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Spectral–Temporal Fusion of Satellite Images via an
End-to-End Two-Stream Attention With an Effective

Reconstruction Network
Tayeb Benzenati , Yousri Kessentini , and Abdelaziz Kallel

Abstract—Due to technical and budget constraints on current
optical satellites, the acquisition of satellite images with the best
resolutions is not practicable. In this article, aiming to produce
products with high spectral (HS) and temporal resolutions, we
introduced a two-stream spectral–temporal fusion technique based
on attention mechanism called STA-Net. STA-Net aims to combine
high spectral and low temporal (HSLT) resolution images with low
spectral and high temporal (LSHT) resolution images to generate
products with the best characteristics. The proposed technique in-
volves two stages. In the first one, two fused images are generated by
a two-stream architecture based on residual attention blocks. The
temporal difference estimator stream estimates the temporal dif-
ference between HS images at desired and neighboring dates. The
reflectance difference estimator is the second stream. It predicts the
reflectance difference between the input images (HS–LS) to map
LS images into HS products. In the second stage, a reconstruction
network combines the latter two-stream outputs via an effective
learnable weighted-sum strategy. The two-stage model is trained
in an end-to-end fashion using an effective loss function to ensure
the best fusion quality. To the best of our knowledge, this work
represents the first attempt to address the spectral–temporal fusion
using an end-to-end deep neural network model. Experimental
results conducted on two actual datasets of Sentinel-2 (HSLT:10
spectral bands and long revisit period) and Planetscope (LSHT:
four spectral bands and daily images) images, which proved the
effectiveness of the proposed technique with respect to baseline
technique.

Index Terms—Attention mechanism, convolutional neural
network (CNN), image fusion, multisensor image fusion,
Planetscope, Sentinel-2, spectral–temporal fusion.

I. INTRODUCTION

THANKS to the increased requests for satellite images with
higher resolution, current spaceborne sensors benefit from
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the recent technological progress, enabling the acquisition of a
wide range of data with different proprieties in terms of spatial,
spectral, temporal, and radiometric resolutions. Interpretation
and analysis of such data received increasing attention from the
remote sensing (RS) community. In particular, image temporal
series are playing a significant role for monitoring of land
surface dynamics over time for various applications, includ-
ing monitoring vegetation, detecting and monitoring land-cover
changes, and change detection of land cover. Unfortunately,
despite the substantial technological progress in optical satel-
lites, the capture of satellite images with the best characteristics
in all aspects is not yet feasible due to technical constraints
and budget limitation. Researchers proposed powerful image
fusion algorithms to combine satellite images with different
characteristics into one product [1]. RS image fusion is an
effective method aimed at merging one or multiple satellite
data to generate a single product with a better interpretability.
The RS fusion images are in a continuing evolution, thanks to
the growing demands from leading companies, such as google
earth and microsoft visual earth [2], which aim to enhance
the resolution of their commercial products, and this process
can be achieved by effective fusion techniques. Initially, the
fusion techniques proposed a solution to enhance the spatial
resolution of satellite images or to combine multimodal data.
Over the past years, the aim of these methods expanded to
include more challenging fusion problems, such as the fusion
of different images with a different but complementary spatial
and temporal resolution [3], [4]. For instance, on the one hand,
satellites, such as Sentinel-2, IKONOS, and Landsat, produce
images with spatial resolution varying from 3 to 30 m, which
is recommended for dynamic monitoring [5], change detec-
tion [6], and land-cover mapping applications [7]. However,
the observations of these kinds of satellites in a specific area
are characterized by relatively long revisit cycles (Sentinel-2: 5
days and Landsat: 16 days). Besides, this period can increase due
to cloud coverage or poor atmospheric conditions. This coarse
temporal resolution reduces their application for monitoring and
detecting rapid change, in particular, in monitoring plant health
and phenology [8]. On the other hand, satellites, such as MODIS
and SPOT VEGETATION, can capture daily observation but
with a coarse spatial resolution ranging between 250 and 1000 m.
Such a spatial resolution does not guarantee a sufficient spatial
detail for monitoring and detecting changes for specific areas of
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interest. The emergence of CubeSats, especially those designed
by Planet Lab’s, can provide currently daily products at high
resolution (3 m) with four bands. Planetscope exploits more
than 180 nanosatellites to offer a valuable data source with a
great promise to deal with spatial–temporal constraints in current
conventional satellite platforms. Despite these satellites’ supe-
riority in terms of spatial–temporal aspect, the acquired images
have a small number of spectral bands with broad bandwidths
that reduces their capabilities in some analyses, such as the
monitoring of the vegetation seasonality and the high-sensitive
distinguishing and detection of ice and snow [9]. Sentinel-2,
on the other hand, includes a larger number of narrower bands
(13) mainly in the red-edge domain, making it suitable for
vegetation monitoring. As a matter of fact, Planetscope and
Sentinel-2 have different but complementary proprieties. Planet
has a high spatial–temporal resolution but a low spectral one,
while Sentinel-2 has a high spectral resolution but a low temporal
resolution. In recent years, many fusion methods have been
introduced, attempting to integrate satellite images from various
sensors at different resolutions to produce daily satellite images
with the best resolutions. For instance, the generation of daily
Sentinel-2 images is fruitful for many applications requiring
high spectral and temporal resolutions. One can cite disaster
monitoring [10], crop growth dynamics monitoring [11], early
stage anomaly detection [12], and change detection in vege-
tation area [13], in general, to permit any kind of early crop
monitoring practices. Therefore, the production of time series of
high spectral resolution data on a daily basis, thanks to Sentinel
2-Planetscope fusion, is crucial and that can be possible only
using an effective multisource multitemporal fusion technique.

A. Related Works

The generation of data that includes simultaneously the com-
plementary properties of two kinds of satellite images can
offer more informative products suitable for several RS appli-
cations, especially for monitoring rapid change areas. For that
matter, multisource and multitemporal data fusion techniques
have emerged to overcome the limits of a single sensor and
introduce a possible solution in a cost-effective manner [4].
Over the past years, several works have been proposed to deal
with the multisource and multitemporal fusion problem. Accord-
ing to Chen et al. [14], most of these methods can be grouped
into three main categories: reconstruction-based techniques,
unmixing-based techniques, and learning-based techniques. Re-
garding the reconstruction-based techniques, the fused synthetic
image is generated via a weighted sum involving appropri-
ate filters of spectrally similar neighboring pixels of the in-
put data. Spatial temporal adaptive reflectance fusion model
(STARFM) [15] is the pioneer algorithm. It aimed at combining
Landsat and MODIS data to produce daily synthetic Landsat
images at 30 m spatial resolution. Since then, several works
have been developed to ameliorate STARFMs efficiency [16].
However, this category may lack efficacy in estimating the
desirable image when a land-cover change type, occurred as
the prediction of such change based on similar pixels of input
images, remains difficult. The second category that is related to

the unmixing-based methods generally includes the following
steps:

1) clustering of available fine resolution images at a prior
dates;

2) linear spectral unmixing of the pixels of the coarse images;
3) generating of fused images by substituting the spectral

information using the unmixing model at the desired date.
Zhukov et al. [17] introduced the first unmixing-based tech-

nique to combine multisensor input images captured at different
dates. Based on this work, many works were introduced to
ameliorate the fusion performance [3], [18], [19]. Besides, Li
et al. [20] introduced a time-effective approach to accelerate the
fusion process while maintaining satisfactory accuracy, confirm-
ing that the literature approaches are usually time-consuming,
which may be improper for practical applications. Nonetheless,
these techniques suffer from large errors estimation of endmem-
bers unmixing and insufficiency of within-class variability of
the fine-scale pixels inside a single coarse one [3]. Therefore,
they may not be effective in detecting endmembers’ changes
within a coarse pixel due to a land-cover change type. The
third category includes learning-based fusion techniques. They
were developed based on the machine learning mechanisms,
including sparse representation [21], dictionary learning [22],
extreme learning [23], and artificial neural networks [24]. This
category aims to learn a mapping between prior multisensor and
multitemporal image pairs, which will then be used to estimate
desired images on the prediction dates. It is worth mention-
ing that some works [25], [26] proposed an integrated spatio–
spectral–temporal fusion framework to combine multisource
data with different spatial, spectral, and temporal resolutions.
It generally employs a maximum posterior probability to define
an inverse fusion problem. However, this approach relies upon
a model optimization that, in turn, relies on prior knowledge.
This process makes the product quality questionable, which can
limit its exploitation for practical RS applications.

Over the past few years, deep learning, mainly, convolu-
tional neural networks (CNN), have achieved impressive suc-
cess in many computer vision applications, including image
segmentation, image denoising, and super-resolution (SR). SR
aims to increase the spatial resolution of low-resolution images
to produce high-resolution images, which is almost the same
goal of the multisensor fusion. Inspired by the state-of-the-art
SR-CNN [27], Dong et al. proposed a two-stage CNN-based
approach [28] to learn a complex mapping from MODIS coarse
images to Landsat fine images. Liu et al. [29] introduced a CNN-
based technique called spatial–temporal fusion two-stream net-
work (StfNet), which employs residual learning of the difference
between available and desired dates using SR-CNN architecture.
Later, Tan et al. [30] introduced an effective generative adversar-
ial networks spatiotemporal fusion model, termed GAN-STFM,
aiming to limit the model inputs to only one pair of coarse–fine
resolution images. It is clear that learning-based approaches,
particularly CNN-based ones, have boosted the fusion perfor-
mance with respect to the traditional fusion methods. However,
the latter deal with the multisensor multitemporal fusion as an
SR task and this strategy would involve significant drawbacks
from the point of view of fusion quality. One can mention, in
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multisensor fusion, the reconstruction scale generally ranges
between 8 and 16, which is considered as a large gap compared
with SR (ranging from 2 and 4). Consequently, these methods
cannot effectively extract texture details required to reconstruct
the fused images [31]. Besides, CNN-based methods are bor-
rowed from the pioneer SR-CNN architecture, which is shown to
be insufficient for generating enough high-frequency detail due
to its shallowness (includes only three layers) [32]. Moreover,
SR-CNN was significantly outperformed by advanced architec-
tures, such as deep residual networks [33] and attention mecha-
nism [34]. It should be stressed that this kind of approach deals
mainly with the spatial–temporal fusion problematic, which
aims to combine satellite images of high spatial but low tem-
poral resolution, such as Landsat and Sentinel-2, with images
of lower spatial but higher temporal resolution images, such
as MODIS and Sentinel-3, to synthesize high spatial–temporal
data. Currently, spatial–temporal fusion represents the main
approach to generate daily Sentinel-2 images, as it exploits freely
available public satellite data. However, such a fusion category
is considered a different and challenging task compared with SR
and traditional RS fusion approaches (e.g., pansharpening) due
to the following factors.

1) Resolution factor: The scale ratio in the spatial–temporal
fusion ranges from 8 to 16, which is higher than the
resolution ratio in SR and pansharpening that generally
ranges from 2 and 4. Such a high ration can be problematic
and leads to less fusion performance, in particular, when
a borrowed SR model is explicitly applied to learn the
end-to-end mapping.

2) Temporal factor: In spatial–temporal fusion, the inputs are
captured at different dates, which make the problem even
more complex, contrary to SR and pansharpening, where
the images are acquired at the same time by the different
modalities.

3) Spectral factor: Contrary to natural images used in the
traditional SR problem that include only three bands, satel-
lite images may include multiple bands covering different
regions of the optical electromagnetic spectrum.

To the best of the authors’ knowledge, it should be noted
that there is no work in the literature addressing the spectral–
temporal satellite image fusion capable of generating products
with high spectral resolution on a daily basis.

B. Motivation

To tackle the drawbacks of the spatial–temporal category and
benefit from the complementary spectral–temporal relationship
between Planetscope and Sentinel-2 satellites, in this article, we
propose the pioneer effort to deal with the spectral–temporal
fusion of Planetscope and Sentinel-2 images to produce daily
Sentinel-2 products using a novel deep two-stream spectral–
temporal fusion technique, residual attention mechanism, and
a reconstruction network using a learned weighted-sum strat-
egy, called STA-Net. STA-Net mainly aims at integrating high
temporal low spectral resolution Planetscope images and low
temporal high spectral resolution Sentinel-2 images to produce
high spectral and temporal products. This process can generate

daily Sentinel-2 data with high accuracy. More specifically, this
article makes the following contributions.

1) MODIS that has widely used in the state-of-the-art has
a high-frequency coverage but a coarse spatial resolution
of 250 m, which makes the estimation of Sentinel-2 at
10 m a complex task. In contrast, Planetscope can produce
daily images with 3 m resolution. Its resolution can ease
the fusion process and generate more accurate Sentinel-2
data.

2) Instead of using the basic SR-CNN [27], which is outper-
formed by deeper CNN, we adapt a deep CNN to boost the
fusion performance, allowing the network to learn more
complex structures at multiple levels of abstractions [35].

3) An end-to-end two-stream architecture based on residual
attention blocks (RABs) is proposed to extract relevant
features from a Sentinel-2 image in prior date and Plan-
etscope one at prediction date, separately. The tempo-
ral difference estimator (TDE) focuses on learning the
temporal difference, whereas the reflectance difference
estimator (RDE) concentrates on learning the reflectance
difference between Planetscope and Sentinel-2 images.
Next, a reconstruction block is introduced to generate
the final Sentinel-2 image via a learned weighting-sum
manner.

4) A novel loss is developed to ensure that the estimated
output is as close as possible to the target involving the
two-stream outputs. Also, it penalizes bias error in the
predicted image to guarantee high spectral quality.

5) The generated Sentinel-2-like data can be exploited in
several agricultural contexts for monitoring different phe-
nomena that require a high spectral resolution with dense
time series.

C. Article Outline

The rest of this article is organized as follows. Section
II provides the background of the attention mechanism.
Section III presents the proposed spectral–temporal fusion
method STA-Net. Section IV describes the considered datasets
and gives the results and discussions. Finally, Section V con-
cludes this article.

II. BACKGROUND

A. Attention Mechanism

Over the past few years, after the successful application in
machine translation task [36], attention mechanism has received
great attention from the machine learning community, and it is
now considered as a vital part for various deep neural network
models for several applications of machine translation [37],
speech recognition [38], and computer vision [39]. The intuition
behind the attention mechanism can be understood using human
biological systems, as the human visual system has the tendency
to focus on adequate information while ignoring the irrelevant
one in a way that can help in perception [40]. Besides the
improvement of performance on several applications, attention
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Fig. 1. Flowchart of CA block. ⊗ indicates the elementwise product.

mechanism has been widely used for enhancing the interpretabil-
ity of neural networks, which are treated mostly as a black-box
model [41] since it is challenging to interpret precisely how the
output is inferred from the input.

1) Channel Attention (CA): CA [42] represents a meaning-
ful application of attention mechanism in which each feature
map is associated by a specific weight that defines the degree
of relevancy of each feature map. CA was employed on RS
pansharpening [43] to generate high resolution multispectral
images, which allows the network to focus on the pertinent
features from the multispectral and panchromatic images. CA
can assist the CNN to pay more attention to important features
and less focus on the less relevant ones, which leads to more
effective feature extraction.

Let X = [x1, . . . , xc, . . . , xC ] be a feature maps with C
channels with size of H ×W . A global average information
operation (HGP ) is first applied to the feature maps to aggregate
spatial information of each channel, which can be calculated as
follows:

zc = HGP =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j), c = 1, . . . , C (1)

where xc(i, j) denotes the pixel value at (i, j) in the cth channel
xc. Next, the outputs pass through a gating mechanism that
includes two fully connected layers (G1 and G2), which can
be expressed as follows:

BCA = f(G2δ(G1Z)) (2)

where f() and δ() denote the sigmoid and ReLU activation func-
tion, respectively. Sigmoid is applied to define the importance
degree of each channel of the feature maps by assigning a weight
value between 0 and 1. CA is illustrated in Fig. 1.

III. PROPOSED METHOD

In this work, Sentinel-2 and Planetscope images are consid-
ered to validate the proposed approach. Let S be a Sentinel-2
image of bs bands and P be a Planetscope image of bp bands.
Both images were captured within the same geographic region.
We proposed a spectral–temporal fusion technique aiming at
estimating a Sentinel image (St) captured at time t from an
associated Pt image captured at the same time, and a pair of
Sentinel-Planet image (St−1 and Pt−1) captured at a prior date
t− 1. As a result, we generate products with a high spectral reso-
lution with frequent coverage. It should be noted that Sentinel-2
and Planetscope have different resolutions. Besides the spatial
difference, there is also a spectral difference not only in band
numbers but also in spectral wavelength range even for the

Fig. 2. Overall framework of STA-Net. + and
∑

denote the pixelwise
addition and the weighted-sum operations, respectively.

similar overlapped bands (i.e., RGB and NIR). From theoretical
perspectives, the fusion process is expected to be easier for the
similar bands than the nonoverlapped ones, which are supposed
to be more challenging due to the difference on both spatial
and spectral proprieties. Indeed, the proposed method and the
integrated spatial–spectral–temporal framework [25] are similar
in nature as both can produce images with high spectral and
temporal resolutions. However, the former has two significant
characteristics that make it different from the latter. First, on
the one hand, the integrated framework requires three different
kinds of data with complementary spatial, spectral, and temporal
properties. On the other hand, the proposed method necessitates
only two different modalities with complementary spectral and
temporal resolutions, which makes it easier and more suitable
for real-life applications. Second, the integrated framework
needs the definition of a complex spatial–temporal–spectral
relationship for different input data, as it is based on the maxi-
mum posterior probability criterion. However, since such prior
knowledge is not always available, the proposed approach is
deep-learning-based; hence, it does not require establishing such
a complicated relationship as it tries to learn it automatically.

Unlike most learning-based techniques, the proposed
two-stream spectral–temporal based on attention mechanism,
referred to as STA-Net, requires only one pair of images
at a prior date rather than two pairs of images at prior and
posterior dates [28], [29], which makes the proposed approach
more suitable to generate fused products without waiting for
posterior date, in particular, for estimating a Sentinel-2 image at
the current date. To make the most of the available information,
STA-Net predicts the unknown Sentinel-2 image in a two-steam
manner involving two stages. On the one hand, the first stream
estimates St by learning the unavailable temporal changes
between St and St−1. On the other hand, the second one
estimates St by learning the unknown difference between St

and Pt to map the Planestcope image into Sentinel-2 product.
Next, a reconstruction network ingrates the two-stream outputs
to produce the final fused product via a learned weighted sum.
The general flowchart of STA-Net is illustrated in Fig. 2.

A. First Stage

Two-stream architectures were successfully applied to several
tasks [44], [45], including image fusion [46], [47], which have
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access to two kinds of information characterized by different
and complementary proprieties. Inspired by this strategy and
believing that St−1 and Pt contain different and complementary
information as they were acquired by different sensors and
included different spatial, spectral, and temporal resolutions,
by which it is possible to produce a Sentinel-2-like images by
learning a complex mapping using an appropriate CNN, we
introduced a two-stream CNN based on attention mechanism.
The two streams have the same objective, i.e., producing a
Sentinel-2-like images but using different concepts.

1) First Stream: TDE: TDE aims to generate the first in-
termediate fused product (I1) by learning a complex mapping
(φ1) of the temporal changes. Instead of taking roughly Pt and
St−1 as inputs, which does not make a full use of the available
information since Pt−1 is also available, which, combined with
Pt, can assist the CNN to learn valuable features, this stream
includes two inputs: St and Pt − Pt−1 (Dt,t−1

T ), which are
concatenated to act as a single input. Since St and St−1 can be
highly correlated, a residual learning is employed to learn only
the residual difference between St and St−1. This difference
represents the temporal change within the study area, which
should be added to St−1 to reconstruct the first intermediate
fused image I1. The residual learning is proven to improve the
accuracy and ease the training [48] compared with the tradi-
tional stacked convolutional layers. Besides, it provides more
interpretability to the fusion algorithm. The image generated by
the first stream can be summarized by the following formula:

I1 = St−1 + φ1(St−1, D
t,t−1
T ; θ1)︸ ︷︷ ︸

IDT

(3)

where IDT
indicates the temporal difference image that needs to

be inserted intoSt−1 to produce I1, and θ1 denotes the network’s
parameters to be trained.

2) Second Stream: RDE: The majority of works predict the
desired image using a mapping into St or by estimating the
difference image that need to be injected intoSt−1. This strategy
alone may not lead to an effective performance, especially
when considerable changes occur within the area. In our work,
assuming that Sentinel-2 and Planetscope images are captured
within the same region but having different reflectance responses
as they are acquired via different sensors, the second stream,
called RDE, aims to reconstruct a Sentinel-2-like image (I2)
by learning a complex mapping (φ2) from Pt. In other words,
this network learns the difference between Planetscope and
Sentinel-2 images with the aim to transform the Planetscope
image into a Sentinel-2-like image. However, such a strategy
cannot be applied explicitly due to the difference in band number
between both constellations, in particular, for the additional
red-edge ones of Sentinel-2 that are unavailable in Planetscope
products. Therefore, aiming to adjust the equivalent spectral
bands, the latter Sentinel-2 bands are estimated using the closest
Planetscope bands in terms of root mean squared error (RMSE)
forming eight band versions of Planetscope images (P̂t and
ˆPt−1). Sentinel bands: B2, B3, B4, and B8 are estimated by

the associated Planetscope bands Blue, Green, Red, and NIR,
respectively, whereas Sentinel-2 red-edge bands: B5 and B6

Fig. 3. Detailed architecture of the first stage two streams:k denotes the filter’s
size, n indicates the number of output filters, and s represents the stride size.
(a) Temporal Difference Estimator. (b) Reflectance Difference Estimator.

are estimated based on the Planetscope red band, and B7 and
B8a are predicted via the Planetscope NIR band. Aiming to
ease the learning process for the network, we provide two
inputs for the CNN: P̂t and St−1 − Pt−1 (Dt−1

R ). Dt−1
R provides

additional accessible knowledge to the network, as it includes
the reflectance difference at a prior date, which can assist the
network in learning the mapping from the inputs to St. The
image produced by this stream can be expressed as follows:

I2 = P̂t + φ2(P̂t, D
t−1
R , θ2)︸ ︷︷ ︸

IDR

(4)

where IDR
denotes the radiometric difference that must be

injected into P̂t to produce I2, and θ2 represents the network
parameters to be optimized. The detailed architecture of each
stream is shown in Fig. 3. Each stream has the same architecture
but different weights as it was trained using different inputs. Each
stream includes three main parts: shallow feature extraction,
deep feature extraction, and difference reconstruction part. First,
one convolution is performed to extract shallow features from
the corresponding inputs of each stream. Next, four RABs are
applied for deep feature extraction. The used attention block
is described in Section III-A3. Finally, from the elementwise
sum of shallow and deep feature, two convolutions are used to
estimate the residual difference that needs to be inserted into
St−1/Pt to produce I1/I2 for TDE/RDE streams, respectively.

3) RABs: It has been shown that residual blocks can be
utilized to develop effective deep CNN [49]. However, since
the traditional residual blocks apply equal attention to all fea-
tures, this kind of network is generally difficult to train and
reconstruct the high-frequency details [34]. To overcome, the
attention mechanism has been proposed in [42], and it offers
complementary characteristics. It can focus on more informative
features and ignore the useless ones, which help the networks to
easily capture the important features and reconstruct finer texture
details. Inspired by this trend [34], [50], we proposed an RAB,
which combines the effectiveness of attention mechanism and
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Fig. 4. Structure of the attention block: ⊕ and ⊗ indicate the elementwise
addition and multiplication, respectively, and� represents the sigmoid activation
function. SA and CA are the spatial and channel attention blocks, respectively.

the regular residual blocks. The architecture of a single attention
block is shown in Fig. 4. The latter includes two parts to model
two kinds of information suitable for spectral–temporal fusion:
CA and spatial attention (SA), as satellite images include low-
and high-frequency components. The latter provides valuable
information that represents edges, texture, and other kinds of
details. Focusing on such components can be beneficial for the
network to reconstruct the desired fused product. Accordingly,
to pay more attention to high-frequency information, CA, as
described in Section II-A1, is introduced to exploit better each
channel of feature maps. This strategy can prioritize the channels
with more relevant information. It is common knowledge that
channels in each feature map can include different representa-
tions based on the applied filter’s objective. For instance, some
filters can capture horizontal edges, and other filters extract
vertical ones, and obviously, each of them plays a significant role
in reconstructing the fused product. Trying to separate the spatial
information and depthwise one, we performed an SA using a
depthwise convolution [51] to exploit spatial interdependencies
of each channel while maintaining channel-specific character-
istics. Contrary to regular convolutions, which are applied over
multiple channels, depthwise convolution traits each channel
individually to produce two-dimensional feature maps for each
one. This part can be expressed as follows:

BSA = fdepth(X) (5)

where fdepth denotes the depthwise convolution operation via
three kernels. The final output of an attention block combines
the spatial and spectral attention outputs and can be expressed
as follows:

X̂ = HAB(X) = f(BSA ⊕BCA)⊗X (6)

where X̂ represents the final output of the RAB, BCA and
BSA denote the outputs of CA and SA, respectively, and ⊕
and ⊗ indicate the elementwise sum and product, respectively.
The RAB is composed of successive stacked attention blocks.
Assuming that the output of the ith RAB is Fi, the latter can be
calculated as follows:

Fi+1 = HAB(F
1
i+1) + Fi (7)

where HAB(.) indicates the operation of RAB, and F 1
i+1 is

the feature maps output of C channels after the application of
convolution, ReLU, and convolution on Fi.

Fig. 5. Detailed architecture of the reconstruction network: k denotes the
filter’s size, n indicates the number of output filters, and s represents the stride
size.

B. Second Stage: Reconstruction Network

At the end of the first stage, two outputs are generated, each of
them has complementary features. To make the most of the latter,
the fusion stage aims to extract the hierarchical characteristics
of the two outputs I1 and I2 to catch complimentary properties
and produce the final fused product (IF ). To this end, inspired by
CNNs learning capacity, we introduced a reconstruction block
to merge the two outputs to recover the desired image. Instead
of predicting the latter directly in a black-box manner lacking
physical interpretability, this stage blends the two inputs by
learning the appropriate pixelwise weighted sum, which aims
to guide the network to select the best pixels that boost the
fusion performance. The intuition behind this strategy is that
the performances of two-stream’s outputs vary depending on
the spatio-temporal features. For instance, areas with minor
changes are better preserved by the STD as St is almost equal to
St−1, whereas the ones with significant changes and low spatial
variation are better reconstructed by the second stream (RDE)
since St and Pt are highly correlated. The final fused product
can be expressed by the following formula:

IF =

2∑
j=1

φF (I1, I2, θF )j︸ ︷︷ ︸
Wj

·Ij (8)

where W represents the outputs of the network that represents
the learned weights, · denotes the pixelwise product, Ii indicates
the intermediate fused product of the ith stream, IF repre-
sents the final fused product, and θF indicates the network’s
parameters to be optimized. The architecture of the second stage
is illustrated in Fig. 5. First, the two-stream outputs are concate-
nated to form a single input to pass through two convolution
layers to extract features that encourage the network to select
the best pixels of the input. Next, two parallel convolutions are
applied to estimate the appropriate weights for the associated
intermediate fused products I1 and I2, respectively. Aiming at
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blending the latter products via a weighted sum, the estimated
weights are multiplied pixel-by-pixel by their associated fused
images to choose the best value for each pixel. The results are
added together at pixel level to produce the final fused image
IF .

C. Proposed Loss

The design of the loss function is vital for network train-
ing and prediction. Therefore, unlike some CNN-based tech-
niques [28], [29] that are often time-consuming during the train-
ing process since they train each part of the network separately,
STA-Net employed a combined loss function to optimize the
network’s parameters in an end-to-end manner. This strategy
updates all the network parameters simultaneously via a single
loss function, which leads to fast and accurate fusion results.
The objective of the training is to optimize the following loss
function:

L(θ) = α1L1 + α2L2 + α3L3 (9)

where α1, α2, and α3 represent the loss weights used to equi-
librate the contribution of each part, and each part is defined as
follows:

L1 =
1

Ns

Ns∑
i=1

∥∥Si
t − Iif

∥∥
1

L2 =
1

Ns

Ns∑
i=1

∥∥Si
t − Ii1

∥∥
2
+
∥∥Si

t − Ii2
∥∥
2

L3 =
1

Ns

Ns∑
i=1

∥∥∥Īi1 − S̄i
t

∥∥∥
2
+
∥∥∥Īi1 − S̄i

t

∥∥∥
2

where St indicates the reference Sentinel-2 image, i denotes
the sample index of minibatch of Ns, and the bar operation (̄.)
indicates the mean value. The first part is the mean absolute
error (known as l1 or MAE) between the final predicted and
the reference images, aiming to obtain fused images as close as
possible to the reference images. As the final output combines
the two-stream intermediate results, the second part encourages
the first stage networks to produce Sentinel-2-like products
similar to the reference ones via a mean squared error loss (l2) as
well as to allow an end-to-end training. Concerning the third part,
as Planetscope and Sentinel-2 images have different radiometric
responses, it is used to ensure that the intermediate predicted
images have the same mean as the reference images to preserve
their spectral information. The MAE (l1) is used for the first
part, as it provides better performance than l2 loss and better
convergence behavior [49], which guarantees the best fusion
result for the final fused product. At the same time, l2 is utilized
for the other parts because it is less sensitive to the variation
than l1. This is mainly the case when the two images are very
similar to each other, which allows the network to give more
focus on the final predicted product while ensuring competitive
performance for the two-stream outputs.

IV. EXPERIMENTAL RESULTS

A. Datasets

To assess the proposed technique’s fusion performance,
two datasets acquired by Planetscope and Sentinel-2 satellites,
within the same area and the same date, are used for the training
and the evaluation procedure, respectively. The first dataset
(denoted as Sfax dataset) was captured over the region of Sfax
city, Tunisia (35◦06 N, 10◦54 E), located about 30 km north
of the city, which covers a complex area that includes an agri-
cultural area from Jebiniana town. The training dataset consists
of two pairs of Planetscope and Sentinel-2 images captured on
March 2nd, 2017 and November 12th, 2017, respectively. The
test dataset includes two pairs acquired on June 5th, 2018 and
December 12th, 2018, respectively. The second dataset (denoted
as Coleambally dataset) was acquired over the irrigation area
located in Coleambally (34◦54 S, 146◦1 E) in southern New
South Wales, Australia. The training images include two pairs
captured on May 23, 2019 and December 14, 2019. The test
dataset comprises two pairs of images acquired on May 15, 2020
and November 21, 2020. This period between the acquisition
allows the apparition of significant phenological changes due to
the growth of plants and different types of vegetation as well
as shadow variation due to the sun inclination variation. For
each dataset, the first date represents the images at a prior date
(t− 1), and the second date indicates the desired image at t that
needs to be estimated, which is used as a ground-truth image for
evaluation of the fusion product. The size of each training dataset
is 2100× 2100 pixels at Sentinel-2 10 m scale. Regarding the
evaluation process, for each test dataset, 25 images of size
256× 256 pixels are chosen to assess quantitatively the per-
formance of the proposed approach. Furthermore, a qualitative
evaluation was carried out visually using one scene from the
selected ones.

For two constellations, Sentinel-2 and Planetscope, the prod-
ucts with high processing levels are considered; level L2A
with Bottom of Atmosphere reflectance for Sentinel-2, which
includes an atmospheric correction, the Analytic Ortho Scene
(3B) for Planetscope. Regarding Sentinel-2 products, in this
work, eight spectral bands are considered. The broad spectral
bands: B2 (Blue 458–523 nm), B3 (Green, 543–578 nm), B4
(Red, 650–680 nm), and B8 (NIR, 785–900 nm) with 10 m
ground sampling distance and the vegetation red-edge bands:
B5 (Red-Edge 1, 698–713 nm), B6 (Red-Edge 2, 733–748 nm),
B7 (Red-Edge 3, 773–793 nm), and B8a (Narrow NIR, 855–
875 nm) with 20 m, which are valuable for several vegetation
study applications, such as identifying vegetation types [52] and
detection of crop disease [53]. For Planetscope, the accessible
four spectral bands (blue, green, red and near infrared) at 3 m
are used. All selected datasets are cloud-free, geometrically
corrected images. Sentinel-2 bands at 20 m were resampled to
fit the resolution of 10 m bands. Besides, Planetscope images
at 3 m were upscaled to 10 m to fit the Sentinel-2 resolution.
Although the downsampling of Planetscope images to 10 m may
lose some spatial details, it is more suitable for our approach
to process with such a resolution for three reasons. First, our
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TABLE I
CHARACTERISTICS AND REQUIRED PROCESSING OF PLANETSCOPE AND

SENTINEL-2 USED IN THIS STUDY

model aims to generate Sentinel-2 at 10 m, which is the highest
spatial resolution of Sentinel-2. Second, our technique is not
supposed to be sensitive to minor changes that are smaller than
10 m resolution, and they should be ignored. Third, the fusion
performance remained approximately the same for both reso-
lutions 10 m and 3 m. As postprocessing, the resampled bands
of Sentinel-2 (i.e., B5, B6, B7, and B8a) will be downsampled
using a Gaussian low-pass kernel that mimics the modulation
transfer function to restore their original resolution of 20 m.
Table I summarizes the spatial, spectral, temporal resolutions
and the required preprocessing of Sentinel-2 and Planetscope
used in this work.

B. Implementation Details

For the training stage, the training images were cropped into
patches of size 41× 41 pixels and generating, therefore, 3000
samples for allowing the training process. A convolutional filter
of size 3× 3 was set in all weight layers of the network. Regard-
ing the optimization, the network was trained for 1200 epochs
(25 818 iterations) and optimized via Adam optimizer [54] with
β1 = 0.9 and β2 = 0.999. The batch size was set to 64 during
the training process. The loss’s weights α1, α2, and α3 were
empirically set to 1 in the present work. These weights are
set empirically instead of being learned, as we noticed that
this strategy can lead to more stable training and best fusion
performance. The learning rate was first initialized to 10−4 and
divided by 10 every 300 epochs. The network was implemented
and tested through NVIDIA Titan Xp GPU with 32 GB of RAM.
The training stage is achieved when the loss does not improve
for 50 epochs. In the prediction phase, as our STA-Net processes
images of arbitrary size respecting the limit of GPU’s memory,
the tested image was predicted without the need for cropping,
unlike the training phase.

C. Quality Assessment

Quantitative validation represents an indispensable step for
evaluating and comparing each fusion technique. Thanks to the
existence of Sentinel-2 images at the desired dates that serve
as reference images, it is possible to evaluate the fused images
with their associated target ones in a full-reference method. For
this reason, several full-reference metrics have been proposed

TABLE II
COMPARISON OF FUSION PERFORMANCE ON COLEAMBALLY DATASET

DEPENDING ON THE EMPLOYED ARCHITECTURE

TABLE III
COMPARISON OF FUSION PERFORMANCE ACHIEVED BY DIFFERENT

NETWORK’S WIDTH

to measure the spectral and spatial quality of fused products. In
this work, the fusion performances have been evaluated through
four highly used metrics, including the RMSE, the correlation
coefficient (CC) [55], the spectral angle mapper (SAM) [2], the
structure similarity (SSIM) [56], and the universal image quality
index (UIQI) [57]. In addition to the quantitative validation, a
qualitative assessment was performed via a visual inspection
to visually evaluate the fused product, which helps identify
other kinds of spectral and spatial distortions, which may not
be noticed in a quantitative manner.

D. Ablation Study

Aiming to investigate the influence of the network’s compo-
nents, an ablation study was performed to show the effectiveness
of the proposed method as well as to select the optimal param-
eters that ameliorate the fusion accuracy. More precisely, such
a study intends to assess the direct impact of two-stream archi-
tecture, weighted-sum strategy, loss function, and the employed
attention blocks to gain in fusion efficiency.

1) Influence of Two-Stream Architecture: The use of two-
stream architecture is one of the main contributions of this
work. Therefore, trying to show the effectiveness of the proposed
two-stream architecture over a one-stream one, we implemented
a one-stream network by stacking the inputs of each stream on
the original method into a single input. Table II describes the
achieved quantitative fusion results on Coleambally dataset de-
pending on the employed architecture. The proposed two-stream
architecture shows a better fusion ability than the single-stream
one in all aspects. It achieved the best scores in all metrics, prov-
ing the suitability of a two-stream architecture in the proposed
method.

2) Influence of the Network’s Depth: An ablation study was
also conducted to investigate the impact of the network’s depth
(i.e., the number of attention blocks) on the fusion performance.
It is known that the number of the network’s parameters grows
linearly with the depth. Therefore, we should carefully find the
best tradeoff between the fusion performance and the network’s
depth. The quantitative results illustrated on Table III show
that fusion performance and the depth of the model have a
positive relationship. However, this trend was downward after
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TABLE IV
COMPARISON OF FUSION PERFORMANCE ACHIEVED BY WEIGHTED-SUM AND

TYPICAL STRATEGIES ON COLEAMBALLY DATASET

TABLE V
VARIATION OF FUSION SCORES BASED ON THE EMPLOYED LOSS FUNCTION ON

COLEAMBALLY DATASET

four blocks. For this reason, a depth of four blocks has been
chosen to develop the proposed technique.

3) Influence of Weighted-Sum Strategy: Employing a
weighted-sum strategy to produce the desired fused images
represents another originality of the present work. Attempting
to examine the impact of this strategy to improve the fusion
accuracy of the proposed method, we compared the latter with a
typical strategy that does not employ any weighted-sum strategy.
In other words, it produces the desired image directly from the
intermediate fused products via the second stage’s reconstruc-
tion network. Besides, it was compared with the intermediate
images: I1 and I2, generated by TDE and RDE, respectively.
Table IV illustrates the obtained fusion score on Coleambally
dataset using the considered mechanism. It may be seen that the
proposed weighted-sum strategy is highly advantageous over the
typical ones since the former produces the best fusion accuracy
in all considered aspects. Furthermore, such a mechanism can
further boost the fusion performance by combining the interme-
diate images in a learned weighted-sum manner into a single,
more accurate product. Consequently, including a weighted-sum
strategy in the last layer can effectively enhance the fusion
results, which further proves the effectiveness of the proposed
method.

4) Influence of Loss Function: Aiming to evaluate the influ-
ence of loss function to enhance the fusion quality, we compared
the proposed loss function with l1 and l2 loss functions, which
were largely used in the literature in several image enhancement
applications, especially satellite images fusion. Table V illus-
trates the fusion scores obtained by the compared loss function
on Coleambally dataset. It can be seen that l1 achieves higher
fusion scores than l2, which shows the significance of employ-
ing l1 as a principal part of the proposed loss. However, the
proposed loss function offers the best fusion results in all bands
in terms of RMSE. The obtained scores prove the effectiveness
of the proposed loss function to gain in fusion performance. In
particular, it shows the importance of optimizing the network’s
parameters using a combined loss function that considers the
output of each stream.

5) Influence of RABs: In this experiment, we analyze the
impact of the chosen blocks as they play a significant role in

TABLE VI
COMPARISON OF FUSION PERFORMANCE DEPENDING ON THE USED RESIDUAL

BLOCKS ON COLEAMBALLY DATASET

boosting the proposed method’s fusion quality. Table VI presents
the obtained fusion results by the employed RABs, residual
blocks [48], and residual dense blocks [58] on Coleambally
dataset. Such blocks are widely used in computer vision applica-
tions, thanks to their ability to develop deeper neural networks.
The achieved fusion scores by the compared residual blocks
are very close to each other. However, the employed residual
blocks yielded the highest scores compared with other blocks
with respect to all considered metrics. These results prove that
RABs represent the ideal choice for the proposed method, given
its high fusion accuracy.

E. Quantitative Validation

To evaluate the fusion performance of the proposed technique,
the latter was compared with the reconstruction-based approach
STARFM [15], the common CNN baseline for image process-
ing, SRCNN [27], trained for spectral–temporal fusion, and
the well-established spatial–temporal fusion methods based on
deep learning: two-stream convolutional neural network for spa-
tiotemporal image fusion (StfNet) [29] and GAN-STFM [30],
adapted to deal with spectral–temporal fusion. Both SRCNN
and StfNet were implemented and trained by ourselves, and all
the parameters of these techniques are set as described in their
original papers to ensure the optimal performance. As STARFM
combines satellite images with similar spectral properties and re-
quires the same number of input and output bands, the additional
Sentinel-2 bands are estimated via the closest Planetscope bands
in terms of RMSE. Sentinel-2 bands: B2, B3, B4, and B8 are
estimated by the corresponding Planetscope bands Blue, Green,
Red, and NIR, respectively. On the other hand, the remaining
Sentinel-2 red-edge bands: B5 and B6 are estimated based on
the Planetscope red band, and B7 and B8a are predicted via
the Planetscope NIR band. Tables VII and VIII describe the
quantitative scores of the considered fusion techniques and the
associated St−1 on Sfax and Coleambally datasets, respectively.
As it can be seen, the correlation between the observations at the
two dates is low, for both datasets, because of the long period
between the two acquisitions, which can make the fusion task
more complex for the CNN-based approaches to learn from the
data. As expected, the traditional approach: STARFM achieves
the weakest scores in terms of quantitative quality as it cannot
address the phenology changes in the homogeneous regions.
SRCNN, StfNet, and GAN-STFM obtain an RMSE mean of
around 0.01 on both datasets. STA-Net enhances the accuracy
obviously, with an RMSE mean of roughly 0.007. SSIM mean
scores calculated from the eight estimated bands reached the
highest values of 0.97 for the proposed approach, indicating
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TABLE VII
QUANTITATIVE SCORES OF THE FUSED PRODUCTS ON SFAX DATASET

that the fused and reference images have the best structural
similarity. Besides, STA-Net offers the highest scores in terms
of CC and UIQI, which denotes an effective reconstruction of
small-size structures [59]. In terms of spectral fidelity measured
using SAM index, STA-Net conserves better spectral signature,
as it produces the best SAM results among the compared tech-
niques. Surprisingly, the fusion accuracy of B5 and B6 bands
surpasses the one of B4 and B8 that have corresponding bands
in Planetscope (RGB and NIR). This phenomenon may be due
to the difference of the spectral characteristics of B4 and B8, and
the corresponding Red and NIR bands of Planetscope, as there
is only a partial overlap between them (see Section IV-A). All
the aforementioned results indicate that the proposed technique
offers the best fused products in terms of spatial, spectral, and
radiometric properties.

F. Qualitative Validation

The visual inspection is considered a fundamental step to
validate each fusion approach along with the quantitative vali-
dation. It can highlight different kinds of noticeable distortions

TABLE VIII
QUANTITATIVE SCORES OF THE FUSED PRODUCTS ON COLEAMBALLY DATASET

and artifacts on the fused images, which help compare the per-
formance between the considered fusion techniques. Figs. 6 and
7 illustrate the fusion results from the considered techniques on
the Sfax and Coleambally datasets, respectively, along with the
reference Sentinel-2 image (St) and its associated Planetscope
product at the same date Pt in addition to Sentinel-2 image
at the prior date (St−1). It can be seen at first sight that the
visual results are in line with the quantitative observations from
Tables VII and VIII. We can observe that all the methods are
able to estimate the phenological changes occurred between
the desired and prior dates. STARFM suffers from a serious
blurring effect and lost a lot of detail in some heterogeneous
areas. Besides, high spectral distortion is noticed in some parts
of the image, as the color appears different from the reference
image (red rectangle). Regarding SR-CNN, its fused product
suffers from a serious blurring effect on the whole image and
lost a lot of detail in some heterogeneous areas. Besides, a
significant spectral distortion is noticed in some parts of the
fused image, as the color appears dissimilar from the reference
image (blue rectangle). StfNet, on the other hand, yields better
performances than SR-CNN but lacks spatial details in some
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Fig. 6. Comparison of fused images from the considered methods on Sfax dataset. All images are at 10 m resolution. The images are displayed in the natural
image composite (RGB: B4, B3, and B2). (a) Planetscope (Pt). (b) Reference (St). (c) St−1. (d) STARFM. (e) SR-CNN. (f) StfNet. (g) GAN-STFM. (h) STA-Net
(Ours).

Fig. 7. Comparison of fused images from the considered methods on Coleambally dataset. All images are at 10 m resolution. The images are displayed in the
natural image composite (RGB: B4, B3, and B2). (a) Planetscope (Pt). (b) Reference (St). (c) St−1. (d) STARFM. (e) SR-CNN. (f) StfNet. (g) GAN-STFM.
(h) STA-Net (Ours).

regions (blue rectangle) even if the color is better preserved
than the latter on both datasets. GAN-STFM offers better details
reconstruction on Sfax dataset (highlighted in red) but generates
a significant spectral distortion on Coleambally dataset as the
color is bluer on the whole image compared with the reference
image. The proposed method STA-Net achieves better fusion
accuracy than the aforementioned methods in terms of spatial
and spectral quality, as our fusion result is the closest to the
reference image without any noticeable distortion or artifacts
within the fused product in terms of visual quality. Besides,
the colors are well-preserved by the proposed method than
SR-CNN and StfNet, as we can see that the color in StfNet

is different from the original image (blue rectangle). In terms
of spatial information, StfNet lacks structural detail because its
shallow architecture does not allow capturing sufficient high-
frequency details, in particular, in heterogeneous areas and the
edges of the areas highlighted in red. Regarding the proposed
technique, since the network is deeper and benefits from the
attention mechanism to select the best features, the details and
contours are well reconstructed with sharper edges (e.g., regions
highlighted in red). From the above-mentioned comparisons,
it can be concluded that the two-stream strategy via attention
mechanism can boost the fusion performance to produce more
accurate products.
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G. Limitations of the Proposed Method

The proposed method provides very competitive results not
only for spectral–temporal fusion but also for generating data
with high spatial and temporal resolutions (cf. Section 1.2 of the
supplementary material). These results show the extensibility
aspect of our work to deal with different satellite image fusion
problems. However, as with the majority of works, the proposed
method is subject to some limitations. Mainly regarding the
applicability of the proposed method to fuse other modalities
and different kinds of data. One can cite the behavior of our
method to generate dense time series of nonreflected data, such
as land surface temperature (LST) one, that includes thermal
bands [60], [61], as it is recommended for climate change
monitoring applications.

V. CONCLUSION

In this article, we introduced an STA-Net, an end-to-end
two-stream fusion technique based on RABs via an effective
loss function to integrate Planetscope and Sentinel-2 images.
The proposed approach includes two stages. In the first stage,
based on RABs, TDE predicts the temporal residual between the
actual Sentinel-2 at the desired and prior dates. Simultaneously,
the RDE estimates reflectance difference between Sentinel-2
and Planetscope images. Hence, two intermediate fused images
are produced by injecting the corresponding temporal and re-
flectance differences, respectively. The second stage aimed to
reconstruct the desired fused product via a learned weighting
sum to combine the two-stream outcomes. An effective loss is
introduced that involves the two-stream outputs to guarantee the
best performances. To the best of our knowledge, this is the first
attempt to fuse Planetscope and Sentinel-2 images to produce
daily Sentinel-2 images using such a network.

The experiments have been conducted on Planetscope and
Sentinel-2 images using quantitative and qualitative evaluations
on two datasets; it was shown that the proposed approach yielded
the best fusion performances in terms of spatial and spectral
information compared with the considered state-of-the-art tech-
niques. In our future work, we intend to explore more advanced
deep-learning models to ameliorate the fusion quality further
while making the product more realistic. Besides, we plan to
extend our approach to be capable of generating fused images at
Planetscope 3 m resolution. Also, we intend to extend STA-Net
applicability to produce LST data for dynamic monitoring and
prediction in climate change tasks.
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