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Abstract—In cross-domain hyperspectral image (HSI) classifi-
cation, the labeled samples of the target domain are very limited,
and it is a worthy attention to obtain sufficient class information
from the source domain to categorize the target domain classes
(both the same and new unseen classes). This article investigates this
problem by employing few-shot learning (FSL) in a meta-learning
paradigm. However, most existing cross-domain FSL methods ex-
tract statistical features based on convolutional neural networks
(CNNs), which typically only consider the local spatial information
among features, while ignoring the global information. To make up
for these shortcomings, this article proposes novel convolutional
transformer-based few-shot learning (CTFSL). Specifically, FSL
is first performed in the classes of source and target domains
simultaneously to build the consistent scenario. Then, a domain
aligner is set up to map the source and target domains to the same
dimensions. In addition, a convolutional transformer (CT) net-
work is utilized to extract local-global features. Finally, a domain
discriminator is executed subsequently that can not only reduce
domain shift but also distinguish from which domain a feature
originates. Experiments on three widely used hyperspectral image
datasets indicate that the proposed CTFSL method is superior to
the state-of-the-art cross-domain FSL methods and several typical
HSI classification methods in terms of classification accuracy.

Index Terms—Convolutional transformer (CT), cross-domain,
few-shot learning (FSL), hyperspectral image (HSI), scene
consistency.

1. INTRODUCTION

YPERSPECTRAL images (HSIs) are 3-D data cubes with
1-D spectral information in addition to the general 2-D
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spatial image [1], [2], [3] that integrate the characteristics of
image and spectra. HSIs contain abundant spectral and spatial in-
formation [4], [5], which have been applied in land-use and land-
cover classification and have gained increasing attention [6], [7],
[8], [9]. In HSI classification, it is sufficient to labeled samples
in the same scene such that a scene can be classified correctly.
However, achieving labeling process is difficult for a newly
collected HSI.

Cross-domain HSI classification was proposed for resolving
the problem of difficult classification due to the scarcity of
ground-cover labels [10], [11], [12], [13]. This aims to use the
similarity of covering features between multiple HSIs to form
classification and recognition criteria from an HSI with sufficient
labeled pixels for model training and learning, which is called
the source domain or source scene. Then, the model is used to
identify and classify another HSI with similar scenes called the
target domain or target scene that is seriously lacking in labeled
pixels or even without available labeled pixels.

Inevitably, difficulties and challenges in cross-scene HSI clas-
sification tasks followed. Restricted by factors such as sensor
differences, imaging time, location, and atmospheric environ-
ment, the acquired HSI has heterogeneity [14], [15], [16], [17].
Therefore, solving the distribution differences of the source and
target domains is the key to cross-scene HSI classification, which
is the domain adaptation problem. In recent years, a series of
HSI classification approaches have been presented to achieve
cross-scene learning tasks and solve domain adaptation prob-
lems, which can be roughly defined into two types: heterogeneity
of feature distribution and heterogeneity of feature space.

The former refers to the HSIs collected by the same optical
sensor under different angles, times, locations, etc., causing
heterogeneity in the feature distribution between the same land
covers in different scenes, which is manifested by the same
number of spectral bands but the spectral curves may differ in the
same class. The latter refers to the restriction of the parameters
of the optical sensor, which leads to feature space heterogeneity
between source and target domain HSIs; this manifests that not
only the spectral bands are different in number, but the spectral
curves of the identical class in different scenes would also be
significantly different.

To address cross-scene classification, from the heterogeneity
of feature distribution-based perspective, some works are oper-
ated to explore the similarity between the source and target do-
mains, thus, solving the spectral offset problem. Deng et al. [18]
proposed a feature embedding model based on deep metric

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-3942-978X
https://orcid.org/0000-0001-5802-9496
mailto:lovepys@hnist.edu.cn
mailto:liuyarua@foxmail.com
mailto:liuyarua@foxmail.com
mailto:yuwen_zhang@vip.hnist.edu.cn
mailto:tubing@hnist.edu.cn

1336

learning, which applies the features learned from the source
scene to the target scene with an unsupervised domain adap-
tation technique. A maximum mean difference (MMD)-based
graph optimal transmission (GOT) was proposed to align the
distribution discrepancy of the source and target domains [19].
An unsupervised domain adaptation method was accomplished
for cross-scene HSI classification by utilizing an integrated
framework with spectral-spatial feature dense compaction [20].
The unsupervised domain adaptation method for feature learning
does not demand labeled data in the target scene, but it requires
having a small enough discrepancy between the source and target
scenes. Although the heterogeneity of feature distribution-based
methods enable to decrease data migration between two do-
mains, they usually require that the target categories are the same
as the source and can not classify the new unseen categories.

From the perspective of heterogeneity of feature space, Liu
et al. [21] introduced spectral shift mitigation to simultaneously
minimize the amplitude shift between source and target domains
as well as the spectral variation for the target scene. Despite
the great similarities in the data between the source and target
domains, the classes between the two scenes may differ and
new classes need to be considered. Recently, few-shot learning
(FSL) [22], [23], [24] has been used to address the above
problem, the goal of which is to classify a target class data
given just a small number of labeled samples from each class.
Li et al. [25] proposed a deep cross-domain few-shot learning
(DCFSL) method for cross-scene classification of HSIs in the
case of less labeled data, which overcomes domain shift by
learning a domain-adaptive feature embedded space through
a 3-D-CNN-based deep residual network from two mapping
layers of the source and target sceneries that are used for ensuring
that the inputs to the embedded feature extractor share equal
dimensions. In addition, DCFSL makes it possible to perform
domain distribution alignment by the domain discriminator.
Zhang et al. [26] developed a dual graph cross-domain few-shot
learning (DG-CFSL) method to mitigate the impact of domain
transitions. DG-CFSL designs intradomain distribution extrac-
tion block (IDE-block) to carry out domain alignment using
nonlocal spatial information which has powerful corresponding
properties.

The foregoing FSL approaches enable increased classification
accuracy with limited labels; they commonly extract features
using a convolutional neural network (CNN) that have obtained
significant results for cross-scene HSI classification. However, it
is difficult for CNN to capture the sequence attributes of spectral
features due to the limitations of its network backbone. In addi-
tion, the receptive field of CNN is limited which may easily cause
the missing information in the down-sampling layer, and it needs
to expand the convolution kernel to expand the receptive field,
which causes dimensional disaster. A transformer network [27],
[28] can be utilized to overcome the above issues because it can
capture the sequence attributes of spectral features. Meanwhile,
vision transformer (ViT) [29] has been proposed to apply a
transformer in image classification, Chen et al. [30] developed
a multistage vision transformer model to form pyramid fea-
ture extraction. Wu et al. [31] introduced spectrally enhanced
and densely connected transformer model to capture local
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contextual and semantic features. Feng et al. [32] developed
a novel spectral transformer with dynamic spatial sampling and
gaussian positional embedding to take full advantage of the
flexible nature of spatial sampling, to emphasize the importance
of the central image element for HSI cube classification, and to
improve the adaptability. Peng et al. [33] proposed a spatial—
spectral transformer with cross-attention, which is composed
of a dual-branch structures with spatial and spectral sequence.
However, it tends to overlook some local information that may
be important for HSI classification. To enhance information
utilization and extract more discriminative features, we com-
bine the CNN and transformer module and propose a convolu-
tional transformer-based few-shot learning (CTFSL) structure
for cross-domain HSI classification. Specifically, two FSLs are
first executed simultaneously for the source and target domains.
After mapping two domains’ bands to the same dimensions
through the distribution aligner, a feature extractor based on
a convolutional transformer (CT) network is utilized to learn
spectral-spatial features, which can both expand interclass dis-
tances and reduce innerclass distances. Furthermore, a domain
discriminator is employed to tackle the domain separability
problems that can not only classify the same target domain
classes as source domain classes but also classify new unseen
classes.

The major contributions presented in this article are grouped
as follows.

1) A CTFSL framework is proposed where a novel FSL
method is developed to solve classes that are scarcely
represented, and an FSL loss is defined to avoid overfitting
to underrepresented classes.

2) The CT network is designed by composing the convo-
lutional neural network and a vision transformer, which
achieves more effective feature embedding and extracts
both local detail and global information for HSI patches.

3) An adversarial loss is introduced using domain discrimi-
nator based on FCN to match the prediction between two
domains and optimize the proposed network model for a
cross-domain task.

4) It can be observed that CTFSL can achieve better classi-
fication results than other cross-domain FSL methods on
practical application.

The rest of this article is organized as follows. Section II
briefly describes some relevant concepts. Section III explicitly
explains the full details of the proposed CTFSL for cross-
scene HSI classification. Section IV shows experimental results
to demonstrate the superior performance of CTFSL. Finally,
Section V concludes this article.

II. RELATED WORK

This section introduces several relevant concepts to better
explain the proposed CTFSL.

A. Domain Adaptation

In cross-scene HSI classification, domain adaption aims to
transfer data knowledge from the source domain to the target
domain by mapping the data features of two domains into the
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same feature space [34], [35]. Domain adaptation can solve the
distribution discrepancy between the source and target domains
by learning domain-invariant features. Domain adaption may be
described in two forms: unsupervised domain adaptation [36],
[20], [37] and supervised domain adaptation [38], [39], [40].
In domain adaptation, the source domain has rich learning
information. Unsupervised domain adaptation refers to the target
domain without labeled samples, while supervised domain adap-
tation means that the target domain has a few labeled samples.
Our method leans toward supervised domain adaptation and
proposes cross-scene few-shot domain adaptation.

B. Cross-Scene Few-Shot Learning

FSL is one type of meta-learning [41], [42] that processes
images given only a small number of labeled samples [43];
FSL aims to construct a consistent scene of a source and target
domain based on an FSL method through meta-learning [44],
[45], [46]. In cross-scene HSI classification, FSL is usually
defined as a K-way N-shot task [47] (i.e., N labeled samples
of K unique classes) and NN is very small, e.g., 1 or 5 [48].
First, two HSI datasets are given: the source dataset X 5 € RSP
and the target dataset X ¢ € R”?, where X4 contains two parts
Dy with labeled few-shot data and D; with unlabeled test data,
ie., Xy = Dy U D;. Then, the numbers of categories in the
source and target domains are marked with C and C} separately.
Generally, to guarantee diversity in the training samples, we set
Cs > Cy, which is beneficial for meta-learning [49], [50].

In our method, we take the source data X 5 € R5P and the
target labeled few-shot data Dy as the training set for feature
extraction and the target unlabeled data D; as the test set for
model evaluation. The FSL model operates on the task-based
learning tactic in both the source and target domains, where each
task is one single iteration of training. During every iteration,
taking the FSL on the source dataset X ¢ as instance. A support
set is first formed with C' classes and K samples per class
are randomly selected from X . Therefore, the support set
is expressed as S = {(z;,4;)}9%. Analogously, a query set
Q = {(z;, yj)}jC:XlN consists of N samples randomly selected
from the identical C' classes that are unique from the elements
of the support set. It is note worthy that the sample labels of
the query set are considered as unknown. In experiments, we
usually set K significantly smaller than N which can simulate
the practical few-shot classification scenarios. Summarizing, a
C-way K-shot N-query FSL work is formed for the source
dataset. The target FSL is similar to the source data.

C. Vision Transformer

After the publication of the vision transformer (ViT) [29],
it has been broadly used in various tasks of computer vision
due to its excellent performance such as HSI classification [51],
[52], [53], [30]. ViT is derived from the structure of the original
transformer [54], [55], [56] and is easy to transplant into different
tasks. The original transformer, which is a typical encoder—
decoder model, is proposed for natural language processing.
Therefore, the transformer consists of two parts: the encoding

1337

A
N4
r\‘/

3

‘ Dropout/DropPath ‘
Ly

‘ Feed Forward ‘

A

‘ Layer Norm ‘
A

S
P

A

‘ Dropout/DropPath ‘
A
‘ Multi-Head Attention

A
‘ Layer Norm ‘

"

Structure of vision transformer encoder.

Fig. 1.

Scaled Dot-Product Attention

Concat

MatMul

C
L

[ Scaled Dot-Product Attention Bﬁh -

Mask(opt.)

2 ) @
[ Linear [ Linear [ Linear
[ e
Q K v
Fig. 2. Model of the multihead attention.

and decoding components. The encoding component is com-
posed of multiple encoder layers, each of which is made up
of two sublayers: self-attention and feed-forward network [57].
Likewise, the decoding component also consists of a stack of
decoder layers, but decoder inserts a third sublayer per layer,
encoder—decoder attention, in addition the two sublayers of
the encoder. The transformer is entirely based on self-attention
mechanisms, which can realize input parameter sharing by the
global contextual information.

Inspired by the tremendous achievements of the original
transformers, ViT is an extension in the field of image classifi-
cation. The original transformer only accepted sequential inputs
(i.e., the input of the original transformer is 1-D embeddings).
Therefore, the input image in ViT is first divided into a series of
nonoverlapped fixed-size patches (i.e., 2-D patches) that are then
projected into patch embeddings (i.e., flatten the 2-D patches
into a 1-D image sequence). Finally, send the patch embeddings
of the image into the transformer to extract features. Fig. 1
illustrates the Encoder structure of ViT and Fig. 2 illustrates
the multihead self-attention model. “Q, K and V” in Fig. 2 are
the new sequence vectors generated by linear projection, and the
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self-attention can be calculated as follows:

. QKT

Attention (@, K, V') = softmax ( N ) \%4 (1)
where dy, is the dimension of K. The attention weights obtained
from the dot product of @ and K are responsible for calculating
the attention scores between each pair of different vectors that
determine the level of attention given to the other data when
encoding the data at the current location. v/dj, and Softmax
normalize the attention scores to enhance the gradient stability to
improve the training, and subsequently convert the scores into
probabilities. Finally, according to the probability magnitude,
each value vector is multiplied with the sum of the probabilities
to assign attention weights to it and produce the final output
vector.

III. METHOD

This section introduces the convolutional transformer-based
few-shot learning (CTFSL) network for cross-scene HSI classi-
fication. Fig. 3 displays the structure diagram of the suggested
CTFSL, which contains four parts: few-shot learning (FSL),
distribution aligner, feature extractor, and domain discriminator.
Specifically, executing FSL in both the source and target cate-
gories concurrently. Then, a distribution aligner is used before
the feature extractor to map the source and target domains into an
identical dimensions. Next, the feature extractor maps features
from two domains into a scene-consistency metric space. The
domain discriminator predicts the domain to which a feature
belongs and achieves the distinguishability of the two domain
classes.

A. Few-Shot Learning

Given the source domain data X 5 € RSP having C classes
and the target domain data X; € R”? having C; classes sep-
arately, the proposed CTFSL network has two FSL tasks: the

Schematic of the proposed CTFSL classification method, including few-shot learning, distribution aligner, feature extractor, and domain discriminator.

source FSL task Sy and target FSL task 1. Two kinds of
FSL are executed in the classes with both the source and target
domains simultaneously by episodes, enabling scene consis-
tency between the source and target domain data and building
cross-scene classification model.

1) Source FSL: In the source FSL Sy task, selecting C'
classes from the source classes C to form an episode. In the

source episode, source data X is divided into a support set

Se = {(x5,y)}" and a query set Q, = {(x3,y5)) 121

Specifically, C' categories are randomly selected from X ¢, with
K samples from each category, forming a support set. Moreover,
aquery set is formed by randomly selecting N samples from the
same C classes that are distinct to those in the support set. After
that, the distribution aligner is first applied for dimensionality
reduction of all samples in the support and query sets, after
which the embedding characteristics are obtained by the feature
extractor. FSL is executed by comparing the similarity of the
embedded features between the query and support sets per
category. The class prototype for a support sample z; in the
support set S, is

1 S
% = 15K > fol@) 2
(mf,yf)GSf
where S¥ is the set belonging to class k in the support set, [S¥|

is the number of samples in S¥, x$ denotes a support set sample
for which the label is y7, and f,, indicates the feature extractor
with argument ¢. A query sample z in (), has the category
distributivity computed by the Bregman divergences (i.e., the
Euclidean distance) based on a softmax function

exp(=ED( fo(x5), cx))
C s
> k=1 exp(—ED( fga(zj)yck))
3)
where 27 represents a support set sample for which the label is
yj , ED(e) denotes a Euclidean distance function, C' denotes the

Po(ys = klz5 € Q,) =
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amount of distinct categories per episode. The source FSL loss
of z3 € Qs is calculated into the negative log-probability of its
corresponding truth category by cross-entropy loss

Ly = —log Pp(yj = klaj € Qs) = ED( fo(x5), cx)
c

+1log Y exp(—ED( fy(a}),cx)). @
k=1

2) Target FSL: Similar to the source FSL task, C' classes
are selected from target classes C'; to form an episode in the
target FSL. In the target episode, target data X is similarly
divided into a support set S; = {(z},y¢)}Z*% and a query set
Qi = {(2%, y§)}jC:XlN . Notice the support set samples are se-
lected from labeled data Dy with only a few samples. Therefore,

the class prototype for a support sample ! in the support set
St is

1
w= D, [l ©)
(z%,yf)est

The class predicted probability for a query sample m§ in Qy
expressed as

exp(—ED( fo(]), cx))

Sy exp(—ED( fo(at),cr))
(6)

Py(y; = klzj € Q) =

The target FSL loss of 2, € Q; is given by

Ly = —log Py(ys = klzl € Q) = ED( fu(x}), cx)
C

+1log Y exp(—ED( f,(z}), cx)). 9
k=1

B. Distribution Aligner

The heterogeneity of feature distribution between the source
and target domains resulted in inconsistent spectral resolutions
of the samples. Thus, a distribution aligner is employed for
mapping the source (the Chikusei dataset with 128 bands) and
target domains (e.g., the Indian Pines dataset with 200 bands) to
the same dimension d. The distribution aligner is implemented
via 2-D CNN. First, we ensure the rationality of the selected
band by selecting 9 x 9 neighborhoods to be the input spatial
dimensions. Thus, assuming that I € R2*9*%? is the input of the
HSI cube where b means the bands amount, the result obtained
from the distribution aligner as

In=IxA (8)

where I € R%*9*190 s the aligned dataset,and A € R*1%0ig
the function of the distribution aligner. b x 100 denotes learnable
parameters in the alignment. There are 128 x 100 parameters for
X s, and 200 x 100 parameters for X.

C. Feature Extractor

The feature extractor works for extracting the spatial-spectral
embedding features and mapping them to a scene-consistency
metric space. The feature extractor is based on a convolutional
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transformer (CT) network, which effectively combines the con-
volutional neural network (CNN) with a vision transformer
(ViT) structure and can extract both the local and global features
for using the spatial and spectral information sufficiently. The
feature extractor mainly consists of two subblocks, Fig. 3 shows
the architecture of the feature extractor (see the feature extractor
module). Specifically, Fig. 4 shows the CT module of the feature
extractor.

The input to the feature extractor is the output I 5 € R?*9*100
from the distribution aligner. In our method, the input patch I 5
is fed into the CT module which consisted of a CNN block and
a ViT block. The CNN block extracts local features f. from I 5
and the ViT block is utilized to extract global features f,,. Then,
we combined the local and global features to form the feature
representation f of the feature extractor

f = concat(f., f). 9)

D. Domain Discriminator

To reduce domain shift as inspired by [40], a domain discrim-
inator is explored with adversarial loss to predict the domain to
which a feature belongs. The domain discriminator is built on a
fully convolutional network (FCN) that contains a convolutional
layer with a 5 x 5 kernel as a filter, a convolutional layer with
a 1 x 1 kernel, a residual block, followed by a final convolu-
tional layer with a 1 x 1 kernel. Except for the last layer, each
convolutional layer is followed by a batch normalization (BN)
and a rectified linear unit (ReLU) nonlinear activation function.
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Fig. 3 shows the architecture of the domain discriminator (see
the domain discriminator module).

Our goal is classifying whether the features come from the
source or target domain. On the domain discriminator, we define
an adversarial loss function L p to resolve the imbalance among
classes while the loss L p should be minimized

Lp=—Y logD(fs(x})) +log (1 — D (fs(z}))) (10)

el

where D(-) and 1 — D(-) are the probabilities of a sample i
belonging to the source and target domains predicted by the
domain discriminator, respectively. fy denotes the features from
the feature extractor with parameter 6, x5 and ! are samples
from the source and target domains (i.e., z; € X, :L’f € Xy),

respectively.
Thus, the source domain’s total loss function as
LS:L;SZ—kLD. (11)
Likewise, the target domain’s total loss function as
L' =L, + Lp. (12)

Finally, the nearest neighbor (NN) method is utilized to clas-
sify unlabeled samples in the target domain during the testing
phase and then generate their classification maps to evaluate the
effectiveness of CTFSL.

IV. EXPERIMENTAL RESULTS

The experiments are performed using software platform Py-
charm on a 12th Gen Intel Core™ i9-12900KF processor
equipped with NVidia GeForce™ RTX 3090 Ti and 64 GB of
RAM, and all codes executed on Python 3.7.

A. Experimental Data

The proposed CTFSL approach for cross-domain HSI classifi-
cation is performed employing four public HSI datasets, namely,
the Chikusei, Indian Pines, University of Pavia, and Salinas
datasets.

1) Source Domain: The source domain dataset utilizes the
Chikusei dataset. The Chikusei dataset was gathered over
agricultural and urban areas in Chikusei, Ibaraki, Japan by
a Headwall Hyperspec-VNIR-C imaging sensor, on July 29,
2014 [58]. It comprises 128 spectral bands with a spectrum of
363-1018 nm, comprises 2517 x 2335 pixels in which each has
a spatial resolution of 2.5 m and comprises 19 unique land-
cover categories. Fig. 5(a)—(c) presents the false-color image,
the matching ground-truth map and the matching color card
of the Chikusei. The classes of the Chikusei dataset and the
corresponding sample numbers are shown in Table 1.

2) Target Domain: The Indian Pines, University of Pavia,
and Salinas datasets are applied as target domains. The Indian
Pines dataset was acquired over the agricultural Indian Pine
test site in North-western Indiana by an AVIRIS sensor in
June 1992. It comprises 200 spectral bands with a spectrum of
400-2500 nm, comprises 145 x 145 pixels in which each has a
spatial resolution of 20 m and it comprises 16 unique land-cover
categories. Fig. 6(a)—(c) presents the false-color image, the
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TABLE I
CLASS, NAME, AND NUMBER OF SAMPLES ON CHIKUSEI DATASET

Class Name Samples
1 Water 2845
2 Bare soil (school) 2859
3 Bare soil (park) 286
4 Bare soil (farmland) 4852
5 Natural plants 4297
6 Weeds in farmland 1108
7 Forest 20516
8 Grass 6515
9 Rice field (grown) 13369
10 Rice field (first stage) 1268
11 Row crops 5961
12 Plastic house 2193
13 Manmade (non-dark) 1220
14 Manmade (dark) 7664
15 Manmade (blue) 431
16 Manmade (red) 222
17 Manmade grass 1040
18 Asphalt 801
19 Paved ground 145

Total 77,592

matching ground-truth map and the matching color card of the
Indian Pines. The classes of the Indian Pines dataset and the
corresponding sample numbers are shown in Table II.

The University of Pavia dataset was acquired over Pavia,
Nothern Italy utilizing the ROSIS sensor in a flight campaign. It
comprises 103 spectral bands with a spectrum of 430-860 nm,
comprises 610 x 340 pixels in which each has a spatial res-
olution of 1.3 m and it comprises nine unique land-cover cate-
gories. Fig. 7(a)—(c) presents the false-color image, the matching
ground-truth map and the matching color card of the University
of Pavia. The classes of the University of Pavia dataset and the
corresponding sample numbers are shown in Table III.

The Salinas dataset was gathered over Salinas Valley, Cal-
ifornia using AVIRIS sensor. It comprises 204 spectral bands
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Fig. 6. Indian Pines dataset. (a) False-color image. (b) Groundtruth map.
(c) Color coding.
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TABLE IT ©
CLASS, NAME, AND NUMBER OF SAMPLES ON INDIAN PINES DATASET
Fig. 7. University of Pavia dataset. (a) False-color image. (b) Groundtruth
map. (c) Color coding.
Class Name Samples
1 Alfalfa 46
2 Corn-notill 1428 TABLE III
i Corgmimﬂl ggg CLASS, NAME, AND NUMBER OF SAMPLES ON UNIVERSITY OF PAVIA DATASET
orn
5 Grass-pasture 483
6 Grass-trees 730 Class Name Samples
7 Grass-pasture-mowed 28 1 Asphalt 6631
8 Hay-windrowed 478 2 Meadows 18649
9 Oats 20 3 Gravel 2099
10 Soybean-notill 972 4 Trees 3064
11 Soybean-mintill 2455 5 Painted metal sheets 1345
12 Soybean-clean 593 6 Bare Soil 5029
13 Wheat 205 7 Bitumen 1330
14 Woods 1265 8 Self-Blocking Bricks 3682
15 Buildings-Grass-Trees-Drives 386 9 Shadows 947
16 Stone-Steel-Towers 93 Total 42,776
Total 10,249
TABLE IV

with a spectrum of 400-2500 nm, comprises 512 x 217 pixels
in which each has a spatial resolution of 3.7 m and it comprises
16 unique land-cover categories. Fig. 8 presents the false-color
graph, matching ground-truth map, and matching color card of
Salinas. The classes of the Salinas dataset and the corresponding
sample numbers are shown in Table IV.

B. Experimental Setup

The input of the proposed CTFSL is chosen from set with
patch size {5 x5, 7x 7,9 x 9, 11 x 11, 13 x 13, 15 x 15}.
From Fig. 9, for all experiments on different target domains, we
observe that with increasing input patch size, the classification
accuracy also increases, but it will decrease after increasing
beyond a certain extent and it approximately obeys the Gaussian
distribution. Therefore, taking this into account, our method sets

CLASS, NAME, AND NUMBER OF SAMPLES ON SALINAS DATASET

Class Name Samples
1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Total 54,129
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Salinas dataset. (a) False-color image. (b) Groundtruth map. (c¢) Color

the input patch size to 9 x 9. The CTFSL method is trained via
an Adaptive Moment Estimation (Adam) optimizer. The training
iterations are setup as 10 000 and the learning rate as le-3. In
the episodic training phase, each episode represents a C-way
K-shot mission. C indicates the count of categories and sets it as
the class number in the target domain (i.e., setting the University
of Pavia dataset as 9, the Indian Pines and Salinas datasets as
16). K indicates samples number per class within support set
S and is always set to one regardless of source or target FSL.
In addition, samples number per class within query set () is
Ng, and Ng is setup to 19 to evaluate the learned classifier.
Furthermore, 200 labeled samples selected arbitrarily from each
category of the source domain to acquire transferred knowledge.
Finally, classification was based on a K-nearest neighbor (KINN)
classifier, and the number of nearest neighbors is set to 1.

To verify the validity of the proposed CTFSL, we com-
pared our method to some classical and cutting edge cross-
scene methods used for HSI classification, containing typical
KNN [59], which is one of the simplest classification methods,
a common kernel-learning method SVM [9], 3-D-CNN [2],
DFSL+NN [60], DFSL+SVM [60], and DCFSL [25].

To guarantee the equity of the above-mentioned approaches,
five labeled samples per target domain category were first chosen
for training within all control experiments. Then, adding random
Gaussian noise to augment the data. The remaining entries in the
target domain are regarded as the testing data. In addition, for
cross-domain methods, learning portable information by 200
labeled samples selected randomly from each source domain
class (DFSL+SVM, DFSL+NN, and DCFSL).

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

To assess the classification effects of different approaches
objectively, we adopted three widely used quality indicators,
the overall accuracy (OA), the average accuracy (AA), and the
kappa coefficient. The training samples chosen at random for all
experiments, for which reason ten repetitions were performed
for eliminating the influences, and thus obtaining the means and
standard deviations of OA, AA, and Kappa. In addition, the
values reported for each metric were computed by taking the
average of the outcomes derived from ten repetitive experiments
with arbitrarily chosen training samples.

C. Comparison of Different Methods

Comparing the proposed CTFSL method with three typical
classification methods (KNN, SVM, and 3-D-CNN), and three
FSL classification approaches (DFSL+SVM, DFSL+NN, and
DCFSL) show our method’s advantages and efficiency. For the
supervised methods (KNN, SVM, and 3-D-CNN)), training the
classifier can only choose a few-shot data from the target domain.
The reason why source domain samples cannot be used as a
training set in these methods is that they demand the same
training as the test categories. In particular, KNN calculates the
Euclidean distances between test and training samples of distinct
categories, and obtains the class to which the test sample belongs
by comparing the average of the smallest Euclidean distances.
It is noteworthy that the number of nearest neighbors is set to 1.
SVM learns nonlinear support vector machine by kernel method
to map nonlinear data into a linearly separable space, but the
standard SVM method ignores the spatial information, focusing
only on spectral information in HSI. The 3-D-CNN method en-
ables effective extraction of deep spectral-spatial characteristics
that contribute to the accurate classification of HSI.

Nevertheless, in the case of the FSL approaches
(DFSL+SVM, DFSL+NN, and DCFSL), the samples in the
source domain can be utilized to learn transferable knowledge
since the classes may differ between the source and target
domains. Concretely, learning metric space in DFSL+SVM
and DFSL+NN methods to extract spectral-special features
via a deep residual 3D CNN, and then, such metric space
could be used in few-shot classification with a SVM or NN
classifier. The DCFSL model is based on the DFSL+NN and
DCFSL, which construct a unified structure to address FSL
and domain adaptation problems. With the suggested CTFSL
scheme, the aforementioned default arguments are applied for
all experiments.

To confirm the effectiveness of suggested CTFSL, experi-
ments on three datasets are compared to the foregoing compar-
ison approaches. The first executed on the Indian Pines dataset.
Comparing the different methods’ performances, 5 labeled items
per category were randomly sampled from the Indian Pines
dataset. To objectively evaluate the performances of the different
methods, 10 classification experiments were repeated for elimi-
nating the influence from from stochastic sampling. The classi-
fication performance of all methods was assessed employing the
mean and standard variance of the OA, AA, and Kappa coeffi-
cients. Specifically, the optimal values for each class are bolded
to highlight, and the values in parentheses refer to the standard
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dataset. (c) Salinas dataset.

TABLE V

CROSS-SCENE CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS ON INDIAN PINES WITH FIVE LABELED SAMPLES PER CLASS
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Influence of the input patch size on the performance of the proposed CTFSL method on different datasets. (a) Indian Pines dataset. (b) University of Pavia

Class KNN SVM 3D-CNN DFSL+NN DFSL+SVM DCFSL CTFSL
1 60.98(2.44) 69.51(1.22) 40.24(4.40) 92.63(11.3) 92.68(12.0) 96.59(5.37) 100.00(0.0)
2 31.59(5.59) 29.87(2.81) 37.57(5.04) 48.10(9.60) 45.23(12.0) 37.69(7.03) 38.44(9.57)
3 37.82(3.15) 45.33(8.48) 31.26(3.55) 47.38(6.76) 44.67(10.8) 46.28(8.36) 56.70(3.52)
4 51.72(6.90) 58.62(0.86) 41.51(7.93) 77.76(19.1) 75.22(20.8) 83.49(6.12) 74.70(15.2)
5 60.36(16.2) 60.36(26.1) 20.48(2.30) 74.06(7.18) 73.81(9.84) 72.99(5.09) 85.33(3.45)
6 68.34(11.7) 73.38(14.1) 69.17(3.99) 85.53(7.81) 83.90(7.80) 83.16(12.8) 91.27(3.56)
7 91.30(0.00) 91.30(0.00) 100.00(0.0) 99.57(1.30) 98.70(1.99) 99.13(1.74) 100.00(0.0)
8 77.70(6.03) 76.85(11.1) 86.28(3.72) 83.97(12.8) 85.20(12.9) 86.98(8.78) 85.90(10.0)
9 73.33(6.67) 90.00(3.33) 100.00(0.0) 100.00(0.0) 99.33(2.00) 100.00(0.0) 100.00(0.0)
10 42.66(2.22) 48.55(1.19) 33.26(3.75) 61.84(8.36) 58.10(6.67) 65.67(2.25) 68.63(3.22)
11 35.82(1.69) 41.29(2.35) 50.89(2.37) 59.14(12.5) 61.49(9.52) 66.61(2.14) 74.44(4.07)
12 34.61(11.7) 33.67(16.7) 22.81(7.11) 39.63(8.38) 43.25(8.96) 43.54(6.78) 43.91(7.18)
13 88.25(1.25) 88.75(5.75) 95.40(1.11) 97.50(4.28) 97.40(3.42) 99.60(0.70) 99.70(0.51)
14 60.56(36.1) 65.00(32.1) 90.58(3.99) 80.77(10.8) 79.51(10.4) 90.94(3.06) 89.35(3.63)
15 21.13(5.12) 25.85(0.66) 61.71(12.7) 68.40(14.6) 69.71(10.4) 72.18(8.78) 79.74(7.15)
16 89.77(2.27) 89.77(2.27) 85.91(3.64) 98.75(2.41) 98.75(3.07) 98.52(1.35) 95.00(6.23)
OA(%) 46.05+3.28 49.51+1.56 52.08+0.68 64.34£3.23 63.90+3.16 66.69+1.11 70.82+1.30
AA(%) 57.87+0.81 61.76+0.09 60.44+1.23 75.9422.13 75.43+2.38 77.711.46 80.19+1.60
Kappa 39.9743.41 43.76+1.63 46.020.77 59.9243.40 59.3443.44 62.41+1.27 66.85+1.47

The numbers in parentheses represent the standard deviation of the accuracy obtained from repeated experiments.

deviation of the precisions achieved from ten experimentations.
Table V shows the classification accuracy of every category for
Indian Pines under different methods. The cross-domain FSL
approaches (DFSL+SVM, DFSL+NN, DCFSL, and CTFSL)
are clearly superior to those traditional classification approaches
(KNN, SVM, and 3-D-CNN) in the case of limited methods. In
particular, the proposed CTFSL’s OA, AA, and Kappa value
are at least 4.13, 2.48, and 4.44 percentage points higher than
the comparison method, respectively, which indicates that the
CTFSL method is generally feasible. To visually demonstrate the
proposed CTFSL’s effectiveness, Fig. 10 shows a corresponding
classification map of all the aforementioned methods. As shown
in the figure, the proposed CTFSL can see some noise, but in
contrast, it shows a classification map still with the smoothest
spatial distribution and it has the best precision with less misla-
beling, which are the concordant outcomes with Table V.

The second among them conducted on the University of Pavia
dataset. Table VI displays the OA, AA, and Kappa coefficient,
and the detailed classification accuracies of each class on the

University of Pavia with various classification approaches. As
Table VI shows, the KNN, SVM, and 3-D-CNN classification
methods only consider limited target domain samples to develop
the training data, so OA values are only 60.48%, 65.08%, and
69.87%. By contrast, the OAs of the cross-domain FSL-based
classification approaches (DFSL+SVM, DFSL+NN, DCFSL,
and CTFSL) are usually greater than 78%, because they can
make full use of the source domain information and the tar-
get few-shot labeled information. In addition, comparing the
DCFSL approach, the OA with our suggested approach in-
creased from 83.83% to 85.03%, which proves this method’s
effectiveness. As an instance, the classification precision has
improved from 74.46% to 80.24% for Class 6 and from 56.62%
to 90.75% for Class 8 by comparison to DCFSL. The AA and
Kappa of CTFSL are also the highest among all the compared
classification methods. Fig. 11 shows the classification result
maps under different methods. In particular, the classification
graph of CTFSL clearly demonstrates its classification advan-
tages compared to other methods.
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Fig. 10.

Classification maps obtained by different classification methods on the Indian Pines image dataset with five labeled samples per class. (a) Reference

map. (b) KNN. (c) SVM. (d) 3-D-CNN. (e) DFSL+NN. (f) DFSL+SVM. (g) DCFSL. (h) CTFSL.

TABLE VI
CROSS-SCENE CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS ON UNIVERSITY OF PAVIA WITH FIVE LABELED SAMPLES PER CLASS

Class KNN SVM 3D-CNN DFSL+NN DFSL+SVM DCFSL CTFSL
1 64.89(5.28) 62.74(9.03) 50.58(4.21) 81.57(6.08) 81.32(10.4) 91.22(2.02) 92.74(2.05)
2 52.03(9.61) 62.45(11.2) 90.72(1.77) 76.46(10.5) 76.77(9.68) 90.39(1.66) 83.04(6.15)
3 45.52(10.6) 54.64(11.5) 61.55(6.15) 75.35(9.65) 69.31(10.1) 50.30(3.07) 53.46(6.11)
4 89.06(8.15) 88.87(6.95) 87.11(3.70) 93.19(4.09) 94.25(3.44) 95.39(1.24) 94.48(1.03)
5 98.99(0.64) 98.58(1.75) 89.52(3.21) 99.43(0.60) 99.33(0.93) 99.60(0.71) 99.04(1.41)
6 50.24(10.2) 49.16(14.5) 43.68(3.53) 78.69(13.7) 80.04(13.1) 74.46(5.79) 80.24(11.8)
7 80.99(12.1) 81.22(8.65) 16.57(2.31) 78.85(6.02) 73.32(7.85) 64.72(6.00) 80.48(3.35)
8 62.62(14.6) 63.60(12.8) 31.22(5.11) 59.07(11.9) 58.69(17.6) 56.62(8.97) 90.75(1.98)
9 99.83(0.14) 99.75(0.11) 93.09(1.42) 99.24(1.08) 99.13(0.98) 99.79(0.22) 99.37(0.24)
OA(%) 60.48+3 81 65.08+4.10 69.87+0.89 78.46+4.77 78.28+5.70 83.83£0.97 85.03+2.02
AA(%) 71.57+1.72 73.44+1.86 62.67+1.34 82.4322.30 81.35+2.72 80.28+1.66 85.96+1.54
Kappa 51.48+3.87 56.24+4.14 59.89+1.16 72.6145.74 72.46+6.69 78.73+1.32 80.64+2.39

The numbers in parentheses represent the standard deviation of the accuracy obtained from repeated experiments.

The third carried out on the Salinas dataset had the analogous
findings. Table VII shows the classification accuracy values
yielded by the compared approaches and the suggested CTFSL.
As an instance, compared to KNN, the classification precision
has improved from 75.72% to 98.08% for Class 3, that of
Class 8 has increased from 48.43% to 83.26%, and that of
Class 15 has increased from 61.03% to 80.78%. Fig. 12 visu-
ally represents the proposed CTFSL’s effectiveness by show-
ing the corresponding classification maps yielded by all the
aforementioned methods with the OAs. Apparently, the sug-
gested CTFSL yields a classification map with the smoothest
spatial distribution and it has the best precision with less mis-
labeling from Fig. 12, which are the concordant outcomes with
Table VII.

To illustrate the proposed CTFSL’s computational complex-
ity effectively, Table VIII shows the computational efficiency
(including training and testing times) of the above methods
in different target domains. For three typical classification
methods (KNN, SVM, and 3D-CNN) without a cross-domain,

their training times are shorter than that of the other cross-
domain FSL classification methods (DFSL+NN, DFSL+SVM,
DCFSL, and CTFSL). The table shows that although our method
takes a long time to train, it has the highest accuracy.

D. Parameter Analysis

To analyze the performance of the nearest neighbor size,
the algorithm comparison experiments under different nearest
neighbor size are carried out to analyze the sensitivity of the
CTFSL algorithm on three target domain datasets. We set 1, 2, 3,
4,5 as the size of the nearest neighbors to conduct 10 iterations of
the experiment and obtain the average of the results to compare
the performance, Table IX shows the classification accuracy for
three datasets under different nearest neighbor size, where the
best results are bolded to highlight. As can be seen from the
results in the Table IX, the nearest neighbor size set to 1, 2, and
4 on the Indian Pines, University of Pavia, and Salinas datasets
exhibit optimal classification performance, respectively.
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Fig. 11.  Classification maps obtained by different classification methods on the University of Pavia image dataset with five labeled samples per class. (a) Reference

map. (b) KNN. (c) SVM. (d) 3-D-CNN. (e) DFSL+NN. (f) DFSL+SVM. (g) DCFSL. (h) CTFSL.

TABLE VII

CROSS-SCENE CLASSIFICATION PERFORMANCE [%] OF DIFFERENT METHODS ON SALINAS WITH FIVE LABELED SAMPLES PER CLASS

Class KNN SVM 3D-CNN DFSL+NN DFSL+SVM DCFSL CTFSL
1 96.32(1.45) 97.36(2.17) 65.08(14.9) 99.48(0.66) 99.54(0.79) 99.53(0.57) 99.25(0.73)
2 93.27(3.87) 94.73(3.87) 79.54(10.1) 99.00(1.51) 98.64(2.13) 98.97(2.14) 98.69(1.86)
3 75.72(5.04) 82.98(6.76) 61.18(4.25) 89.24(12.1) 87.54(12.9) 96.24(2.06) 98.08(2.52)
4 99.37(0.25) 99.37(0.25) 52.78(3.10) 99.67(0.20) 99.65(0.12) 99.66(0.23) 99.74(0.28)
5 95.79(1.05) 97.43(0.82) 87.68(3.15) 90.67(3.32) 90.77(3.80) 92.66(2.53) 94.10(1.31)
6 98.31(1.14) 98.60(0.85) 93.52(4.56) 99.48(0.52) 99.48(0.50) 99.87(0.26) 99.56(0.76)
7 99.27(0.07) 99.43(0.08) 78.68(3.20) 98.92(1.63) 98.77(1.83) 99.64(0.29) 99.08(0.86)
8 48.43(8.27) 53.00(13.5) 68.54(8.33) 73.33(12.7) 73.47(9.56) 77.77(4.23) 83.26(4.61)
9 93.49(1.29) 95.30(0.54) 89.13(1.54) 99.22(1.04) 99.16(1.10) 99.77(0.30) 98.84(1.63)
10 78.59(5.67) 81.63(2.94) 38.21(6.53) 86.65(5.07) 86.89(5.47) 89.46(3.34) 89.04(3.02)
11 92.37(2.10) 93.52(1.52) 83.48(3.76) 98.38(1.40) 97.80(1.98) 99.23(0.61) 98.65(1.61)
12 95.30(4.05) 99.56(0.32) 75.30(9.12) 99.47(0.64) 99.44(0.65) 99.46(0.88) 99.38(0.68)
13 94.96(5.55) 94.86(5.49) 98.30(0.61) 99.17(1.14) 98.80(1.55) 99.17(0.79) 99.54(0.53)
14 91.15(2.69) 90.64(2.38) 92.57(5.12) 97.81(2.81) 97.86(2.57) 98.70(0.71) 99.31(0.27)
15 61.03(7.58) 59.86(10.4) 51.75(9.74) 76.63(7.81) 76.11(6.42) 77.89(5.13) 80.78(8.49)
16 64.00(5.24) 77.29(12.6) 50.62(7.35) 90.88(6.41) 90.21(7.76) 94.27(4.92) 91.66(8.06)
OA(%) 7831+2.23 80.62%3.65 7112121 88.93£2.37 88.77(2.06) 90.84+0.65 92.20+0.52
AA(%) 86.090.43 88.47+0.66 72.90+1.14 93.63+1.22 93.38(1.27) 95.14+0.50 95.56+0.58
Kappa 76.0242.40 78.56+3.98 67.79+1.30 87.7242.59 87.53(2.27) 89.82+0.72 91.33+0.58

The numbers in parentheses represent the standard deviation of the accuracy obtained from repeated experiments.
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Classification maps obtained by different classification methods on the Salinas image dataset with five labeled samples per class. (a) Reference map.

(b) KNN. (c) SVM. (d) 3-D-CNN. (e) DFSL+NN. (f) DESL+SVM. (g) DCFSL. (h) CTFSL.

TABLE VIII
COMPUTATIONAL EFFICIENCY (IN SECONDS) OF THE DIFFERENT METHODS IN THREE TARGET DOMAINS

Methods Indian Pines University of Pavia Salinas
Training time(s) Testing time(s) Training time(s) Testing time(s) Training time(s) Testing time(s)
KNN 0.27 5.70 1.60 14.69 1.44 29.68
SVM 0.27 0.50 1.61 1.71 1.43 4.66
3D-CNN 258.64 1.94 504.85 4.52 1444.29 10.94
DFSL+NN 1685.34 1.12 913.96 4.18 1495.94 5.72
DFSL+SVM 1506.03 1.05 726.88 2.08 1832.97 5.76
DCFSL 1758.95 0.70 1257.21 4.24 1818.64 5.72
CTFSL 4139.07 1.10 2723.48 3.98 4134.60 5.37
TABLE IX
CLASSIFICATION PERFORMANCE OF THE PROPOSED CTFSL METHOD WITH DIFFERENT NEAREST NEIGHBOR SIZE ON THE THREE HYPERSPECTRAL IMAGE
DATASETS
The Nearest Indian Pines University of Pavia Salinas
Neighbor Size | 5 (g AA (%) Kappa OA (%) AA (%) Kappa OA (%) AA (%) Kappa
1 70.82+1.30 | 80.19+1.60 | 66.85+1.47 | 85.03+2.02 | 85.96+1.54 | 80.64+2.39 | 92.20+0.52 | 95.56+0.58 | 91.33+0.58
2 68.38+2.02 | 77.89+2.08 | 64.09+2.21 | 86.26+3.01 | 83.81+1.34 | 81.81+3.84 | 92.25+0.51 | 95.32+0.55 | 91.37+0.57
3 68.18+2.16 | 77.9242.61 | 63.75£2.62 | 83.57+2.91 | 84.35+1.45 | 78.74+3.52 | 91.83+0.69 | 95.19+0.71 | 90.91+0.77
4 68.70+2.81 | 78.06+£2.71 | 64.31+3.26 | 84.274#2.57 | 83.11+x1.49 | 79.30+£3.19 | 92.37+0.88 | 95.51+0.87 | 91.50+0.98
5 68.63+2.44 | 78.17£2.08 | 64.35+2.85 | 83.08+2.43 | 83.12+1.52 | 77.96+2.99 | 92.00+0.64 | 95.13+0.75 | 91.10+0.71

In the comparison experiments, we set the number of nearest
neighbors to 1, which is not optimal for University of Pavia
and Salinas, but still shows better performance than the other
methods. Although it is best for Indian pines when the number
of nearest neighbors is set to 1, it can be seen from Tables V
and IX that there are still better classification results than other
algorithms when the nearest neighbor size takes other values.
This further proves the superiority of our method.

To investigate the effect of the labeled sample size on the
CTFSL method performance, 1, 2, 3, 4, and 5 labeled sam-
ples were also randomly selected from for each class of the
target domains to build few-shot data respectively. Then the
classification experiments with different numbers of labeled
samples were performed ten repetitions, and the classification
accuracies for each number of labeled samples with previously
mentioned methods under the Indian Pines, University of Pavia,

and Salinas datasets are shown in Tables X—XII, where the best
results are bolded to highlight. To illustrate this visually, Fig. 13
shows the classification accuracy curves of different labeled
sample numbers on three target domain datasets. As shown in
Fig. 13, the OAs of the classification results obtained by all the
methods are closely related to the change in labeled values, the
increased number of labeled samples, the higher classification
accuracy, and using five labeled samples per class exhibits the
best performance. In particular, the CTFSL method is superior
to the other methods mentioned with the same labeled samples,
which shows the superior stability of the CTFSL method.

E. Analysis of Practical Applications

To verify the effectiveness and superiority of CTFSL method
in practical application scenarios, we conduct an experimental
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(b) University of Pavia dataset. (c) Salinas dataset.

TABLE X
CLASSIFICATION PERFORMANCE [%] OF DIFFERENT NUMBER OF LABELED
SAMPLES PER CLASS ON INDIAN PINES (N IS THE NUMBER OF LABELED

The number of labeled samples per class

3 4 5 1 2 3 4 5

The number of labeled samples per class

(b (©

Influence of the number of labeled samples per class on the performance of the proposed CTFSL method on different datasets. (a) Indian Pines dataset.

TABLE XII
CLASSIFICATION PERFORMANCE [%] OF DIFFERENT NUMBER OF LABELED
SAMPLES PER CLASS ON SALINAS (N IS THE NUMBER OF LABELED SAMPLES

SAMPLES PER CLASS) PER CLASS)
3D- DFSL  DFSL 3D- DFSL  DFSL
KNN SVM CNN 4NN 4SVM DCFSL  CTFSL KNN SVM CNN 4NN 4SVM DCFSL  CTFSL
N=1 30.75  31.53  40.05 41.70  44.25 38.38 40.27 N=I 68.13 6746 46.14 7587  75.87 73.04 76.52
- +2.60 +2.04 +0.83 £5.57  #6.05 +4.26 +2.91 - +4.11 +3.82 #094 £286  +2.86 +2.03 +2.27
N=2 36.64 3825 43779 52.14  48.68 52.84 52.94 N2 7027  73.80 62.09 8193 81.78 82.33 83.85
- +3.77 #3773 £144 £354 596 +4.54 +3.79 - +3.13  +294 #245 £238 246 +2.47 +2.49
N=3 38.76  41.80 4520 56.59  56.66 58.36 59.95 N=3 73.14 7787 6557 8544  85.17 88.56 89.48
- +353 #4115 092 #2381 +4.62 +3.86 +1.84 - +3.67 *1.92 #1510 #£2.60 £2.63 +1.57 +1.38
N=4 4126 4572 46.10 6198  61.05 61.16 65.07 N4 7175 7859 68.43 87.86  87.50 89.86 91.05
- +3.70 #2.52 032 £345 £292 +4.10 +1.58 - +2.13  #227 #£252 £1.94 172 +1.29 +0.96
N=5 46.05 4951 52.08 6434  63.90 66.69 70.82 N=5 7831 80.62 71.12  88.93 88.77 90.84 92.20
B +328 #1.56 +0.68 323 +3.16 +1.11 +1.30 B +223  #3.65 *1.21 #£237 206 +0.65 +0.52
TABLE XI

CLASSIFICATION PERFORMANCE [%] OF DIFFERENT NUMBER OF LABELED
SAMPLES PER CLASS ON UNIVERSITY OF PAVIA (N IS THE NUMBER OF
LABELED SAMPLES PER CLASS)

3D- DFSL  DFSL
KNN SVM CNN  +NN  4SVM DCFSL  CTFSL
N=1 49.14  46.86  51.88 5858  58.40 60.89 68.76
- +9.03 #1044 673 £7.22  £3.46 +5.55 +1.75
) 5353 5433 6326 63.09  64.60 71.49 76.83
- +8.43  +7.02 #4311 621  +4.59 +2.21 +2.94
N=3 5692 5742  67.07 70.02  73.19 75.44 79.15
- +3.67 +5.65 £1.81 696  +5.06 +4.35 +2.65
N=4 58.81 6132 67.74 7482 7501 80.36 81.11
- +5.41  +437  £327 457 #4776 +3.25 +2.96
N=5 60.48  65.08 69.87 7846  78.28 83.83 85.03
B +381 +4.10 +0.89 477 570 +0.97 +2.02

analysis of HSI data for a scenario in the Dongting Lake
Basin. The Dongting Lake Basin dataset was gathered by
Hyper-Spectral Observation Satellite GaoFen (GF)-5 Advanced
HyperSpectral Imager (AHSI) on December 8, 2019, it consists
of 2008 x 2083 pixels with a spatial resolution of 30 m and
330 spectral bands in the wavelength range 400-2500 nm.
GF-5 is the world’s first hyperspectral satellite covering the
full spectral range and enables comprehensive observation
of the land and atmosphere. By processing GF-5 data from
the Dongting Lake Basin, a scene with 452 x 380 pixels and

Background

Crops

Mud

Others

Grass

(a)

(b)

Fig. 14.  Application scenario dataset. (a) False-color image. (b) Groundtruth
map. (c) Color coding.

305 effective spectral bands was selected as the experimental
dataset. The scene contains six different land-cover classes and
16 584 ground-truth labels, Fig. 14(a)—(c) shows the false-color
image of the scene and the corresponding ground-truth map
and the corresponding color code.

In the validation experiment, five labeled samples of each
class are randomly selected for training in CTFSL and various
comparison methods, and the rest are regarded as the testing
data. The number of nearest neighbors is set to 1. The results
show that the CTFSL method has more performance advantages
with the highest classification accuracy that the OA value is
90.43%, compared to other methods. Fig. 15 shows the classifi-
cation result maps and the corresponding average of OA values
among ten repetitive experiments under different methods are
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(e) ® () (h)

Fig. 15. Classification maps obtained by different classification methods on
the practical HSI dataset with five labeled samples per class. (a) Reference map.
(b) KNN (OA = 78.84%). (c) SVM (OA = 79.73%). (d) 3D-CNN (OA =
82.61%). (¢) DFSL+NN (OA = 89.30%). (f) DFSL+SVM (OA = 89.09%).

(g) DCFSL (OA = 88.54%). (h) CTFSL (OA = 90.43%).

in parentheses. As shown in the figure, the visualization map of
CTFSL can see some noise, but in contrast, it still shows the most
accurate and spatially smoothest classification map of classes
with fewer mislabeled pixels, compared to other methods.

V. CONCLUSION

This article proposes convolutional transformer-based few-
shot learning method for cross-domain hyperspectral image clas-
sification. The method includes three main parts: 1) distribution
aligner based on few-shot learning to achieve the dimensionality
reduction; 2) feature extractor based on convolutional trans-
former network to obtain the local-global features; 3) domain
discriminator based on fully convolutional network to reduce
the domain shift. Experiments have been performed on three
different real hyperspectral images, and the results show that
the proposed CTFSL outperformers the existing state-of-the-art
FSL methods in cross-domain HSI classification, thus verifying
its effectiveness. However, the good performance of the pro-
posed CTFSL method relies on a relatively large computational
cost. Further developments of this work should further improve
its performance while reducing the computation time.
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