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Abstract—Anomaly detection has become one of the crucial tasks
in hyperspectral images processing. However, most deep learning-
based anomaly detection methods often suffer from the incapabil-
ity of utilizing spatial–spectral information, which decreases the
detection accuracy. To address this problem, we propose a novel
hyperspectral anomaly detection method with a spatial–spectral
dual-window mask transformer, termed as S2DWMTrans, which
can fully extract features from global and local perspectives, and
suppress the reconstruction of anomaly targets adaptively. Specif-
ically, the dual-window mask transformer aggregates background
information of the entire image from a global perspective to neu-
tralize anomalies, and uses neighboring pixels in a dual-window to
suppress anomaly reconstruction. An adaptive-weighted loss func-
tion is designed to further suppress anomaly reconstruction adap-
tively during network training process. According to our investi-
gation, this is the first work to apply transformer to hyperspectral
anomaly detection. Comparative experiments and ablation studies
demonstrate that the proposed S2DWMTrans achieves competitive
performance.

Index Terms—Anomaly detection, dual-window mask
transformer (DWMTrans), hyperspectral image (HSI).

I. INTRODUCTION

HYPERSPECTRAL image (HSI) with rich spectral infor-
mation has a powerful ability of distinguishing different

materials, and have been widely used in various remote sensing
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data analysis applications [1], [2], such as anomaly detection [3],
[4], image classification [5], [6], and target detection [7], [8].
Among these applications, anomaly detection utilizes continu-
ous spectral information and spatial information of land covers
to detect anomalies with significant different spectral signatures
from their surrounding environment [9].

Anomaly detection has the unique advantage of not requiring
prior spectral information, which prompts a lot of detection
methods to be proposed [10], [11]. According to the sep-
aration standards of background and anomaly, hyperspectral
anomaly detection methods can be divided into three categories:
statistical model-based, reconstruction model-based, and deep
learning-based. The statistical model-based anomaly detection
methods can be traced back to the RX method proposed by
Reed et al. [12], which assumes that the background part can
be represented by the Gaussian background distribution model.
However, the HSI background may be very complex and cannot
be fitted by the Gaussian model only. In order to improve the
detection performance, local RX (LRX) [13], weighted RX
(WRX) [14], and other methods were proposed. LRX selects
a specific area as the background, usually in the form of sliding
dual windows. However, it is difficult to determine the size of
the dual window. WRX can better estimate the background by
assigning low weights to possible anomalous pixels and high
weights to other pixels. Zhang et al. proposed an isolation forest
method for hyperspectral anomaly detection, which is based on
Ostu and assume that the isolation of the abnormal pixel from
the alternative pixel is more sensitive [15]. Sertac et al. designed
an anomaly detection algorithm for HSIs, which is based on
nonparametric Bayesian background estimation [16]. Chang
et al. designed an orthogonal subspace projection target detector
for hyperspectral anomaly detection, which takes advantage of
automatic target generation process, and achieved an outstand-
ing performance [17]. With the development of the compressed
sensing theory and machine learning, anomaly detection method
based on reconstruction has gradually become a research hotpot.
The basic idea is to use an overcomplete dictionary to represent
the HSI, and the difference between the reconstructed image and
the original image is used as the basis for anomaly judgment.
Li et al. [18] proposed an anomaly detection method based
on background joint sparse representation. The joint sparse
model constructs a sample set that can represent the background
distribution, and then, performs sparse representation of the
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test pixel based on the sample set. The degree of difference
between the test pixel and the original pixel reflects the anomaly
degree of the test pixel. Li et al. [19] described an collaborative
representation-based detector (CRD), which adopts the local
dual-window strategy, and uses the pixels between the two
windows to carry out collaborative representation of the central
pixels.

In recent years, deep learning has achieved excellent results
in the fields of computer vision and remote sensing [20], [21].
For example, Xie et al. designed a spectral–spatial anomaly
detection method for HSI, which is based on band selection.
Specifically, they fully utilized the underlying physical char-
acteristics to train the unsupervised network [22]. Mihai et al.
proposed a deep convolutional model to detect anomalies in
burned area contexts of Sentinel-2 scenes, which adopt a self-
supervised paradigm to learn the image representations [23]. The
convolution neural network (CNN) is the typical representative
of deep learning, which needs sufficient samples for supervised
training [24], [25]. However, hyperspectral anomaly detection
does not have any prior information and the data samples
are limited. In order to solve this shortcoming, Li et al. [26]
combined the CNN with transfer learning to realize anomaly
detection. Compared with the CNN, which requires reference
images and a large number of data samples, autoencoder (AE),
generative adversarial net (GAN) [27], and adversarial auto
encoder (AAE) [28] are more suitable for HSI anomaly detec-
tion. Zhang et al. [29] constructed an adaptive subspace model
based on stacked AEs to extract deep features with differences
for anomaly detection. Manifold learning is adopted in litera-
ture [30] to extract local spatial information and integrate it with
AE. Xie et al. [31] introduced spectral constraint into AAE to
suppress background while maintaining abnormal characteristic
information, making it easier to distinguish anomalies from
background.

At present, the traditional methods and deep learning-based
methods both have obtained satisfied detection performance.
However, most of the current research only consider spectral
information or local spatial information. The traditional anomaly
detection methods have some limitations in extracting image
features manually, which may ignore a lot of details. Among
the deep-learning-based methods, those improved AE occupy
the majority and are usually trained by spectral vectors, so the
exploration of spatial information is insufficient. The anomaly
detection methods based on the CNN can only obtain local
spatial information.

To overcome these limitations, this article proposes a hy-
perspectral anomaly detection method named spatial–spectral
dual-window mask transformer (S2DWMTrans) to make full
use of the spatial–spectral information of the HSI. First, convo-
lution operation is introduced to give the model local receptive
fields, and then, the dual perspective spatial–spectral feature
extraction and fusion module (DPS2FEFM) is used to extract
spatial–spectral feature under two perspectives. In the global
perspective, the background information with a high proportion
is gathered. In the local perspective, the neighbor features in
the dual window are refined and fused to reconstruct the image.
In addition, due to the relatively large reconstruction error of

anomalies in the early training stage, the S2DWMTrans designed
an adaptive weighted loss function (AWLF) to give a small
weight to the pixels with large reconstruction error to reduce the
contribution to the total loss. So, the network not only realizes
the full extraction of spatial–spectral information, but also effec-
tively suppresses anomalies and achieves accurate background
reconstruction. In order to further improve the detection accu-
racy, the input and reconstructed images are postprocessed. The
error of these two images is used as the weight, and a nonlinear
mapping is introduced to enlarge the background and anomaly
in the original image. Finally, the Mahalanobis distance detector
is used to get the detection result.

The main contributions of this article are as follows.
1) A novel S2DWMTrans is proposed to fully utilize

the spatial–spectral information in HSIs for competi-
tive anomaly detection performance. Specifically, a dual-
window mask transformer (DWMTrans) is contained in
the proposed S2DWMTrans, which can fully exploit the
combined spatial–spectral features of the HSI in the global
and local perspectives for reconstruction, and exert differ-
ent degrees of suppression on anomalies respectively.

2) An AWLF is designed to further suppress anomaly recon-
struction by reducing the weight of potential anomalies
during the network training process.

3) We conduct several comparative experiments and ablation
studies on five datasets to demonstrate the advancement
and effectiveness of our proposed S2DWMTrans. The de-
tection performance outperforms many advanced methods
on all the datasets.

II. RELATED WORK

The transformer was first proposed by Google re-
searchers [32] and applied in the field of natural language
processing, which is similar to AE in overall structure. A trans-
former consists of encoder and decoder, and requires input data
in vector form. Dosovitskiy et al. [33] proposed the vision trans-
former model (ViT), which removes the decoder and only uses
the encoder structure. In order to meet the strict requirements of
the format of the transformer input data, the ViT has a prepro-
cessing process that flattens the input image into vectors. The
transformer despite the traditional CNN structure, whose whole
network architecture is completely composed of attention. To
be precise, the transformer only consists of self-attention mod-
ule and feed forward neural network (FFN). The self-attention
module is the core component of the transformer [34], and has
been applied to the many image recognition task and its specific
structure is shown in Fig. 1 [35], [36].

The input data X are first transformed into Query (Q), Key
(K), and Value (V) matrices through three linear transformations,
which can be expressed as

Q = XWq

K = XWk

V = XWv (1)
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Fig. 1. Flowchart of the the self-attention module.

where Wq, Wk, and Wv denote the weight matrices of linear
transformations for generating the query, key, and value tensors,
respectively, which are trainable and can improve the model fit
ability. Each line of Q, K, and V represents a sample data.
Multiplying QT and K can calculate the similarity between
the extracted features Q and K, which indicates the similarity
between the features of each pixel and other pixels. The inner
product between each row vector of matrices Q and K is
calculated to get the weight matrix, which shows how much
attention each pixel in the input gets when the model focuses
on a particular pixel. Then, the weight matrix is divided by
dk to prevent the inner product from being too large, and the
normalized weight matrix is obtained by softmax function. The
complete calculation formula can be expressed as

Z = softmax

(
QTK√

dk

)
V (2)

where dk is the sample coding dimension.

III. METHODOLOGY

A. Architecture Overview

Just as with any other anomaly detection tasks, how to well
represent the background samples while poorly perform the
anomaly samples is the key to clearly distinguish small anomaly
samples. In this article, we propose a hyperspectral anomaly
detection method named S2DWMTrans to make full use of the
spatial–spectral information to suppress the anomaly reconstruc-
tion.

The overall architecture of the proposed S2DWMTrans is
represented in Fig. 2, which mainly consists of three parts, which
are as follows.

1) A DWMTrans is constructed for fully digging the spatial–
spectral feature in global and local perspectives for re-
construction, and applying different degrees of inhibitory
effect on the anomaly samples.

2) An AWLF is designed to further suppress anomaly recon-
struction by reducing the weights of potential anomalies
during network training.

3) A postprocessing module is applied in order to further
improve the detection accuracy.

B. Dual-Window Mask Transformer (DWMTrans)

A DWMTrans is constructed for fully extracting spatial–
spectral features from both global and local perspectives. A local

shallow feature extraction module (LSFEM) is first designed to
initially extract local features and inject adjacent information
into the spectral vectors, and thus, enhance the information in-
teraction between image pixels and surrounding areas. Next, the
spectral vectors are fed into the DPS2FEFM, which consists of
several cascaded dual-window mask encoder block (DWMEB),
to fuse the spatial–spectral information from two perspectives to
jointly suppress anomaly reconstruction. Specifically, the mul-
tihead self-attention (MSA) in DWMEB with a global receptive
field is used to gather background information of the whole
image to neutralize anomalies. In the local view, the information
under the dual-window mask are mined by the constructed
dual-window mask multihead self-attention (DWM-MSA) in
DWMEB to suppress anomaly reconstruction. Finally, the re-
fined features are passed through the background reconstruction
module (BRM) to accurately learn the background distribution
function.

1) Local Shallow Feature Extraction Module (LSFEM): In
order to enhance the information interaction between pixels and
surrounding areas, the input HSI image of the DWMTrans is first
passed through an LSFEM. As shown in Fig. 2, the conv layer of
the LSFEM can traverse the entire image to extract local features,
and gather the feature information in the convolution kernel
area to the center pixel. The following batch normalization
(BN) accelerates the speed of the network training and prevents
overfitting. Then, a rectified liner unit (ReLu) layer is followed
to learn a nonlinear representation. Since HSIs have multiple
spectral bands and rich spectral information, the spectral vector
of a single pixel can act as an input vector of the transformer.
Given the HSI patch H ∈ RM×N×B with M × N pixels and B
spectral bands as the input of the proposed S2DWMTrans, which
can also be regarded as M × N vectors with B dimensions. The
aforementioned process of the LSFEM can be more intuitively
formulated as

Y = fLSFEM(H) = fconv(H) (3)

y = Flatten(Y) = [y1,y2,. . .yn] (4)

where Y represents the output of the LSFEM, y represents the
flattened vectors as input to the next module. As the input of the
next module, all the spectral vectors passing through the LSFEM
carry the local spatial information in the vicinity, and thus, fuse
the local and global information.

2) Dual Perspective Spatial–Spectral Feature Extraction and
Fusion Module (DPS2FEFM): Since most regions in HSIs are
background, it is necessary to combine global features of back-
ground to weaken anomaly reconstruction using background
information. At the same time, considering that the spectral
characteristics of abnormal pixels are different from those of
neighboring pixels, it is necessary to obtain detailed information
of neighboring regions to represent abnormal pixels and suppress
anomaly reconstruction.

We design a DPS2FEFM that can obtain the global and local
spatial–spectral information simultaneously. As shown in Fig. 2,
the DPS2FEFM is a stack of the DWMEB, whose calculation
formula is as follows:

FDPS2FEFM = FDWMEB,N . . .FDWMEB,i. . .FDWMEB,1[y] (5)
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Fig. 2. Architecture of the proposed S2DWMTrans.

Fig. 3. Flowchart of the the DWMEB.

where FDWMEB,i[·] represents the function of the ith DWMEB.
Fig. 3 shows the specific structure of the DWMEB, which con-
sists of two consecutive encoder-based structures. The first one is
the same as transformer encoder in the ViT and is used to extract
global features. The second one designs a DWM-MSA, which
limits the calculation of the attention weight of self-attention to
a dual-window region and is used to extract local features. The
function of the DWMEB can be expressed as

FDWMEB,i = FDWM-MSA,i [FMSA,i (oi−1)] (6)

where FMSA,i(·) represents the function of the first encoder,
FDWM-MSA,i(·) represents the function of the DWM-MSA-based
structure, and oi−1 represents the output of i-1th DWMEB.
FMSA,i(·) is replaced by m for the sake of representation

m = FMSA,i(oi−1) = oi−1 + fMSA,i(LN(oi−1))

+ FFN[LN [oi−1 + fMSA,i(LN(oi−1))]] (7)

where fMSA,i(·) represents the function of the MSA block.
FDWM-MSA,i(·) can be described in detail as follows:

FDWM-MSA,i = m+ fDWM-MSA,i(LN(m))

+ FFN[LN [m+ fDWM-MSA,i(LN(m))]] (8)

where fDWM-MSA,i(·) represents the function of the DWM-MSA
block.

The MSA is same as the multihead self-attention module in
the ViT, whose formula is as follows:{

ag =
∑Ng

a

i=1 w
ag
i agi +

∑Ng
b

i=1 w
bg
i bg

i

bg =
∑Ng

a

i=1 w
ag
i agi +

∑Ng
b

i=1 w
bg
i bg

i

(9)

whereag andbg are vectors of abnormal and background pixels,
respectively. g is short for global. wag

i is the attention weights
of pixels to be reconstructed and abnormal pixels. wbg

i is the
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Fig. 4. Flowchart of the local attention-based reconstruction.

attention weights of pixels to be reconstructed and background
pixels. Ng

a and Ng
b are the total number of abnormal and back-

ground pixels in the corresponding region, respectively, which
remain unchanged. If the pixel to be reconstructed is abnormal,
wbg

i is far less than wag
i . However, Ng

b is much larger than
Ng

a , which makes the majority of background pixels affect the
reconstruction of anomalies. If the pixel to be reconstructed
is background, most of the background pixels can be well
represented, and only a few small background regions deviating
from the overall background area will be considered as abnormal
pixels.

DWM-MSA only calculates the attention weight of all pixels
between the inner and outer windows and the central pixels, that
is, adding a dual-window attention mask B. Fig. 4 shows the
schematic of B, and its calculation formula is as follows:

Z = WV = softmax

[
QKT

√
dk

+B

]
V (10)

where W represents the attention weight between pixels to be
reconstructed and other pixels, and Z is the output of DWM-
MSA. The detailed calculation formula of DWM-MSA can be
expressed as

al =

N l
a∑

i=1

wal
i ali +

N l
b∑

i=1

wbl
i b

l
i

bl =

N l
a∑

i=1

wal
i ali +

N l
b∑

i=1

wbl
i b

l
i (11)

where l is short for local. N l
a and N l

b will change with the size
of dual window mask.

As the pixel to be reconstructed may be background or
anomaly, formula (9) will correspond to the following four
situations as shown in Fig. 5.

1) As shown in Fig. 5(a), when the pixel to be reconstructed
is abnormal and N l

b is much larger than N l
a, similar to

global reconstruction, the background pixels will inhibit
the reconstruction of abnormal pixel.

2) As shown in Fig. 5(b), the pixel to be reconstructed is
abnormal and N l

b is close to N l
a. This situation is very

rare and can be solved by adjusting the size of the inner
and outer windows.

3) As shown in Fig. 5(c), when the pixel to be reconstructed
is background and N l

a is zero, the pixel will be completely
reconstructed.

Fig. 5. Diagram of four different reconstruction. The red star represents the
abnormal pixel, and the black and white circles represent the background pixel
with different distributions.

4) As shown in Fig. 5(d), the pixel to be reconstructed is
background, and N l

a is the total number of background
pixels with different distributions and abnormal pixels.

In the previous MSA, a small number of background pixels
with a different distribution than the one to be reconstructed
were considered anomalies. This situation will be improved in
the DWM-MSA. Since most of pixels in the dual window are
background pixels with similar distribution and wbl is much
larger than wal, the small background area will slowly return to
its own distribution. MSA and DWM-MSA appear in pairs in the
DWMEB, which fully integrate global and local features, effec-
tively suppressing anomalies and highlighting the background.

3) Background Reconstruction Module (BRM): The BRM
reconstructs the deep features extracted previously. The module
first uses a conv layer to adjust the number of spectral bands of
the image. The subsequent sigmoid function is used to limit the
value of the output image between 0 and 1, which is convenient
to calculate the loss with the input image.

C. Adaptive-Weighted Loss Function (AWLF)

Compared with the background, anomalies account for a small
proportion in HSIs and usually exist in irregular small areas,
which are difficult to reconstruct. However, the conv layers
and DWMEB with strong learning ability have made the total
loss in the training process decrease continuously. As the data
fitting degree of the network gradually increased, anomalies will
gradually be reconstructed. In order to curb the training trend and
further suppress the anomalies, the reconstruction errors in the
training process can be used to accurately suppress the potential
anomalies.

Since anomaly pixels have a large reconstruction error in the
early stage of network training, the AWLF is designed to reduce
the weight of areas with large reconstruction errors and increase
the weight of other areas when calculating loss. This function
helps suppress the reconstruction of anomalies and highlights
the reconstruction of the background. The reconstruction error
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Fig. 6. (a) Distribution of anomalies. (b) Distribution of weights.

calculation formula of a single pixel can be expressed as

ei,j = ‖xi,j − x̂i,j‖2 (12)

where xi,j and x̂i,j are the spectral vectors of the input image
and reconstructed image at position (i,j), respectively. Further,
the weight of the pixel can be expressed as

wi,j =

(
Norm

(
1

ei,j

)
+ 1− exp (−10× ei,j)

)
2

(13)

where Norm(·) represents normalization. The distribution of
pixels and their corresponding weights is shown in the Fig. 6.
Potential anomalies [yellow areas in Fig. 6(a)] will be given
smaller weights [darker blue areas in Fig. 6(b)].

In the training process of the DWMTrans, wi,j is updated
every 20 epochs. During the first 20 epochs, wi,j is initialized to
1, and its value would not change after five times of updating.
The adaptive-weighted loss function L based on wi,j can be
expressed as

L =
1

H ×W

H∑
i=1

W∑
j=1

‖(xi,j − x̂i,j)× wi,j‖2

+
1

π ×H ×W

H∑
i=1

W∑
j=1

arccos

( 〈xi,j , x̂i,j〉
‖xi,j‖2‖x̂i,j‖2

× wi,j

)
(14)

where H and W are the height and width of the image, re-
spectively, and 〈xi,j , x̂i,j〉 represents the inner product of two
spectral vectors. The first term of L uses the mean square
error (MSE) to quantify spatial differences between the input
image and the reconstructed image, while the second term uses
spectral angle mapper (SAM) to constrain the spectral similarity
between images. Each term is multiplied by the weight wi,j

when calculating the error at a single pixel. Because the weight
corresponding to the abnormal pixel is small, its loss contributes
little to the total loss, and thus, the abnormal pixel avoids being
reconstructed by the network.

D. Postprocessing

The proposed DWMTrans obtains the network mapping func-
tion FDWMTrans after completing the iterative training process.
The input HSI H is passed through FDWMTrans and obtain the

abnormal inhibited reconstructed image Ĥ, which can be ex-
pressed as

Ĥ = FDWMTrans(H). (15)

In order to improve detection accuracy, postprocessing of input
and reconstructed images is carried out as shown in Fig. 2.
The postprocessing module first calculates the reconstruction
error between the two images and averages it on the channel
dimension, so as to obtain the preliminary anomaly detection
result D1. D1 can be expressed as,

ω = 1− exp (−10D1) (16)

where ω ranges from 0 to 1. The reconstruction error corre-
sponding to the abnormal pixel is relatively large, so its weight
is close to 1, while the reconstruction error corresponding to
the background pixel is very small, so its weight is close to
0. Then, the weight matrix ω is multiplied by the input H
to increase the separability of background and anomaly. The
obtained background suppressed image can be expressed as

H′ = (1− exp (−10D1))H. (17)

After this operation, the abnormal pixels with large D1 will
maintain the spectral vector in H, while the spectral vector of
background pixels with small D1 will be suppressed. Finally,
the obtained H′ has great separability in anomaly and back-
ground, and anomaly detection can be realized by calculating
the Mahalanobis distance on H′.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets and Experimental Setup

In this article, five real hyperspectral datasets are used to verify
the effectiveness of the proposed S2DWMTrans1 [37], whose
pseudocolor and reference images are shown in Fig. 7. Gulfport
dataset was taken by Airborne Visible/Infrared Imaging Spec-
trometer Sensor (AVIRIS) in 2010 over Gulfport, USA, with the
ground spatial resolution of 3.4 m. The size of Gulfport dataset
and its ground truth is 100×100. Three aircraft contained in the
image features were taken as abnormal targets, which occupies
155 60 pixels. After the contaminated bands are removed, 191
spectral bands are left, covering a spectral range from 400 to
2500 nm.

Pavia dataset was taken by the reflective optics system imag-
ing spectrometer sensor (ROSIS) in Pavia, Italy. The image
include rivers, bridges, soil, and buildings. The resolution of the
image is 150×150, with 175 spectral bands and a wavelength
range of 430 to 860 nm. The ground spatial resolution is 1.3 m.
The size of the ground truth of Pavia dataset is 150×150, in
which some vehicles on the bridge occupying a total of 68 pixels
are considered as abnormal targets.

Texas Coast dataset was acquired by an AVIRIS sensor in
August 2010 over the coast of Texas, USA, with a spatial
resolution of 17.2 m. The image contains 207 bands, each with a
size of 100×100, so does its ground truth. There is a parking lot

1http://xudongkang.weebly.com/

http://xudongkang.weebly.com/
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Fig. 7. Pseudocolor diagram and reference diagram of (a) Gulfport dataset, (b) Pavia dataset, (c) Texas Coast dataset, (d) Los Angeles dataset, and (e) Muufl
dataset.

in the ground object scene, in which some vehicles occupying a
total of 272 pixels are marked as abnormal targets.

Los Angeles dataset was acquired by the AVIRIS sensor in
November 2011 in Los Angeles, USA, with a spatial resolution
of 7.1 m. The image scene and its ground truth both cover
100×100 pixels and has 205 spectral bands, among which some
noise bands have been removed. As for Los Angeles dataset,
some storage tanks occupying a total of 272 pixels are considered
as targets.

Muufl dataset was acquired by the ITRES Research Ltd.
(ITRES) Compact Airborne Spectrographic Imager (CASI)-
1500 sensor in 2010, covering the University of Southern Missis-
sippi Gulfport Campus, Mississippi, USA.2 The image contains
64 bands, covering the wavelength range of 367.7–1043.4 nm.
The size of Gulfport dataset and its ground truth is 220×325,
and the spatial resolution is 0.54×1.0 m. In this article, we crop a
subimage of 140 × 280 pixels from the upper right of the whole
image, in which four cloths occupying a total of 269 pixels are
considered as targets.

Some of the anomalies in the five experimental datasets are in
the form of points, some show small irregular regions, and some
have obvious structural information. In addition, their spatial
resolution, number of spectral bands and ground object scenes
are mostly different. Therefore, experiments on these datasets
can effectively verify the effectiveness and robustness of the
proposed method.

The proposed DWMTrans is implemented with the PyTorch
1.7 and Python 3.7 on Ubuntu, and trained on the GeForce GRX
3090 GPU. The postprocessing is implemented with the MAT-
LAB 2018a on Windows10, and trained on the CPU Intel(R)
Core(TM) i7-9750H. DWMTrans uses Adam [38] optimization
to find the optimal solution, and the learning rate is set as 0.0001.
Each batch of sample size is the number of pixels in the whole
image, and the number of training epochs is 400. The number
of output nodes of the LSFEM is 128, the dimension of the

2https://datasets.bifrost.ai/info/1773

spectral vector is set to 64, and the number of nodes of the two
full connection layers in the FFN is 256 and 128, respectively.

B. Quality Assessment

There are qualitative and quantitatively indicators to evaluate
HSI anomaly detection. One of these indicators is receiver
operating characteristic (ROC), which is determined by the
probability of detection Pd and false alarm rate Pf of abnormal
detection results. Pd and Pf can be expressed as

Pd =
Nd

Nt
(18)

Pf =
Nf

Ntotal
(19)

where Nd, Nt, Nf , and Ntotal represent the number of detected
abnormal pixels, the number of abnormal pixels in the reference
image, the number of background pixels mistaken as abnormal
pixels in the detection result, the total number of pixels in HSIs,
respectively. Taking Pf as abscissa and Pd as ordinate, the
corresponding ROC curve can be drawn. The closer the ROC
curve is to the upper left corner, the better the performance of
the method. Another metric is area under curve (AUC), namely,
the area under the ROC curve, which can be expressed as

AUC =

∫ 1

0

ROC(x)dx. (20)

The higher the AUC value is, the better the performance of the
corresponding algorithm is. Precision-recall curve (PRC) is also
an indicator we used. The closer the PRC curve is to the upper
right corner, the better the performance of the model.

C. Ablation Study

1) Parameters Analysis: In order to make the detection result
of the proposed method as optimal as possible, multiple exper-
iments are conducted to select relatively optimal parameters.

a) Sizes of winin and winout: The most important factors
influencing the choice of winin and winout is the size of the

https://datasets.bifrost.ai/info/1773
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TABLE I
AUC OF DIFFERENT PARAMETER COMBINATIONS FOR PAVIA DATASET

TABLE II
AUC OF DIFFERENT PARAMETER COMBINATIONS FOR TEXAS COAST DATASET

TABLE III
AUC OF DIFFERENT PARAMETER COMBINATIONS FOR LOS ANGELES DATASET

TABLE IV
AUC OF DIFFERENT PARAMETER COMBINATIONS FOR GULFPORT DATASET

TABLE V
AUC OF DIFFERENT PARAMETER COMBINATIONS FOR MUUFL DATASET

anomaly target contained in the image. The value range of
winin and winout is set as [3,5,7,9] and [7,9,11,13], respectively.
Considering winin < winout, there are 13 different combinations
of window parameters. To determine the optimal settings for
winin and winout, we performed parameters analysis on all five
datasets for different parameter combinations, and AUC values
are used for judging indicators. Tables I–V show AUC values of
different parameter combinations for Pavia dataset, Texas Coast
dataset, Los Angeles dataset, Gulfport dataset, and MUUFL
dataset, respectively. From all the experimental results, it can be

Fig. 8. AUC of different chead on three datasets. (a) Gulfport. (b) Texas Coast.
(c) Los Angeles.

Fig. 9. AUC of different cdepth on three datasets. (a) Gulfport. (b) Texas Coast.
(c) Los Angeles.

seen that when winin=3,5,7 and winout=13, the value of AUC
is the optimal.

b) Number of MSA and DWM-MSA chead: MSA and
DWM-MSA appear in pairs in the DWMEB, which fully inte-
grates global and local features, effectively suppressing anoma-
lies and highlighting the background. If the number of MSA
and DWM-MSA chead is too small, the network model will not
pay enough attention to the image information. If chead is too
large, the calculation will increase cost exponentially. So, chead

is set from 1 to 4. In order to determine the optimal chead, we
experimented with different values of chead on three datasets.
AUC values are used for judging indicators. Fig. 8 shows AUC
values of different chead on Gulfport dataset, Texas Coast dataset,
and Los Angeles dataset, respectively.

c) Number of DWMEB cdepth: The DWMEB can fully
excavate the spatial–spectral features of the image from the
global and local perspectives for reconstruction, and exert dif-
ferent degrees of suppression on the anomalies. The number
of the DWMEB cdepth is a key parameter that determines the
performance of the network. If the network is too shallow, it is
not enough to extract abstract semantic features. If the network
is too deep, it is easy to cause overfitting. As DWMEB contains
two transformer encoder, the value range of cdepth is set from 1 to
4. Fig. 9 shows AUC values of different cdepth on three datasets,
from which can be seen that when cdepth = 1 or 2, the value of
AUC has a high probability of obtaining the optimal value.

2) Component Analysis: In order to verify the effectiveness
of some modules or components in the proposed S2DWMTrans,
multiple ablation experiments are carried out. The experimental
results of all the five datasets of ablation experiments are shown
in Fig. 10, where Base represents the proposed S2DWMTrans
without any changes, Base-LSFEM represents that the LSFEM
module is removed, Base (MSA) represents that the DWM-MSA
is replaced by MSA, Base-AWLF represents that the use of
unweighted loss functions for back propagation of the network.
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Fig. 10. AUC of different variants of the proposed S2DWMTrans on five datasets. (a) Pavia. (b) Texas Coast. (c) Los Angeles. (d) Gulfport. (e) MUUFL.

a) Effectiveness of the LSFEM: The main function of LS-
FEM is to obtain the spectral vectors with local spatial infor-
mation, and serve as the input of subsequent transformer to
promote the fusion of local and global information. The variable
condition of the first ablation experiment is whether the LSFEM
exists. As we can see from Fig. 10, the use of LSFEM has
resulted in a significant increase in AUC values on all datasets.
For example, it can be seen from Fig. 10(a) and (b) that the use of
LSFEM increases AUC by 1.75% and 0.3% on Pavia dataset and
Texas Coast dataset, respectively, which shows the advantages
of LSFEM.

b) Effectiveness of the DWM-MSA: The DWMEB consists
of two consecutive transformer encoder, of which the second
encoder adopts DWM-MSA to limit the calculation of attention
weight to a region between dual window, so as to obtain more
detailed local information. The variable condition of the second
ablation experiment is to replace all DWM-MSA in the network
with ordinary MSA. As can be seen from Fig. 10, compared
with the model without DWMEB, the proposed model achieves
higher AUC on all datasets. For example, the use of the DWMEB
has resulted in a significant increase by 0.56% on Los Angeles
dataset, which shows the advantages of DWM-MSA.

c) Effectiveness of the AWLF: The AWLF assigns a small
weight to potential abnormal pixels with bigger reconstruction
error, so as to reduce the contribution of anomalies to the
total loss, and thus, achieve the purpose of inhibiting abnor-
mal reconstruction. The variable condition of the third ablation
experiment is whether different weights are assigned to image
pixels during the loss calculation. As shown in Fig. 10, the
comparative experimental results between Base-AWLF and the
proposed model prove the importance of AWLF for improv-
ing AUC. As we can see from Fig. 10, the result of Base is
always the best on five datasets. The addition of three mod-
ules or components will give positive feedback to the network,
which verifies the effectiveness and robustness of the proposed
S2DWMTrans.

D. Experimental Result

In order to effectively evaluate the detection performance of
the proposed S2DWMTrans, five advanced HSI anomaly detec-
tion methods are selected for comparison, including RX [14],
CRD [19], LRaSMD [39], AED [37], and Auto-AD method [40].
RX is a pioneering work in the field of hyperspectral anomaly
detection, which makes use of the statistical characteristics of

Fig. 11. Detection results of different methods on Gulfport dataset.
(a) Pseudocolor Image. (b) Reference. (c) RX. (d) CRD. (e) LRaSMD. (f) AED.
(g) Auto-AD. (h) S2DWMTrans.

image data to judge the pixels. CRD is a typical detection method
based on reconstruction. LRaSMD is a low-rank and sparse ma-
trix factorization-based method. AED realizes detection by fil-
tering and differential operations on spatial attributes. Auto-AD
uses a CNN with skip connection to reconstruct the background
and suppress anomalies at the same time. The reconstruction
error of each pixel is calculated to obtain the anomaly detection
graph.

The detection results of Gulfport dataset are shown in Fig. 11,
in which CRD almost fails to correctly detect abnormal targets.
LRaSMD and AED detect the traffic dotted line on the highway.
LRaSMD fails to detect the two small planes, while AED regards
the dotted line on the highway as the most likely abnormal target,
leading to obvious false detection. RX and Auto-AD only detect
larger aircraft targets, while the two small aircraft are faintly
visible.

Fig. 12 shows the detection results on Pavia dataset. The
detection effect of RX, CRD, and LRaSMD is not obvious. AED
mistakenly detects the large area beach and long strip bridge in
the image as abnormal targets. Auto-AD also detects the edge of
the beach and bridge, which may be due to the obvious feature
transformation at the junction of various scenes.

The detection results on Texas Coast dataset are shown in
Fig. 13. Only a few abnormal targets are detected by CRD. RX
and AED also miss some abnormal targets, and AED misdetects
in the lower left and right corner of the image where there
were no abnormal targets. Although LRaSMD and Auto-AD
have detected almost all abnormal targets, their confidence of
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Fig. 12. Detection results of different methods on Pavia dataset. (a) Pseu-
docolor Image. (b) Reference. (c) RX. (d) CRD. (e) LRaSMD. (f) AED.
(g) Auto-AD. (h) S2DWMTrans.

Fig. 13. Detection results of different methods on Texas Coast dataset.
(a) Pseudocolor Image. (b) Reference. (c) RX. (d) CRD. (e) LRaSMD. (f) AED.
(g) Auto-AD. (h) S2DWMTrans.

Fig. 14. Detection results of different methods on Los Angeles dataset.
(a) Pseudocolor Image. (b) Reference. (c) RX. (d) CRD. (e) LRaSMD. (f) AED.
(g) Auto-AD. (h) S2DWMTrans.

some abnormal target regions is relatively lower than that of the
proposed S2DWMTrans.

The detection results on Los Angeles dataset are shown in
Fig. 14. Among them, CRD and LRaSMD only detect two obvi-
ous abnormal targets. The abnormal targets detected by AED are
very fuzzy, resulting in misjudgment at the connection between

Fig. 15. Detection results of different methods on MUUFL dataset.
(a) Pseudocolor Image. (b) Reference. (c) RX. (d) CRD. (e) LRaSMD. (f) AED.
(g) Auto-AD. (h) S2DWMTrans.

TABLE VI
AUC VALUES OF DIFFERENT METHODS

abnormal targets. RX and Auto-AD have good detection results,
but there is also a small area of error detection in the upper right
corner of the image.

Fig. 15 shows the detection results on MUUFL dataset. It
can be obviously observed that the proposed method obtains
excellent performance. It can be seen that CRD hardly works on
this image. As for other competitors, AED and Auto-AD both
have high false alarm rate, which is easy to judge the background
as abnormal. RX and LRaSMD all achieve quite nice results.
The proposed S2DWMTrans can suppress the reconstruction of
background more effectively so as to highlight the anomalous
target with the least false detection.According to the results of the
four datasets, the S2DWMTrans detects more abnormal targets
and suppresses most of the background. The S2DWMTrans can
effectively achieve the separation of background and abnormal
target, and has a low rate of missed and false detection.

Both qualitative and quantitative indicators are integrated
to jointly evaluate the proposed method. Table VI lists the
corresponding AUC values on five datasets, where the values
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Fig. 16. ROC curves of different methods. (a) Pavia. (b) Texas Coast. (c) Los Angeles. (d) Gulfport. (e) MUUFL.

Fig. 17. PRC curves of different methods. (a) Pavia. (b) Texas Coast. (c) Los Angeles. (d) Gulfport. (e) MUUFL.

in bold and underlined represent the optimal and worst results.
It can be seen from the table that the proposed S2DWMTrans
has the highest AUC value on all datasets, which means that
the S2DWMTrans has the best detection ability on the se-
lected datasets. As can be seen from Fig. 16, the ROC curves
of the S2DWMTrans are almost always higher than those of
other methods. Combined with the two quantitative indexes, the
S2DWMTrans has the best detection effect on the five datasets.
Fig. 17 shows the PRC curves of different methods on five
datasets. Compared with other methods, it can be observed
that the PRC curves of the proposed S2DWMTrans is closer
to the upper right corner, which reflects that the S2DWMTrans
achieves higher detection performance. In Fig. 17(c), the PRC
curve produced by the S2DWMTrans is consistently at the
top, indicating that our method is optimal on the Los Angeles
dataset. The area under the PRC curves of the S2DWMTrans
for the all five datasets are almost bigger than those of RX,
CRD, LRaSMD, AED, and Auto-AD, which indicates that the
proposed S2DWMTrans has satisfactory target detection and
background suppression capabilities.

V. CONCLUSION

In this article, we present a new hyperspectral anomaly de-
tection method based on the S2DWMTrans to solve the prob-
lem that the existing methods do not make full use of the
spatial–spectral information of HSIs. The proposed method fully
extracts spatial–spectral joint features from global and local
perspectives by using the constructed DWMTrans, and further
reconstructs them from these two perspectives. In the global
perspective, all background information is integrated to weaken
the abnormal features. In the local perspective, the neighbor
information is used to greatly constrain the abnormal features,
so as to effectively inhibit the reconstruction of abnormal targets.
In order to further reconstruct image background and suppress
anomalies, an AWLF is proposed to suppress potential abnormal

reconstruction precisely. The experiments of the S2DWMTrans
are carried out on five datasets to evaluate the effectiveness and
robustness of the proposed method.
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