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A CNN-Transformer Hybrid Model Based on CSWin
Transformer for UAV Image Object Detection

Wanjie Lu , Chaozhen Lan , Chaoyang Niu , Wei Liu, Liang Lyu , Qunshan Shi , and Shiju Wang

Abstract—The object detection of unmanned aerial vehicle
(UAV) images has widespread applications in numerous fields;
however, the complex background, diverse scales, and uneven
distribution of objects in UAV images make object detection a
challenging task. This study proposes a convolution neural network
transformer hybrid model to achieve efficient object detection
in UAV images, which has three advantages that contribute to
improving object detection performance. First, the efficient and
effective cross-shaped window (CSWin) transformer can be used
as a backbone to obtain image features at different levels, and
the obtained features can be input into the feature pyramid net-
work to achieve multiscale representation, which will contribute
to multiscale object detection. Second, a hybrid patch embedding
module is constructed to extract and utilize low-level information
such as the edges and corners of the image. Finally, a slicing-based
inference method is constructed to fuse the inference results of the
original image and sliced images, which will improve the small
object detection accuracy without modifying the original network.
Experimental results on public datasets illustrate that the proposed
method can improve performance more effectively than several
popular and state-of-the-art object detection methods.

Index Terms—Convolutional neural network (CNN), hybrid
network, object detection, transformer, unmanned aerial vehicle
(UAV) image.

I. INTRODUCTION

W ITH the development of remote sensing technologies,
unmanned aerial vehicles (UAVs) have been widely em-

ployed in various fields, such as digital cities, smart agriculture
and forestry, and disaster inspection. As one of the key technolo-
gies to realize the application of UAV images, object detection
based on UAV images has been widely employed in military
and civilian areas. Traditional object detection methods, such as
support vector machines and AdaBoost, have problems, such
as cumbersome manual feature design, poor robustness, and
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computational redundancy, which cannot meet the current needs
of UAV image object detection tasks. Driven by breakthroughs
in computer vision (CV) and deep learning in recent years, UAV
image object detection methods based on deep learning, such
as convolutional neural networks (CNN) and transformers, are
becoming a field of rapid development and intense research [1],
[2].

CNN-based object detection methods have excellent abilities
of adaptive learning and feature extraction and have superior
detection performance to the traditional object detection meth-
ods [3], [4]. For example, two-stage detection methods, such
as R-CNN [5], Fast R-CNN [6], Faster R-CNN [7], Mask
R-CNN [8], Cascade R-CNN [9], and Dynamic R-CNN [10],
can classify the object regions by extracting features of several
candidate regions, and then obtain the object categories and
positions; one-stage detection methods, such as you only look
once (YOLO) series [11], single-shot multibox detector (SSD)
[12], RetinaNet [13], and fully convolutional one-stage object
detection (FCOS) [14], can achieve end-to-end object location
and category prediction directly through the initial anchor box
without region proposals. However, CNN-based object detection
methods mainly use large-scale proposals, anchors, or window
centers for category predictions. Furthermore, repeated predic-
tion boxes, anchor box design, and assignment between objects
and anchor boxes seriously affect the model’s performance
in postprocessing, and global features, such as long-distance
dependencies in the processing, cannot be effectively obtained.

With the development of the attention mechanism, CV re-
searchers have gradually attached importance to transformer-
based object detection methods [15], which have achieved com-
petitive performance in multiple CV tasks. A transformer is an
encoder-decoder sequence transformation model that enables
long-range interactions between different encoded elements
in a sequence using the self-attention mechanism. With self-
attention, long-distance dependency modeling capabilities can
be achieved to enable data processing in various downstream
tasks. Given these advantages, the transformer, which was orig-
inally mainly used in natural language processing, has been
promptly introduced into CV tasks, remote sensing, and related
fields. For example, by applying the encoder in the transformer
directly to the image patches, Dosovitskiy et al. [16] proposed a
convolution-free method called vision transformer (ViT), which
improves the object detection performance without major modi-
fications to the original model architecture. Bazi et al. [17] built a
remote sensing image classification method based on ViT, which
exhibits superior performance on four public datasets.
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One key factor for the success of transformer-based meth-
ods lies in large-scale training datasets and high-performance
computing resources. However, in conditions of small data
volume or insufficient training time, CNN-based models with
the same number of parameters can achieve better performance,
whereas transformer-based models require enough training data
and time to achieve similar performance. The main reason is
that CNN-based models have inductive biases properties, such
as locality and translation equivariance [18], which limit the
application of transformer-based models in areas with limited
data or computing resources. In addition, the perception fields of
the CNN and transformer-based models are considerably differ-
ent. Based on the advantages of the self-attention mechanism,
transformer-based models can perform better in capturing the
relationships among distant pixels in images. However, because
of the lack of capturing the internal spatial information of image
patches, the local information, such as texture and corner, is lost
in transformer-based models, whereas CNN-based models have
advantages in capturing relevant information [19].

To make up for the deficiencies of CNN-based and
transformer-based models, CNN-transformer hybrid methods
[20], [21], [22] are used to effectively integrate CNN and trans-
former to improve the overall performance. However, for UAV
image object detection, effectively fusing the local and global
features in the CNNs and transformers requires further research;
in addition, the CNN-transformer hybrid models still need rel-
atively large data and a long time, otherwise good performance
cannot be achieved.

Meanwhile, because of the characteristics of UAV images,
deep learning models face challenges in object detection. The
candidate objects in UAV images have the characteristics of
different luminance, complex backgrounds, scale diversity, etc.
For example, the diversity in camera angles leads to various
characteristics of the same category [23]; the objects in the UAV
images under the large field of view show an uneven distribution,
such as a dense aggregation of objects in the city center [24],
whereas various objects in the suburbs are sparsely distributed
[25]. In addition, natural factors, such as clouds, rain, fog, and
snow, can lead to the failure of object detection in UAV images
[26]. The above factors make it difficult for the current image
object detection methods in general scenarios to achieve ideal
performance for UAV images.

Considering the pros and cons of CNNs and transformers,
and according to the characteristics of UAV images and object
detection requirements, a hybrid object detection method for
UAV images that combines CNNs and transformers is proposed.
In summary, the main contributions are as follows.

1) A method of using an efficient transformer, cross-shaped
window (CSWin) transformer, as the backbone of the
Mask R-CNN is proposed to effectively achieve multiscale
UAV image object detection. The CSWin Transformer is
used to establish the dependence of long-distance features
in the input image and obtain features at different levels.
Combined with the feature pyramid network (FPN), the
multiscale representations of the obtained features at dif-
ferent levels are realized to meet the need for effective
detection of multiscale objects in images.

2) A hybrid patch embedding module (HPEM) to process the
input image is constructed. Using convolution to process
the input image into low-dimensional features, and then
generating sequence token embeddings, low-level infor-
mation, such as edges and corners, can be extracted and
utilized without hardly increasing the number of parame-
ters in the model.

3) Given the high-resolution characteristics of UAV images, a
slicing-based inference (SI) method is constructed. While
using the trained model to infer the original input UAV
image, the input image is sliced, and it is inferred using
the trained model after amplification and enhancement.
The inference results based on slicing are fused with the
original image inference results to realize further detection
of small objects in the input image, which can improve the
object detection accuracy without modifying the original
model.

The remainder of this article is organized as follows. Sec-
tion II describes the related works and Section III describes the
proposed method in detail. The experiments and results of the
proposed and compared methods are presented in Section IV.
Finally, in Section V, we discuss and conclude this study.

II. RELATED WORKS

This section will discuss related work from three aspects:
CNN-based object detection for UAV images, ViT, and CNN-
transformer hybrid methods.

A. CNN-Based Object Detection

CNN-based object detection models can be roughly divided
into two categories: two-stage detectors and one-stage detectors.

1) Two-Stage Detectors: Based on the powerful feature repre-
sentation ability of CNN, R-CNN [5], a typical two-stage
detector, was proposed and has considerably improved
the performance of object detection. Based on R-CNN,
Fast R-CNN [6] was proposed by combining the spatial
pyramid pooling network (SPP-Net) [27] and using region
of interest (ROI) pooling. Ren et al. [7] proposed Faster
R-CNN, which used the region proposal network (RPN)
instead of the selective search algorithm to realize sharing
of convolutional features, thereby further improving the
detection speed. By adding a branch for predicting an ob-
ject mask in parallel with the existing branch for bounding
box recognition, He et al. [8] proposed Mask R-CNN, in
which a small overhead is added to Faster R-CNN. In ad-
dition, two-stage detectors also include Cascade R-CNN
[9], HTC [28], and Dynamic R-CNN [10].

2) One-Stage Detector: Redmon et al. [29] proposed YOLO,
which just used a single neural network to complete the
process from image input to output of object location
and category information. Based on YOLO, a series of
improved algorithms, such as YOLO9000 [30], YOLOv3
[31], and YOLOv4 [32], have been proposed. Liu et al.
[12] proposed SSD to extract multiscale features. To solve
the problem of object detection in a per-pixel prediction
fashion, analog to semantic segmentation, FCOS [14],
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a fully convolutional and anchor box-free one-stage ob-
ject detector, was proposed, which completely avoids the
complicated computation related to anchor boxes such as
calculating overlapping during training. Lin et al. [13]
discovered that the extreme foreground-background class
imbalance encountered during the training of dense detec-
tors affected the performance of one-stage detectors and
proposed RetinaNet using focal loss to prevent the vast
number of easy negatives from overwhelming the detector
during training.

Both one and two-stage detectors can be applied to object
detection tasks. However, due to the characteristics of UAV im-
ages, the above algorithms cannot fully exploit the performance
of UAV image object detection. For UAV image object detection,
multiscale detection is a frequent and common scenario, which is
characterized by the simultaneous existence of multiscale object
instances. For example, in the Visdrone2021-DET dataset, the
size of the persons occupies less than 6% of the image, whereas
some vehicles can occupy more than 20% of the image [33].

Currently, the most common method to achieve multiscale
detection involves constructing multiscale feature maps [34] and
obtaining the output results by carrying out multilayer filtering
[35], [36]. In [37], the FPN used a top-down feature fusion
method to achieve multiscale object detection by fusing the
low-level features with more details and the top-level features
with rich semantic information. Through research focused on
multiscale object proposal networks, multiscale object detection
was achieved by generating candidate regions with different
intermediate layer features [35]. Zhang et al. [38] proposed a
dual multiscale FPN framework and studied multiple training
and inference strategies of multiscale object detection. Using
a multiscale information preservation module, Han et al. [39]
constructed multiscale pyramid images and features for each
image to retain as much multiscale information of the input
data as possible, which is helpful to achieve better performance
of object detection. To adaptively combine multiscale feature
information on different channels and spatial positions, FPN
was used to obtain more discriminative features and achieve
an efficient fusion of multiscale features [40]. In addition, the
dilated/deformable convolution kernel [41], [42] was used to ex-
pand the receptive field of algorithms without loss of resolution
to achieve multiscale object detection.

Otherwise, for detecting small and dense objects in UAV
images, better performance can be achieved by improving fea-
ture maps of small objects, incorporating context information
of small objects, and using data enhancement methods [43],
[44]. Based on the above ideas, researchers have constructed a
series of small object detection networks including RRNet [45],
FSSSD [44], Cascade network [46], HRDNet [47], UAV-YOLO
[48], MPFPN [49], and GANet [50]. To solve the problems of
small instances, complex backgrounds, and difficult feature ex-
tractions in UAV images, because FPN can effectively integrate
multiscale features to achieve small object detection and context
information can provide more powerful information, DBNet
[51] and SINet [52] obtained better small object detection results
by providing global contextual information.

Fig. 1. Standard architecture of the transformer bock.

B. Transformer-Based Object Detection

Nowadays, transformer-based models, such as DETR [53]
and ViT [16], have been widely used in CV tasks. The standard
transformer block generally includes a multihead self-attention,
a multilayer perceptron, and multiple layer normalizations [54],
as shown in Fig. 1.

To simplify the work pipelines of current object detectors,
Carion et al. [53] optimized the training process by transforming
the object detection task into a direct set prediction problem
and constructed end-to-end object detection with transformers
(DETR), which models the interactions among different ele-
ments in a sequence using the encoder-decoder structure in the
transformer. Subsequently, researchers carried out optimizations
and improvements around DETR and proposed models such as
Deformable DETR [55], Conditional DETR [56], DN-DETR
[57], DAB-DETR [58], and DETR with improved denoising
anchor boxes (DINO) [59].

Similar to CNN-based models, ViT [16], a two-branch trans-
former structure, was designed to learn features at different
scales and demonstrated that multiscale feature representation is
effective. To solve the problems of requiring a large amount of
data and high-performance computing for training in ViT, DeiT
[60], a data-efficient transformer-based model that is similar to
ViT, was proposed. However, different from ViT, DeiT mainly
achieves efficient training and better results on small datasets
(e.g., ImageNet1K) through the self-attention mechanism and
through the knowledge distillation method. Bashmal et al. [61]
proposed a multilabel classification method based on a data-
efficient transformer, which achieved the multilabel efficient
classification of high-resolution UAV remote sensing images.
Ranftl et al. [62] constructed a dense prediction transformer
to perform dense object predictions by upsampling the low-
resolution images to obtain high-resolution images. Based on
the design philosophy of depthwise separable convolution, sep-
arable vision transformer (SepViT) [63] was designed to realize
the information interaction within and among windows through
depthwise separable attention, which effectively improves the
computational efficiency of ViT.

However, the transformer has inherent defects. During the
training process, the transformer produces a quadratic computa-
tional complexity related to the image resolution or the number
of tokens, resulting in a huge amount of attention calculation
when dealing with long sequence tokens. Therefore, computa-
tional complexity is a key consideration when the transformer is
applied to the field of object detection. To effectively improve the
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computational performance of the transformer, a typical solution
involves reducing the scope of the attention mechanism from
global to local or a certain window. Swin Transformer [64] is
a hierarchical transformer whose representation was computed
with shifted windows. Swin Transformer divides the image
into nonoverlapping local windows and uses the shift window
mechanism to limit the self-attention computation to the seg-
mented local windows, which effectively improves computing
efficiency. However, the receptive field in Swin Transformer
expands slowly and requires numerous computational blocks
to finally obtain global attention. To solve the problem of the
limited token interaction field in the local self-attention, and
effectively reduce the amount of computation while obtaining a
wide range of attention simultaneously, the CSWin Transformer
[65], which achieved good performance on common CV tasks
by computing self-attention in the horizontal and vertical stripes
in parallel that form a CSWin, was proposed. Beyond those,
PVT [66] was proposed to build an attention layer with linear
complexity to achieve improved computational efficiency using
down-sampled keys and values, and PVT v2 [67] was presented
by improving PVT by adding a linear complexity attention
layer, overlapping patch embedding, and using a convolutional
feed-forward network. Different from the above methods, Tang
et al. [68] designed an efficient visual transformer using quadtree
attention to divide the input images into multiple patches and
evaluate the attention score to achieve quadratic complexity
reduction, which could reduce the quadratic computational com-
plexity to linear complexity and simultaneously obtain better-
detailed information and long-distance dependencies to achieve
better results in CV tasks.

Although a series of transformer-based methods can achieve
good performance by combining the hierarchical structure and
can be used as a general backbone in CV tasks, such as object
detection [69], [70], instance segmentation [72], and other fields,
their actual performance varies considerably. Among them,
CSWin Transformer has a relatively simple self-attention mech-
anism, which makes CSWin Transformer much more effective
for general vision tasks compared with the Swin Transformer,
PVT, and other methods. Therefore, the CSWin Transformer
was used as the backbone of this study.

C. CNN-Transformer Hybrid Methods for Object Detection

By constructing CNN-transformer hybrid models, the advan-
tages of CNNs and transformers can be effectively integrated.
Zheng et al. [68] proposed an adaptive and dynamic one-stage
detector based on the feature-pyramid transformer, which en-
hanced the feature fusion ability of the model by embedding
a transformer in the FPN. Xu et al. [70] constructed a local-
perception backbone based on Swin Transformer to enhance the
local-perception capability and improve the detection accuracy
for small objects. By replacing the original prediction heads
with transformer prediction heads (TPH), TPH-YOLOv5 [71]
achieved good performance with impressive interpretability on
drone-captured scenarios. Feng et al. [73] used YOLO as the
baseline network and used a cross-stage partial (CSP) bottleneck

transformer module as the backbone to implement the transi-
tivity of the global spatial dependencies, which exhibit superior
performance in different application environments and have high
generality. Inspired by DETR, Li et al. [74] constructed a novel
transformer-based remote sensing object detection framework,
TRD, in which a modified transformer was designed to aggregate
features of global spatial positions on multiple scales and the
interactions between pairwise instances were modeled. Using
the transformer as a branch network of the one-stage detection
network, Zhang et al. [75] constructed GANsformer to utilize
the feature information in the entire region and improved the
model’s ability to detect objects in aerial images. The above
studies indicate that the transformer mainly functions in vari-
ous CNN-based detection frameworks as a feature interaction
module.

However, the characteristics of UAV images make current
CNN-based, transformer-based, and CNN-transformer hybrid
methods face challenges in object detection. First, the object
scale in UAV images varies significantly because of the con-
siderable change in flight altitude. Second, the objects in UAV
images have different luminance and complex backgrounds.
Third, the distribution of various objects in UAV images is
uneven and varies dramatically. These above challenges make
it difficult for the current methods to achieve the desired detec-
tion performance. Therefore, inspired by these excellent works,
given the characteristics of UAV images, this study combines
a transformer with CNN to build an object detection model for
UAV images. Through improvement and optimization of the
proposed model, the detection performance is improved to better
meet the requirements of object detection in UAV images.

III. PROPOSED METHOD

In this section, the overall architecture of the proposed method
is introduced first, and then, the relevant key components and
modules are described in detail.

A. Overview Framework

The pipeline of the proposed CNN-transformer hybrid net-
work model for UAV image object detection is shown in Fig. 2,
which mainly includes the following modules.

1) The object detection network, Mask R-CNN, is used as
the pipeline network, in which a bottom-up hierarchical
structure is used to extract feature maps. By combining
with FPN, a top-down hierarchical structure with lateral
connections will fuse features, thereby obtaining high-
level semantic information of different scales and realizing
multiscale object detection through the RPN and ROI
head.

2) An efficient and effective transformer-based backbone,
CSWin Transformer, is used in each stage to extract fea-
tures. The CNN-based backbone cannot effectively ac-
quire long-distance interactions and dependencies, while
the global self-attention mechanism requires a significant
amount of computation, and the interaction field between
different tokens in the local self-attention mechanism is
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Fig. 2. Pipeline of the proposed CNN-transformer hybrid model for UAV image object detection. The left and right parts of the dotted line are the training and
inference stages, respectively.

Fig. 3. Architecture of the CSWin transformer-based encoder.

limited. CSWin Transformer effectively solves the above
problems by computing self-attention in the horizontal and
vertical stripes in parallel.

3) An HPEM is proposed to process the input image. Through
convolution, low-level feature maps are obtained. Then,
these feature maps are flattened into a sequence of patches
using a patch embedding module, which can effectively
obtain and utilize low-level information such as edges and
corners in the image while barely increasing the training
data and iterations.

4) A SI method is constructed in the inference stage after
completing model training to further improve the de-
tection performance of small objects in high-resolution
UAV images. The SI method divides the input image
into overlapping sliced images with a fixed size, which
will be reidentified. Subsequently, the reidentification re-
sults are fused with the original image object detection
results through nonmaximum suppression (NMS) to fur-
ther improve the object detection performance of UAV
images.

B. CSWin Transformer–Based Backbone

In this study, the CSWin Transformer is used as the encoder
backbone in the bottom-up hierarchical structure to extract
feature maps, and the encoded results obtained are input into
the top-down FPN structure for decoding to achieve multiscale
object detection.

1) CSWin Transformer–Based Network Structure: The hier-
archical network structure constructed with the CSWin Trans-
former as the backbone is shown in Fig. 3. First, the input image
with sizeH ×W × C (H ,W , andC represent the height, width,
and the number of channels, respectively; for the input image,
C = 3) is processed to obtain patch tokens, which are used as the
input of the subsequent hierarchical structure. Then, to produce
a hierarchical feature representation, the hierarchical network
consists of four stages based on the CSWin Transformer, and
the output of each stage is down-sampled using a convolution
with fixed kernel size and stride, so that H and W are reduced
by half, while the number of channels is doubled. The output
feature map of the ith stage has (H/2i+1)× (W/2i+1) tokens,
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Fig. 4. CSWin transformer block.

which is similar to those in the Swin Transformer. However,
different from Swin Transformer, CSWin Transformer replaces
the patchily stem with a convolutional stem, which achieves
better training efficiency while ensuring overall stability [76].
Finally, the output of the hierarchical network is processed by
feature fusion and prediction in the RPN layer and ROI layer to
achieve object detection.

2) CSWin Transformer Block: The global attention mecha-
nism is computationally expensive, whereas the local attention
mechanism limits the interaction between different tokens, and
requires more computing blocks to achieve global attention.
Therefore, unlike the vanilla transformer, CSWin Transformer
adopts CSWin self-attention to obtain global attention more
effectively, as shown in Fig. 4.

Specifically, CSWin self-attention divides the input data ver-
tically and horizontally according to a given size to obtain hori-
zontal and vertical stripes and performs self-attention calculation
in horizontal and vertical stripes in parallel, as shown in Fig. 5.
The main processing flow is as follows.

First, the input data X with size H ×W × C is linearly
projected to K heads, which are divided into two parts equally,
such as Part A and Part B in Fig. 5. Each part has K/2 heads.

Then, Part A and Part B are segmented vertically and hori-
zontally, respectively, to obtain horizontal and vertical stripes,
and self-attention calculation is performed in the horizontal and
vertical stripes in parallel. We take Part A in Fig. 5 as an example.
Part A is evenly divided into nonoverlapping horizontal stripes
[X1, . . . , XM ] with width SW along the vertical direction,
where M = H/SW , and the dimension of each strip Xi is
SW ×W × C, where i = 1, 2, . . . ,M .

After that, multihead attention is computed for each stripeXi,
where the attention Y i

k of the kth head is defined as

Y i
k = Attention(XiWQ

k , XiWK
k , XiWV

k ) (1)

where WQ
k ∈ RC×dk , WK

k ∈ RC×dk , WV
k ∈ RC×dk , and

dk = C/K. The overall horizontal stripes self-attention for kth
head can be defined as

H−Attentionk(X) = [Y 1
k , Y

2
k , . . . , Y

M
k ]. (2)

The overall vertical stripes’ self-attentionV−Attentionk(X)
for thekth head can be performed with reference to the horizontal
stripes self-attention. After concatenating the self-attention in
horizontal and vertical stripes, the final result can be defined

as

CSWin−Attention(X)

= Concat(head1, head2, . . . , headK)WO (3)

where WO ∈ RC×C , and

headk =

{
H−Attentionk(X) k = 1, . . . ,K/2
V−Attentionk(X) k = K/2 + 1, . . . ,K.

(4)

Using CSWin−Attention(X), the attention area of each
token within one transformer block can be enlarged. In addition,
as the stage increases, CSWin Transformer associates more
regions by increasing the strip width SW.

Finally, the processing of the CSWin Transformer block can
be formally expressed as

X̂ l = CSWin−Attentation(LN(X l−1)) +X l−1 (5)

X l = MLP(LN(X̂ l)) + X̂ l (6)

where X l represents the output of the lth CSWin Transformer
block or the precedent convolutional layer of each stage.

C. FPN-Based Decoder

Multiscale object detection is a basic challenge in UAV im-
age object detection, and constructing a feature pyramid is an
effective technique. In CNN-based models, different network
depths correspond to different levels of semantic features. The
low-level features have high resolution and rich detailed in-
formation, whereas the high-level features have low resolution
and rich semantic information. However, in high-level features,
small objects have a higher probability of being ignored. To
make full use of the different level features extracted, FPN uses
the multiscale and hierarchical structure of deep convolutional
networks to construct feature pyramids, which will be fused
through a top-down and laterally connected structure to obtain
high-level semantic features at different scales, as shown in
Fig. 6. FPN can be used as a general feature extractor and can
be combined with different backbones to achieve performance
improvement.

The bottom-up pathway of FPN is implemented by the feed-
forward calculation of CNN. By referring to the idea of a
hierarchical structure, data processing is divided into different
stages according to the size of the feature map, and the scale
of the feature map of each stage is half of the previous stage.
Using this structure, FPN can obtain more abundant feature
information, and the output of each stage can be used as part
of the input features of the corresponding level in the top-down
pathway in the FPN.

The top-down pathway of FPN provides higher resolution fea-
tures by up-sampling spatially coarser, but semantically stronger
feature maps from higher pyramid levels, which will make it the
same size as the feature map output from the corresponding
stage in the bottom-up pathway. Then, lateral connections are
employed to enhance these features using information from the
bottom-up pathway, and the output features serve as the input of
the next layer in the top-down pathway. To combine the semantic
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Fig. 5. Cross-shaped window self-attention.

Fig. 6. Architecture of the FPN.

information of the high-level features with precise positioning
information of the low-level features, each lateral connection
adopts a structure similar to a residual network; to correct the
number of channels, the feature map output by the corresponding
level stage in the bottom-up pathway needs to be processed by
a 1× 1 convolution.

Based on the above characteristics, FPN utilizes not only high-
level strong semantic features for classification but also low-
level high-resolution information for localization.

D. Hybrid Patch Embedding Module (HPEM)

Typically, before being input into the transformer-based back-
bone, the raw image must be processed to generate a sequence of
token embeddings. For example, ViT splits the input image with
a patch size of 16× 16 or 32× 32, and the Swin Transformer
or CSWin Transformer splits each image with a patch size
of H/4×W/4 (H and W represent the height and width of
the input image), which makes it difficult to capture low-level
information (such as edges and corners), and requires much more

training data or training iterations. Given the above situation,
for capturing more detailed low-level information and enriching
the features extracted by the backbone, this study proposes an
HPEM, as shown in Fig. 7.

Before the original patch embedding module, HPEM adds a
convolution layer to generate low-level features; simultaneously,
to better facilitate the training process, batch normalization is
added after the convolution layer. Subsequently, by flattening
these low-level features into sequence tokens using the original
patch embedding module, the low-level information in the image
can be exploited to the fullest while hardly increasing the com-
putational cost. The entire process of HPEM can be expressed
as follows:

x′ = HPEM(x) = PatchEmbedding(BN(Conv(x))) (7)

where x′ ∈ R
H
S ×W

S ×C , and S denotes the stride in the input
image. HPEM makes full use of the advantages of CNN in
extracting low-level features and reduces the training difficulty
of implantation by reducing the patch size.
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Fig. 7. Hybrid patch embedding module.

Fig. 8. Basic principles and steps of slicing-based inference.

E. Slicing-Based Inference

Influenced by the flying height and the shooting angle of
UAVs, the obtained images contain numerous small objects at
long distances or oblique angles. These small objects occupy
fewer pixels in images, and details are insufficient, which affects
the object detection performance. Although the current object
detection algorithm achieves multiscale object detection by
constructing feature pyramids, the performance of small object
detection is expected to be improved further.

Based on the slicing-aided hyper inference mechanism [77],
this study constructs the SI to further improve the performance
of small object detection in UAV images. The mechanism of the
SI is shown in Fig. 8, whose basic principles and steps are as
follows:

Step 1: use the model trained by the proposed method in this
article to perform inference on the original UAV images to
achieve normal inference results, as shown in Fig. 8(a);

Step 2: according to the given size (such as 512× 512), the
original UAV image is divided into overlap slices, which

will be proportionally enlarged. For example, as shown in
Fig. 8(b), the original UAV image is divided into overlap slices
P 1, P 2, P 3, and P 4. The enlarged results of slices P 2 and
P 4 by 2 times are P 2

′ and P 4
′;

Step 3: use the model trained by the proposed method to perform
inference on the enlarged slices (such as P 2

′ and P 4
′ in

Fig. 8(b)), and obtain the inference results [such as P 2
′′ and

P 4
′′ in Fig. 8(b)];

Step 4: the original UAV image inference results in Step 1 [see
Fig. 8(a)] and the sliced image inference results in Step 3 [see
Fig. 8(b)] are fused through NMS to obtain the final inference
results, which are shown in Fig. 8(c).

IV. EXPERIMENTS AND RESULTS

A. Datasets and Pretrained Models

1) Datasets: We selected the popular public dataset
VisDrone2021-DET and UAVDT to train, test, and evaluate the
proposed model.
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Fig. 9. PR curve (IoU = 0.5) of different methods without pretrained models. on the visdrone2021-DET dataset. (a) PR curve on the visdrone2021-DET dataset.
(b) PR curve on the sparse UAVDT dataset.

TABLE I
STATISTICS DATA OF ALL OBJECT BOUNDING BOXES IN VISDRONE2021-DET TRAIN AND VAL DATASET

The VisDrone2021-DET [78] dataset is a mainstream UAV
image dataset, which is used for object detection and has a
total of 11 categories including pedestrian, people, bicycle, car,
van, truck, tricycle, awning-tricycle, bus, motor, and others. The
numbers of images in the training, test, and evaluation sets are
6471, 548, and 1610, respectively. In the VisDrone2021-DET
dataset, the shooting angle of the UAV significantly changes,
the scale of various objects is diverse, and most sizes of the
objects are less than 32 pixels. Taking train and test data as
examples for analysis, the results are shown in Table I [79], and
the first row represents the object size range and the second row
contains the number of corresponding objects. In addition, the
object categories present in the VisDrone2021-DET dataset are
fine-grained and classified, which makes it very challenging in
the field of UAV image object detection task. Simultaneously,
the number of images in the VisDrone2021-DET dataset is
moderate, which can better test the performance of various
models. In addition, the data size of the VisDrone2021-DET
dataset is resized to an integral multiple of 224.

The UAVDT [80] dataset is a UAV benchmark captured by a
UAV platform at a number of locations in urban areas; it repre-
sents various common scenes including squares, arterial streets,
toll stations, highways, crossings, and T-junctions, and includes
about 80 000 representative frames from 100 video sequences.
UAVDT dataset has a total of 3 categories: car, truck, and bus.
Because the UAVDT dataset is taken from video sequences,
the images in the same video sequence contain a lot of similar
content, resulting in redundancy, which makes it challenging to
distinguish the performance of different models. Therefore, in
this study, a sparse UAVDT dataset was constructed based on the

original UAVDT dataset by extracting one in every 20 images. In
the sparse UAVDT dataset, the number of images in the training,
test, and evaluation sets were 1442, 206, and 412, respectively.
In addition, the data size of the sparse UAVDT dataset is scaled
to 448× 448.

2) Pretrained Models: In addition various deep learning
models to directly train on the given dataset, following-up the
existing SOTA networks can better improve the performance of
the proposed model. When comparing related methods, some
pretrained results given by the existing SOTA networks will
also be used in the experiments. These pretrained models are
trained on large object detection datasets such as Pascal VOC,
COCO, and FAIR1M. Although these models cannot be directly
used in UAV image object detection, they can help with weight
initialization.

B. Experimental Implementation Details

1) Evaluation Metrics: We used precision, a common eval-
uation metric that measures the percentage of the correct
prediction results, as the basic experimental evaluation criteria
and obtained the precision results of the bounding boxes, in-
cluding average precision (AP), AP50 (AP test results when the
IoU threshold is greater than 0.5), AP75 (AP test results when
the IoU threshold is greater than 0.75), APS (AP test results
with object frame size less than 32 × 32 pixels), APM (AP test
results with object frame sizes between 32 × 32 pixels and 96
× 96 pixels), and APL (AP test results with object frame sizes
larger than 96 × 96 pixels). AP is usually computed for each
class separately, therefore, the mean AP, which is the average of
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Fig. 10. Comparison of the qualitative inference results of the different methods without pretrained models in the first scenario from the visdrone2021-DET dataset.
(a) Original image. (b) Ground truth. (c) Mask R-CNN (Resnet-101). (d) HTC (ResNeXt-101). (e) Dynamic R-CNN (ResNeXt-101). (f) FCOS (ResNeXt-101). (g)
Mask R-CNN (Swin-S). (h) Mask R-CNN (CSWin-BM). (i) TPH-YOLOv5 (CSPDarknet53). (j) Cascade R-CNN (ConvNeXt-T). (k) Mask R-CNN (PVT2-B3).
(l) Proposed method.

the AP values of all object categories, was adopted as the final
measure for evaluating overall accuracy.

2) Experimental Setup: All experiments in this article were
carried out on a workbench equipped with an Intel CPU i7 9700k
and one NVIDIA GeForce RTX 3090 (24G). The operating
system was Ubuntu 20.04 LTS, and all deep learning models
were constructed based on the open-source object detection
toolbox MMDetection and PyTorch framework.

3) Comparative Methods: For a fair comparison, we only
considered methods providing source codes and selected some
classic and advanced networks, such as Mask R-CNN, HTC,
FCOS, Dynamic R-CNN, TPH-YOLOv5, and Cascade R-CNN,
and the backbone networks mainly included ResNet-101 [81],
ResNeXt-101 [82], ConvNeXt-T [83], CSPDarknet53 [32],
Swin-S [64], and PVT2-B3 [67]. For CSWin Transformer,
CSWin-BM was constructed based on CSWin-B [65] by chang-
ing the stages to 2, 2, 18, and 2 blocks. In addition, the

performance of each backbone network with the corresponding
pretrained models was also presented.

4) Data Processing: For the training and testing datasets,
we applied a series of standard data augmentation strategies.
Horizontal random flip with a flipping probability of 0.5 was
used to meet the requirements of image size for data processing;
the height and width of the original input data were expanded to
integer multiples of 224; band normalization operations using
regularization with a mean of [123.675, 116.28, 103.53] and
standard deviation of [58.395, 57.12, 57.375] was used.

5) Experimental Hyperparameter: We set the same training
hyperparameters to maintain the consistency and comparability
of the training results. For the experiments, we used the adaptive
moment estimation with decoupled weight decay (AdamW)
optimizer, where the initial learning rate and the weight decay
were 0.0001 and 0.05, respectively. Considering the hardware
limitations, the batch size was set to 1, and except for the
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Fig. 11. Comparison of the qualitative inference results of the different methods without pretrained models in the second scenario from the visdrone2021-DET
dataset. (a) Original image. (b) Ground truth. (c) Mask R-CNN (Resnet-101). (d) HTC (ResNeXt-101). (e) Dynamic R-CNN (ResNeXt-101). (f) FCOS (ResNeXt-
101). (g) Mask R-CNN (Swin-S). (h) Mask R-CNN (CSWin-BM). (i) TPH-YOLOv5 (CSPDarknet53). (j) Cascade R-CNN (ConvNeXt-T). (k) Mask R-CNN
(PVT2-B3). (l) Proposed method.

vanilla Mask R-CNN with ResNet-101 whose schedule is set
to 200 epochs and Dynamic R-CNN with ResNeXt-101 whose
schedule is set to 50 epochs, the schedule of all other methods
was set to 3×, which means the entire training processing had
36 epochs.

C. Ablation Study

In this section, an ablation study was designed to analyze how
much each component contributed to the accuracy of the overall
performance on different datasets, including without (w/o) and
with (w) pretrained models, as shown in Tables II and III. Mask
R-CNN was set as the baseline method, and ResNet-101 served
as the backbone network of vanilla Mask R-CNN.

Table II shows that Mask R-CNN with the CSWin Trans-
former as the backbone network achieved APs of 24.0 and
25.4 without and with the pretrained model, respectively, and

the results of APs in Table III are 12.3 and 26.0 without and
with the pretrained model, respectively, which are better than
those of vanilla Mask R-CNN with ResNet-101. In addition, the
detection performance showed improvements of 0.6 and 0.4 AP
in Table II and 1.3 and 0.2 AP in Table III when the HPEM was
added. Using SI, the performance of the proposed method can be
further improved, especially in terms of APS, APM, and APL.
The ablation study results proved that the various components
of the proposed method were effective at improving the object
detection accuracy in UAV images. The comparison shows that
the performance of the proposed method with pretrained models
is much better than that without pretrained models, which proves
the contribution of the pretrained models.

To further verify the effectiveness of HPEM, experiments
on the performance of different backbones with HPEM were
conducted, and the results are shown in Table IV. Notably, to
obtain more reliable comparison results, the pretrained models
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Fig. 12. Comparison of the qualitative inference results of the different methods without pretrained models in the third scenario from the sparse UAVDT dataset.
(a) Original image. (b) Ground truth. (c) Mask R-CNN (Resnet-101). (d) HTC (ResNeXt-101). (e) Dynamic R-CNN (ResNeXt-101). (f) FCOS (ResNeXt-101). (g)
Mask R-CNN (Swin-S). (h) Mask R-CNN (CSWin-BM). (i) TPH-YOLOv5 (CSPDarknet53). (j) Cascade R-CNN (ConvNeXt-T). (k) Mask R-CNN (PVT2-B3).
(l) Proposed method.

Fig. 13. PR curve (IoU=0.5) of different methods with pretrained models. on the visdrone2021-DET dataset. (a) PR curve on the visdrone2021-DET dataset.
(b) PR curve on the sparse UAVDT dataset.
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Fig. 14. Comparison of the qualitative inference results of the different methods with pretrained models in the first scenario from the visdrone2021-DET dataset.
(a) Original image. (b) Ground truth. (c) Mask R-CNN (Resnet-101). (d) HTC (ResNeXt-101). (e) Dynamic R-CNN (ResNeXt-101). (f) FCOS (ResNeXt-101).
(g) Mask R-CNN (Swin-S). (h) Mask R-CNN (CSWin-BM). (i) TPH-YOLOv5 (CSPDarknet53). (j) Cascade R-CNN (ConvNeXt-T). (k) Mask R-CNN (PVT2-B3).
(l) Proposed method.

TABLE II
ABLATION STUDY RESULTS OF THE PROPOSED METHOD ON THE VISDRONE2021-DET DATASET
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Fig. 15. Comparison of the qualitative inference results of the different methods with pretrained models in the second scenario from the visdrone2021-DET dataset.
(a) Original image. (b) Ground truth. (c) Mask R-CNN (Resnet-101). (d) HTC (ResNeXt-101). (e) Dynamic R-CNN (ResNeXt-101). (f) FCOS (ResNeXt-101).
(g) Mask R-CNN (Swin-S). (h) Mask R-CNN (CSWin-BM). (i) TPH-YOLOv5 (CSPDarknet53). (j) Cascade R-CNN (ConvNeXt-T). (k) Mask R-CNN (PVT2-B3).
(l) Proposed method.

TABLE III
ABLATION STUDY RESULTS OF THE PROPOSED METHOD ON THE SPARSE UAVDT DATASET
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Fig. 16. Comparison of the qualitative inference results of the different methods with pretrained models in the second scenario from the sparse UAVDT dataset.
(a) Original image. (b) Ground truth. (c) Mask R-CNN (Resnet-101). (d) HTC (ResNeXt-101). (e) Dynamic R-CNN (ResNeXt-101). (f) FCOS (ResNeXt-101).
(g) Mask R-CNN (Swin-S). (h) Mask R-CNN (CSWin-BM). (i) TPH-YOLOv5 (CSPDarknet53). (j) Cascade R-CNN (ConvNeXt-T). (k) Mask R-CNN (PVT2-B3).
(l) Proposed method.

were not used. The comparison results indicate that although
HPEM is not universal, it can effectively improve performance
of the proposed methods.

D. Evaluation and Comparisons

Based on the above datasets, pretrained models, and exper-
imental implementation details, we performed an evaluation
and comparisons from two aspects: without and with pretrained
models.

1) Without Pretrained Models: The comparison results be-
tween different methods combined with the corresponding back-
bones on the Visdrone2021-DET dataset are shown in Ta-
ble V. The comparison results show that Mask R-CNN with
transformer as the backbone network has better performance
than methods such as vanilla Mask R-CNN, HTC, FCOS, and
Dynamic R-CNN with a similar count of parameters. Between
the different transformer backbone networks, the method with
CSWin Transformer as the backbone network achieves better
performance, and the experimental result is 2.7 AP higher than
the Swin Transformer. The proposed method proposed showed

a further improvement in object detection accuracy, which was
higher than those of vanilla Mask R-CNN (200 epochs) by 7.8
AP and Mask R-CNN with CSWin Transformer by 1.8 AP.
Notably, the method proposed achieves a conspicuous improve-
ment for small, medium, and large object detection compared
to the Mask R-CNN with CSWin Transformer as the backbone
network by 20.6, 18.7, and 19.8 AP, respectively.

The comparison results between different methods combined
with the corresponding backbones on the sparse UAVDT dataset
are shown in Table VI. The proposed method has a further
improvement in object detection accuracy, which is higher than
that of vanilla Mask R-CNN (200 epochs) by 6.0 AP and that
of Mask R-CNN with CSWin Transformer by 2.1 AP. Notably,
the proposed method achieves a conspicuous improvement for
small, medium, and large object detection compared to the Mask
R-CNN with CSWin Transformer as the backbone network by
17.3, 24.2, and 33.6 AP, respectively.

The precision-recall curves of the different methods with-
out pretrained models on the Visdrone2021-DET and sparse
UAVDT dataset are provided in Fig. 9, which intuitively show the
detailed relationship between precision and recall. The proposed
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TABLE IV
ABLATION STUDY RESULTS OF THE EFFECTIVENESS OF HPEM ON THE VISDRONE2021-DET DATASET AND SPARSE UAVDT DATASET

TABLE V
OBJECT DETECTION PERFORMANCE OF DIFFERENT METHODS WITH PRETRAINED MODELS ON THE VISDRONE2021-DET DATASET

method exhibits better performance on the Visdrone2021-DET
dataset in Fig. 9(a). However, the performance exhibited in
Fig. 9(b) is not particularly ideal, which may because of the
larger amount of training data needed by the transformer.

In addition to the quantitative comparisons, the qualitative
inference results by different methods of the three scenarios
selected from the Visdrone2021-DET and sparse UAVDT
dataset are shown in Figs. 10–12, respectively, which show that

the proposed method exhibits a conspicuous detection capa-
bility on the Visdrone2021-DET and sparse UAVDT dataset.
In particular, it pays more attention to distant small ob-
jects and can achieve better detection performance for small
objects.

2) With Pretrained Models: For downstream tasks, pre-
trained models on large-scale image datasets, such as ImageNet
[84], and COCO 2017 [85], are usually used as the initial
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TABLE VI
OBJECT DETECTION PERFORMANCE OF DIFFERENT METHODS WITH PRETRAINED MODELS ON THE SPARSE UAVDT DATASET

TABLE VII
OBJECT DETECTION PERFORMANCE OF DIFFERENT METHODS WITH PRETRAINED MODELS ON THE VISDRONE2021-DET DATASET

weights of the backbone network. Therefore, in this study,
we used these pretrained models to initialize the weights of
the corresponding backbone networks in comparative models
and conducted subsequent comparisons. The results on the
Visdrone2021-DET dataset in Table IV show that with the
pretrained models, the performance of each method is improved.
The proposed method has a further improvement in object
detection accuracy, which is higher than that of vanilla Mask
R-CNN (200 epochs) by 2.1 AP and Mask R-CNN with CSWin
Transformer by 1.1 AP. Furthermore, the proposed method

achieved a conspicuous improvement in small, medium, and
large objects detection compared to the Mask R-CNN with
CSWin Transformer as the backbone network by 20.0, 20.5,
and 15.8 AP, respectively.

The results on the sparse UAVDT dataset in Table VIII show
that with pretrained models, the performance of each method
is improved. The proposed method led to a further improve-
ment in object detection accuracy, which is higher than that of
vanilla Mask R-CNN (200 epochs) by 5.2 AP and Mask R-CNN
with CSWin Transformer by 0.3 AP, and the model achieved a
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TABLE VIII
OBJECT DETECTION PERFORMANCE OF DIFFERENT METHODS WITH PRETRAINED MODELS ON THE SPARSE UAVDT DATASET

conspicuous improvement for small, medium, and large object
detection compared to the Mask R-CNN with CSWin Trans-
former as the backbone network by 27.4, 28.4, and 40.6 AP,
respectively.

The precision-recall curves of the different methods with pre-
trained models on the Visdrone2021-DET and sparse UAVDT
dataset are provided in Fig. 13, and the proposed method still
exhibits superior performance. The comparison between the PR
curve in Figs. 9 and 13 indicate that an adequate pretraining
model can further improve the performance of the transformer.

The qualitative inference results by different methods of the
three scenarios selected from the Visdrone2021-DET and sparse
UAVDT dataset with pretrained models are shown in Figs. 14–
16. The proposed method exhibited a conspicuous detection
capability on both the Visdrone2021-DET and sparse UAVDT
datasets.

V. DISCUSSION AND CONCLUSION

The experimental results in Tables V–VIII and the qualitative
inference results in Figs. 10–16 show that the CNN-transformer
hybrid model proposed in this study can achieve better re-
sults compared with the current classic and popular models.
By constructing a feature pyramid structure and using CSWin
Transformer as the backbone, the proposed method can obtain
better high-level semantic features of different scales while
effectively establishing long-distance dependencies, which is
helpful to achieve multiscale object detection, and the ablation
study results in Tables II and III indicate that the AP test results of
small, middle and large objects have a significant improvement.
Combined with HPEM, low-dimensional information such as
edges and corners in the image can be further extracted and uti-
lized to enhance and enrich the feature information. In addition,

according to the high-resolution characteristics of UAV images,
SI is used to fuse the normal and SI results, which can improve
the accuracy of object detection, especially that of detecting
small objects, without modifying the original model, and the
results in Tables II and III indicate that the AP test results of small
objects are improved greatly, even doubled, with the SI method.
The SI method indicates that the subsequent inference process
also has a large impact on the overall performance. Furthermore,
the comparison of the PR curves in Figs. 9 and 13 indicate that
the transformer needs large amounts of training data or a better
weight initialization to perform better.

However, deficiencies are also observed in experimental com-
parisons. Although pretrained models can effectively improve
the performance of networks, the contributions of various pre-
trained models are considerably different. In addition, the sce-
narios of pretrained models are considerably different from those
of the training dataset, which leads to inadequate use of the
pretrained models. The training time required by the proposed
method is low, but each epoch is time-consuming, and the
training process has a high hardware requirement. In addition,
this study verifies the effectiveness of the CNN-transformer
hybrid model and the proposed module (such as the HEPM
and SI), and there is still a certain gap from SOTA methods.
Meanwhile, notably, in the comparison results, although some
methods have demonstrated excellent performance, ideal results
under the training dataset in this study are not achieved with the
official codes, which is a problem that requires further in-depth
analysis.

There is still room for improving the proposed method,
and follow-up work can be carried out around model transfer,
lightweight models, and performance improvement, which can
likely be solved by transfer learning and the use of efficient
transformers.
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