, the experiment results on the
optical-SAR image pairs of real hilly or mountainous areas are
outstanding and also very robust, indicating that the proposed
method has the potential to be used in practical applications.
In future, we would like to explore better ways to combine the
dense matching and sparse matching approaches, so as to further
enhance the registration accuracy, and also deal with the land
surface change problem.
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