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Abstract—The multisource remote sensing classification task has
two main challenges. 1) How to capture hyperspectral image (HSI)
and light detection and ranging (LiDAR) features cooperatively
to fully mine the complementary information between data. 2)
How to adaptively fuse multisource features, which should not
only overcome the imbalance between HSI and LiDAR data but
also avoid the generation of redundant information. The local
information interaction transformer (LIIT) model proposed herein
can effectively address these above issues. Specifically, multibranch
feature embedding is first performed to help in the fine-grained
serialization of multisource features; subsequently, a local-based
multisource feature interactor (L-MSFI) is designed to explore
HSI and LiDAR features together. This structure provides an
information transmission environment for multibranch features
and further alleviates the homogenization processing mode of the
self-attention process. More importantly, a multisource feature
selection module (MSTSM) is developed to dynamically fuse HSI
and LiDAR features to solve the problem of insufficient fusion.
Experiments were carried out on three multisource remote-sensing
classification datasets, the results of which show that LIIT has
more performance advantages than the state-of-the-art CNN and
transformer methods.

Index Terms—Feature fusion, local information interaction
transformer (LIIT), multisource data classification, transformer.

I. INTRODUCTION

HE classification of remote-sensing images, a pixel-level
T classification task, is the process of recognizing unmarked
areas by learning to obtain prior knowledge [1], [2], [3], [4],
and applied in various practices [5], [6]. Hyperspectral (HSI)
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data is obtained by imaging spectrometer, which can provide
a large amount of narrowband spectral information from the
visible spectrum to the infrared spectrum for each pixel [7].
Due to its rich spectral information content, HSI data have more
detailed surface feature description ability than other remote-
sensing data, and is one of the most suitable remote sensing
classification task data sources [8]. However, it is worth noting
that there are often similar spectral curves with different types
of ground objects in real ground objects; furthermore, the same
type of ground objects can show different spectral curves due to
differences in their regional distribution. Therefore, single HSI
data has limitations when dealing with the task of classifying
complex terrain scenes. With the development of remote-sensing
imaging technology, each sensor can obtain various remote-
sensing data with different physical characteristics from the
same geographical space [9], [10], [11]. Light detection and
ranging (LiDAR) point cloud data carries distance information
between sensors and ground objects, and can be converted
into its image version DSM through preprocessing. Images can
describe the elevation information of the figure by the size of
the gray value [12], [13], [14]. Since LiDAR data are not easily
affected by the external atmospheric medium and weather, its
elevation information also provides strong support for accurate
surface-feature classification tasks.

To overcome the shortcomings of single HSI data derived
from classification tasks, many researchers try to use integration
strategies to combine the unique features of HSI and LiDAR data
to develop complementary advantages and carry out collabo-
rative feature recognition of multimodal data [15], [16], [17].
Mattia et al. [18] initially obtained the extended attribute profile
(EAP) of HST and LiDAR data from the morphology perspective.
After feature concatenation and fusion, they were sent to the clas-
sifier to complete the classification. However, a simple fusion
method will generate feature redundancy and a the existence of
large number of dimensions after stacking will easily cause the
Hughes phenomenon. In this regard, Behnood et al. [19] intro-
duced the kernel principal component analysis (KPCA) method
to reduce the dimensions of features after obtaining the extended
profile of HSI and LiDAR data; and realized feature fusion with
the help of orthogonal TV component analysis (OTVCA). Jia
et al. [20] used superpixel-guided KPCA to preprocess HSI
data. Then, the 2-D and 3-D Gabor filter is used to extract
the features of LiDAR and processed HSI data, respectively,
S0 as to obtain the identifiable multisource Gabor features with
the magnitude and phase information. Zhang et al. [21] tried
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using various classifiers, i.e., SVM, RF, and KNN, to obtain
preliminary HSI and LiDAR classification results, and to achieve
more robust classification of multisource remote sensing data
from the decision level through majority weighted voting. Al-
though the above classical methods fuse HSI and LiDAR data
from multiple perspectives, the processing of multisource data
is incomplete and the information is not fully utilized.

The emergence of deep neural network (DNN) helps to extract
deeper semantic information from remote-sensing data [22],
[23], [24], [25]. By placing each modal data in different struc-
tural branches, data information can be more fully mined. Xu
et al. [26] designed different network structures for the feature
extraction of HSI and LiDAR data, and proposed a two-branch
CNN model. One branch uses a 2-D and 1-D hybrid CNN
structure to capture the spectral — spatial features of HSI and
the other branch designs a cascade-based CNN to explore the
elevation information of LiDAR data. Zhao et al. [27] applied
a weight contribution mechanism to the dual-branch structure
and proposed the coupled CNN model, that model not only alle-
viates the calculation pressure of the model, but also guides the
learning process of the dual branches, strengthening the feature
consistency by sharing the last two convolutions of the HSI and
LiDAR branches. Hong et al. [28] applied the full connection
layer model to multisource remote sensing classification tasks,
and designed additional feature reconstruction structures after
the encoding process of HSI and LiDAR data, with the aim of
promoting feature fusion more compactly. In [29], multiscale
PToP CNN was designed to obtain HSI and LiDAR features at
different scales to make full use of multisource remote sensing
information. However, the conventional deep learning methods
have defects in dealing with the interference of spatial edge
pixels. The CNN-based methods are even more due to the
limitation of the fixed convolution kernel size, leading to the
introduction of extra classes of pixels, which affects the training
effect of the model [30], [31], [32].

Therefore, researchers start to designing a network module
with attention capability [33], [34], [35]. By adaptively identi-
fying the importance of features and giving them correspond-
ing weight values, it can highlight important information and
weaken the function of secondary information to enhance the
feature recognition. The transformer is designed with an atten-
tion module as the basic framework and has made remarkable
achievements in natural-language processing tasks [36], [37],
[38], [39]. Alexey et al. [40] introduced a transformer into the
image field for the first time by serializing images, and proposed
vision transformer (ViT), that can model features at the global
level both simply and effectively, and established dependencies
between the sequence data. Through the introduction and im-
provement of the ViT model, the joint classification task of
HSI and LiDAR data has been further broken through. Dong
et al. [41] proposed an effective multibranch feature fusion
network with self- and cross-guided attention. This method
started by obtaining the weight graph of LiDAR and is used to
guide the self-attention of LiDAR data and the cross-attention
of HSI data, respectively. Xue et al. [42] used deep hierarchical
vision transformer (DHViT) to extract sequence features of HSI
and LiDAR data, and fused various modal sequences after the
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cross-attention module. Although the above methods effectively
capture the heterogeneous features of HSI and LiDAR, they do
not take the information imbalance between HSI and LiDAR
data into account during the fusion process.

From the perspective of multimodal information interaction
and feature screening, we propose a local information interac-
tion transformer (LIIT) model to capture and fuse multimodal
remote sensing data dynamically. Specifically, the dual-branch
transformer was first designed to fully extract the sequence
features of HSI and LiDAR. In this process, local based mul-
tisource feature interactor (L-MSFI) is developed to endow
the global-based transformer model with a local spatial feature
information interaction ability. In addition, a multisource feature
selection module (MSFSM) is introduced to give weight to each
modal data to realize the dynamic multimodal data filtering
function and solve the imbalance problem between features.
Subsequently, the fused feature is put into the convolutional
transformer module to help with further training and classifi-
cation. Compared to state-of-the-art methods in several open
multisource remote sensing datasets, LIIT can achieve better
classification performance. The main contributions of this article
are as follows.

1) A local-based multisource feature interactor (L-MSFI) is
designed to provide an information interaction environ-
ment for HSI and LiDAR features, avoid independent
feature extraction process, and guide features to learn from
each other.

2) The convolution module is added to the self-attention,
which overcomes the process of the gradual homogeniza-
tion of different features due to them having the same
operation in the self-attention, and makes its description
of features more detailed.

3) An MSFSM has been developed to solve the balance
problem of HSI and LiDAR features in the fusion and
reduce the generation of redundant information by dy-
namically filtering source components in the sequence
features.

The remainder of this article is organized as follows. Section II
describes the proposed LIIT method, Section III introduces the
design of parameters in the LIIT method and the comparison
with multisource remote sensing classification methods on the
Houston, MUUFL, and Trento datasets, and Section IV con-
cludes this article.

II. DESCRIPTION OF THE PROPOSED APPROACH

This section first gives an overall introduction to the proposed
LIT method. On this basis, the functions and importance of
L-MSFI and MSFSM are analyzed and explained in detail.

A. Overview of the Proposed Method

The joint classification task of HSI and LiDAR data aims
to make full use of their respective outstanding features, com-
plement each other’s advantages, and break through the perfor-
mance bottleneck when using a single data source. The main
challenges are as follows. 1) How to effectively capture the se-
mantic features of multisource data and maximize the retention
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Fig. 1.
elevation feature.

of data information without Hughes phenomenon. 2) How to
avoid information redundancy and overcome the problem of data
imbalance combined with the heterogeneous features between
multimodes, due to the imbalance of the importance between
HSI and LiDAR data for classification.

The LIIT model is proposed for the above analysis, and Fig. 1
shows its structural framework. Specifically, the dual-branch
transformer is first adopted to obtain the semantic features of HSI
and LiDAR data from the level of sequence global dependency.
In this process, L-MSFI is designed to mine the information of
multisource features from the local level, while also forming
information interactions between multimodal features to avoid
the closed state of the feature extraction process of each branch.
MSFSM is used to dynamically filter HSI and LiDAR features;
its adaptive feature fusion method effectively avoids feature
imbalance and fusion redundancy. Finally, the fusion features
are further trained by the transformer and the final classification
is completed.

B. Embedding for HSI and LiDAR Data

Feature embedding, which aims to perform sequence mapping
of image data and establish the interdependence of sequence
features from the global level is the initial step of the trans-
former [43], [44], [45]. For the vanilla ViT, the convolution
layer with the same step size and kernel size is usually used
to perform nonoverlapping blocking operations on the image,
and then flatten each block to form sequence data [46], [47].

Framework of the proposed LIIT method, where the upper branch is used to extract HSI feature, and the lower is the respective LiDAR branch to extract

However, this process is obviously coarse-grained and there is
a lack of information transfer between blocks.

For the feature embedding in the LIIT method, using a princi-
pal component analysis (PCA) algorithm reduces the dimensions
of the HSI data X ;€ RF*W*C and preextracts its spectral fea-
tures. Then, the convolution module helps conduct tokenization
for HSI and LiDAR data. Specifically, the convolution process
is Conv-BN-ReLU-DWConv-BN-ReLU

X1; = ReLU(BN(Conv(X)))
X} = ReLU(BN(Conv(X})))
X3; = ReLU (BN (DWConv (X})))

X3 = ReLU (BN (DWConv (X}))) (1)

where multisource data are put into different convolution
branches. This process is fine-grained and ensures dimensional
alignment between multimodal features. After features have
been serialized, add class token (Egs, EcLzs) for classification
and position embeddings (Eg‘;s, EZEOS) for encoding sequence

sequence to multisource data. The process is as follows:

SH = [X%{7 Egs} + Ellljos
S. = [X1; Ef,] +Ep, )

where ; is the concatenation process, Sy, Sy € RWV+DXD ig the
output sequences of HSI and LiDAR data, N is the number of
sequences, and D is the number of channels.
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After the embedding process, the sequences will put into the
transformer for feature extraction.

C. Local-Based Multisource Feature Interactor (L-MSFI)

It is worth noting that the self-attention process can help
each token in the sequence to transmit information, but it will
also make different tokens homogeneous because of the sim-
ilar operation. Therefore, the use of a convolutional module
helps feature focus on local information, thus avoiding the
over-smoothing of self-attention. Specifically, the class token
(EH_,EL ) of each modal feature is stripped first, and the rest of
the features are reshaped to a spatial feature block whose size is
consistent with the original input. Then, the convolution module
is designed to establish local correlation for the spatial neigh-
borhood intra of each source data, and the process is shown as
follows:

Qu,Ku,Vh

= Convg (X%I) ,Convg (X%{) ,Conuvyq (qu)
Qr, KL, VL

= Convga (X%) ,Convgs (XQL) ,Convys (X%) 3)

where Conw is represent the convolution module, which is
consistent with the embedding process, and includes com-
mon convolutional layer and deep-wise convolutional layer.
Among them, the common convolutional layer is used for in-
formation transfer between channel dimension features, while
deep-wise convolution can relieve the pressure of model
parameters.

The information interaction between multisource data and
feature extraction is the key to the joint classification task, which
makes the feature extraction process of each branch not isolated,
and conducive to the expression of each source feature. Con-
sidering that the class token is the classification representation
in each branch, global dependency can be established with the
branch feature in self-attention. To this end, we flatten the HSI
and LiDAR features after convolution, and concatenate each
branch’s class token onto another branch, which is shown in
Fig. 1, and the expression is shown as follows:

Qu. Ku,Vu = [Qu;EL,) . [KuiELL] L [V EL]
Qu,Kr,Ve = [Qu:EL], [Kp; Bl [VL:EL]. @)

cls cls cls
As the attention process proceeds, the class token continuously
learns the semantic information of another branch

Zy = Attention(Qu, Ky, Vy)
QHKHT>
= Softmax ( %%
Vi
ZL = Attention(Qb KL, VL)

T
= Softmazx (QL\/IdikL> VL (5)

where Z and Zj, are the output of the attention for HSI and
LiDAR branches. After completion, class tokens are returned
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Fig. 2. Structure of MSFSM, which fuses multisource features by adaptively
filtering HSI and LiDAR heterogeneous features.

to the original branch and sent to the MLP module along with
the original branch features to further capture the self-source
features

u=MLPy X} EL]

cls
7 =MLPy [X};EL] (6)

where X’; and X/, are the features after interactive attention
for HSI and LiDAR branches. Consistent with the vanilla self-
attention, the residual structure is also retained to achieve the in-
formation aggregation of the original features and the processed
features.

In L-MSFI, each data source feature can conduct local-based
feature learning on another source feature by exchanging class
tokens, and further aggregate global features with self-attention.
After the class token returns to the original branch and the sub-
sequent feature extraction has completed, each branch feature
realizes the information interaction based on the class token.

D. Multisource Feature Selection Module (MSFSM)

Conventional linear fusion methods fuse HSI and LiDAR
features indiscriminately, and lack the modulation of features,
which introduces unnecessary redundant features. Beside, the
relative importance of HSI and LiDAR data for collaborative
classification is unequal. Generally speaking, HSI data have a
larger information load because it occupies the main feature in
the fusion feature, so adopting a simple linear fusion method
limits the expression ability of the HSI feature. In this regard,
we learned about the SCN [48] module, introduced it into the
fusion of HSI and LiDAR sequence features, and proposed
MSFESM, as is shown in Fig. 2. Specifically, for each branch
feature Fy€ RV*C and F e RN*C (where N represents the
number of sequences and C represents the number of channels)
after the joint feature extraction by L-MSFM, an fully connected
(FC) layer is first used to combine the features and map them to
Fe RN *2: the results are as follows:

F =FC(Fyg + F1). (7)

After F has been obtained, the probability map is obtained
using the softmax function, whose probability indicates which
source component the feature most likely resembles. To com-
plete feature filtering, one-hot data features are acquired through
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the hard sampling process of token-wise. Then, the one-hot
features are mapped into concatenated multisource feature to
finish the fusion work

w; = argmax(f1, f2)

2
Fy =Y wi[Concat(Fy, FL)); (8)
i=1
where f1, fo are each channel of F, w; is the one-hot map, and
Fy is the fused feature.

Through MSFSM, multisource features can be effectively
combined into a mixed feature, and any token of sequence
is described as one of the source data that is more important
for classification performance. Fig. 3 shows the comparison of
different fusion methods. It can be observed that MSFSM is not
only a process of fusing multisource features but also a feature
screening process; it is worth noting that MSFSM is a dynamic
feature screening process. When training the model, the FC layer
is continuously optimized by adopting the reparameterization
method gumbel softmax, which allows the discrete sampling
process to propagate gradients.

After the fusion feature is obtained, a convolution transformer
is adopted to further optimize the fusion feature. Finally, the class
token of the feature is separated and is sent to the classification
module to obtain the classification result of the fused feature.

III. EXPERIMENTAL AND ANALYSIS

In this section, three well-known datasets (i.e., Houston,
MUUFL, and Trento) and three evaluation metrics [i.e., average
accuracy (AA), overall accuracy (OA), and kappa coefficient
(Kappa)] are applied to analyze the parameters of LIIT and
compare the performance of various state-of-the-art CNNs and
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Algorithm 1: LIIT.

Input: The raw HSI data X ;€ R *W*C 1iDAR data
X, € R¥*W "and ground truth Ye RH*W

Output: Classification result and relative visualization
map for three datasets.

1:  Reduce the dimension of HSI Xz and along with
LiDAR data X, to expand each pixel into spatial
patch.

2: Obtain the training set, validation set, and testing set,
then build their respective dataloaders

3:  Set train batchsize b = 64, optimizer Adam with the
learning rate /r = 0.001, and train epoches e = 150.

4: fore=1to 150 do

5: Embedding multisource data by convolutional

feature embedding module.

6: Perform the L-MSFI.

7: Perform the MSFSM module.

8.

9

Extract the class token in the fused feature.
Classify the fused class token using the MLP Head
and SoftMax.
10:  end for
11:  Save the trained model to classify the testing set, and
plot the visualization map.

(®)

Fig. 4.
map.

Houston dataset. (a) Pseudocolor image for HSI. (b) LIDAR DSM

transformers. The LIIT method is implemented based on Python
3.7. and its deep learning framework is built by PyTorch, which
is proposed by Facebook. It not only provides a convenient deep
learning system, but also supports the code running process for
GPU acceleration. All our experiments are performed on a PC
with Windows 10 OS, Intel Core 17-7800X CPU, 32-GB RAM,
and an NVIDIA GeForce RTX 1080 Ti GPU. The implementa-
tion process of CASST is presented in Algorithm 1.

A. Datasets

1) Houston Dataset: The Houston 2013 dataset was taken
over the University of Houston and its neighboring cities, which
was initially used in the 2013 IEEE GRSS data fusion contest.
This dataset contains HSI and LiDAR DSM data with a spatial
size of 349 x 1905 and a spatial resolution of 2.5 m. The HSI
bands range from 0.38—1.05 pum and contain 144 available bands.
It has 15 categories and 15 029 sample pixels. Fig. 4 shows the
HSI pseudocolor map and LiDAR DSM map of the dataset, and
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TABLE I
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE
HOUSTON DATASET

Class Number of samples

No Name Training  Validation  Testing
1 Health grass 198 158 895
2 Stressed grass 190 160 904
3 Synthetic grass 192 75 430
4 Trees 188 158 898
5 Soil 186 158 898
6 Water 182 21 122
7 Residential 196 160 912
8 Commercial 191 158 895
9 Road 193 159 900
10 Highway 191 155 881
11 Railway 181 158 896
12 Parking lot 1 192 156 885
13 Parking lot 2 184 43 242
14 Tennis court 181 27 220
15  Running track 187 28 445

Total 2832 1774 10423

(b)

Fig. 5.
map.

MUUFL dataset. (a) Pseudocolor image for HSI. (b) LIDAR DSM

Table 1 shows the sample allocation when the dataset is used
for the experiment, in which all samples are selected randomly
among the categories.

2) MUUFL Dataset: The MUUFL dataset was collected at
the International University of Southern Mississippi campus and
contains LiIDAR DSM data acquired by the Gemini LiDAR and
HSI data captured by the CASI-1500. The spatial size of the HSI
and LiDAR data is 325 x 220, the spatial resolution of HSI data
is 0.54 x 1.0 m, and it contains a total of 64 available bands from
375—1050 nm. There are 11 classes and 53 687 sample pixels.
Fig. 5 shows the HSI pseudocolor map and LiDAR DSM map
of the dataset, and Table II shows the sample allocation when
the dataset is used for experimental comparison.

3) Trento Dataset: The Trento dataset was acquired in a rural
area in southern Trento, Italy. The spatial size of the HSI and
LiDAR DSM data is 166 x 600 and the spatial resolution is
1 m. The number of available spectral bands for HSI data is 63.
It contains six object categories with a total of 30 214 sample
pixels. Fig. 6 shows the HSI pseudocolor map and LiDAR DSM
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TABLE IT
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE
MUUFL DATASET
Class Number of samples
No Name Training ~ Validation  Testing
1 Trees 100 3472 19674
2 Mostly grass 100 625 3545
3 Mixed ground 100 1017 5765
4 Dirt and sand 100 259 1467
5 Roads 100 988 5599
6 Water 100 55 311
7 Building shadows 100 320 1813
8 Buildings 100 921 5219
9 Sidewalks 100 193 1092
10 Yellow curbs 100 12 71
11 Cloth panels 100 25 144
Total 1100 7887 44700

(®)
Fig. 6. Trento dataset. (a) Pseudocolor image for HSI. (b) LIDAR DSM map.
TABLE III
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE TRENTO
DATASET
Class Number of Samples
No Name Training ~ Validation — Testing
1 Apple trees 72 594 3368
2 Buildings 69 425 2409
3 Ground 58 63 358
4 Wood 86 1355 7682
5 Vineyard 102 1560 8839
6 Roads 68 466 2640
Total 455 4463 25296

map of the dataset, and Table III shows the number of samples
in the training set, validation set, and testing set when the dataset
is used for experimental comparison. The sampling method is a
random sampling of each category.

B. Experimental Setup

In this part, we conduct a series of parameter experiments
to analyze and confirm which parameters are most beneficial
to the performance expression of LIIT, including the number
of heads of the self-attention and the patch size of the network
input. In addition, some parameters are set by default based
on experience. 1) The training epochs are 150, and the training
batch size and test batch size are set to 64 and 1000, respectively.
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TABLE IV
OVERALL ACCURACY (%) WITH DIFFERENT NUMBER OF HEADS FOR
PROPOSED LIIT ON THREE DATASETS

Datasets
Number of Heads Houston MUUFL Trento
1 heads 99.77 87.85 99.31
2 heads 99.84 88.46 99.48
4 heads 99.83 87.90 99.56
8 heads 99.78 88.02 99.59
16 heads 99.81 87.41 99.51
32 heads 99.77 86.54 99.51

2) The gradient optimization algorithm uses adaptive moment
estimation (Adam), and the learning rate is 0.001. 3) The number
of feature channels during the transformer is 64.

The number of heads determines the effectiveness of the
self-attention process to a certain extent. By assigning features
to different subspaces for attention calculation and then aggre-
gating them, this process makes the data processing more refined
and the processed features more discriminative. Table IV shows
the comparison of the classification performance of the LIIT
method on three common datasets with different numbers of
heads. LIIT is most suitable when the number of heads is 2 on
the Houston and MUUFL datasets, while the number of heads is
8 on the Trento dataset. In addition, it can still be observed that
with the increasing of the number of heads, the classification
performance decreases instead of increasing. This is mainly due
to the continuous growth of the number of heads, resulting in
mutual redundancy of subspace information, which inhibits the
performance expression.

In the fusion classification task of HSI and LiDAR data,
the sufficiency of spatial information interaction is the key to
improving the classification accuracy of the model. Selecting
a more appropriate input patch size can further stimulate the
potential performance of the model. Fig. 7 shows the comparison
results of the classification performance of LIIT when the spatial
input patch size is 5 to 15. The results show that the optimal
size is 11 x 11 under the Houston and Trento datasets, and
9 x 9 under the MUUFL dataset. As the patch size grows, the
introduction of different categories of pixels will further interfere
with the expression of the original features of the patch and
exacerbate this phenomenon through the self-attention process.
It is worth noting that the spatial patch used in the MUUFL

Spatial Patch Size of Input

9x9 =11 13x13

Spatial Patch Size of Input

©

1111 13%13 15%15 5%5 7x7 15x15
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Influence of spatial patch size as network input on classification performance. (a) Houston dataset. (b) MUUFL dataset. (c) Trento dataset.

TABLE V
OVERALL ACCURACY (%) WITH DIFFERENT NUMBER OF PCS AFTER PCA FOR
PROPOSED LIIT ON THREE DATASETS

Datasets

Number of PCs Houston MUUFL Trento
1 PC 96.38 79.50 99.53

10 PCs 99.73 89.30 99.60

20 PCs 99.80 88.73 99.58

30 PCs 99.84 88.95 99.59

40 PCs 99.82 88.30 99.54

50 PCs 99.79 88.38 99.53

dataset is smaller than that in the Houston and Trento datasets
due to its complex land cover distribution.

PCA process initially affects the quality of the HSI feature.
Appropriate number of PCs can retain important feature infor-
mation as well as remove redundant information. Table V shows
how the number of PCs affects the model accuracy of LIIT
methods. The results show that when PCs are ten, the accuracy is
best on MUUFL and Trento datasets and 30 on Houston datasets.

C. Experimental Comparison With Competitive Methods

To verify the effectiveness and excellent classification perfor-
mance of the proposed LIIT method, we compare the algorithm
performance with some traditional methods and the state-of-
the-art method on the Houston, MUUFL, and Trento datasets.
The traditional methods include SVM and EMAP based on
the morphological algorithm. The state-of-the-art methods in-
clude representative CNN-based methods, such as 3-DCNN,
TBCNN, and CPCNN, as well as transformer-based ViT and
SpectralFormer. The selection of all samples in this process
is shown in Section III-A. Each method has been tested ten
times, and its mean value is represented as its final classification
result.

1) SVM [49] algorithm obtains the surface feature classifi-
cation labels by analyzing the HSI spectral features. The
implementation of the algorithm is based on LIBSVM
toolbox of MATLAB. With Gaussian RBF kernel func-
tion, the model is trained by fivefold cross-validation.
The EMAP [50] method fully captures the morphologi-
cal features of multimodal features by obtaining the ex-
panded multiattribute profiles of HSI and LiDAR. In the
implementation process, HSI data is reserved to three

2)
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TABLE VI
CLASSIFICATION PERFORMANCE OF THE SVM, EMAP, 3-DCNN, CPCNN, TBCNN, VIT, SPECTRALFORMER, AND LIIT CLASSIFICATION METHOD ON THE
HOUSTON DATASET IN TERMS OF OA, AA, AND KAPPA

Classification performance of various methods

Class SVM EMAP | 3-DCNN__CPCNN___TBCNN | ViT___ SpectralFormer __ LIIT
Healthy grass 98.02 99.62 98.81 90.69 99.62 98.17 97.91 98.78
Stressed grass 98.24 99.06 98.98 99.72 88.06 99.32 98.68 100.0
Synthetic grass 99.80 100.0 100.0 99.80 100.0 99.95 99.80 99.77

Trees 98.19 99.71 99.14 99.91 99.15 98.78 98.86 99.89

Soil 98.24 99.90 99.85 99.91 99.62 99.92 99.81 100.0

Water 99.79 100.0 99.93 100.0 100.0 99.18 98.60 100.0

Residential 95.01 99.34 98.64 98.13 99.16 97.69 97.48 100.0
Commercial 97.42 99.62 97.48 97.34 95.35 99.15 97.05 99.89
Roads 86.33 95.47 94.59 89.90 98.96 96.21 91.78 100.0
Highway 90.94 98.46 99.37 91.99 91.02 99.56 99.71 100.0
Railway 90.13 99.04 99.87 89.37 87.95 99.64 98.58 100.0
Parking Lot 1 93.66 97.74 98.91 93.85 88.28 98.00 95.87 99.89
Parking Lot 2 88.85 98.93 99.59 96.84 100.0 97.15 87.72 99.17
Tennis Court 97.22 97.62 100.0 99.19 99.60 100.0 100.0 100.0
Running Track 98.72 100.0 100.0 100.0 100.0 99.95 100.0 100.0
0A (%) 94.94 98.88 98.75 95.63 95.44 98.75 97.59 99.34
AA (%) 95.38 98.97 99.01 96.39 96.45 98.85 97.46 99.83
% x 100 94.50 98.79 98.64 95.26 95.05 98.64 97.38 99.68

The bold entities indicate the best classification accuracy of each category and each evaluation metric.

channels through PCA method, and morphological algo-
rithm is used to expand HSI and LiDAR data to 60-band
profiles and 15-band profiles, respectively.

Three groups of 3 x 3 x 3 3-D convolutional layers, batch
normalization layers, ReLUs, and max pooling layers are
used in the 3-DCNN method [51]. In addition, the spatial
patch size of the input feature is setto 11 x 11 on the three
datasets.

Coupled CNN optimizes the drawbacks of the traditional
two-branch CNN model used for multimodal data clas-
sification tasks. By sharing the network weight of dual
branches, it can guide the mutual communication between
features, help feature fusion, and reduce training time. In
the experiment, the input feature spatial patch of HSI and
LiDAR issetto 11 x 11.

TBCNN adopts the model design of tow-branch CNN
to extract the spatial-spectral features of HSI and the
elevation features of LiDAR data, respectively. During
the implementation, the parameters shall be consistent
with the code provided in the original paper. The training
epochs are set to 100, and PCs are 30.

ViT method is the first time to introduce transformer
model into the field of computer vision. In the multimodal
classification task, the spatial input is set to 9 x 9, and the
patch embedding process adopts a nonoverlapping 3 x 3
convolutional process.

SpectralFormer [52] improves the input mode of ViT. By
using band grouping input, the model can extract local-
based HSI spectral features. The experimental parameters
and epochs required for training are consistent with the
code provided in the article.

The parameter design of the LIIT method proposed in
this article can be seen in part B of Section III, and its
parameters are set to the values with the best classification
performance on various datasets. 150 epochs are required
for model training.

Note that all the traditional methods are implemented on
MATLAB, and all the methods based on deep learning are coded
using Python 3.7.

Tables VI-VIII summarize the classification performance
[i.e., OA (%), AA (%), and Kappa] for various classification
methods on the Houston, MUUFL, Trento datasets. As shown in
the Tables, LIIT outperforms other method on the three datasets.

1) Houston Dataset: Table VI shows the comparison of the
classification accuracy of each experimental method on the
Houston dataset. As we can see, the SVM algorithm that fails
to describe the spatial surface structure can only obtain 94.94%
OA. The TBCNN model based on spatial blocks has excellent
local space coding ability. On the premise of HSI spectral
dimension feature extraction, it effectively captures and fuses
heterogeneous features between HSI and LiDAR data, with
95.44% OA. CPCNN promotes the information consistency
among multimodal features through the introduction of weight
contribution mechanism, and further improves the classification
performance. The implantation of the attention module makes
the communication between features closer and more recog-
nizable. As a typical attention-based model, ViT obtains the
contextual semantic information of spatial blocks, establishes
global dependencies, and adaptively filters important features. It
has excellent classification performance on the Houston dataset.
However, due to the lack of exploring the local spatial features,
the ViT model obviously has a performance bottleneck. The LIIT
method proposed in this article solves the above problems. With
the use of MSFSM, the amount of data information is increased
and the feature recognition is enhanced. Compared with ViT,
the classification accuracy of LIIT in this dataset is improved by
1.1%. As shown in Fig. 8, the full pixel classification result
map of each method on the Houston dataset, and the map
presented by LIIT, is more accurate for the description of ground
objects.

2) MUUFL Dataset: Table VII and Fig. 9, respectively, show
the classification accuracy comparison and classification results
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TABLE VII
CLASSIFICATION PERFORMANCE OF THE SVM, EMAP, 3-DCNN, CPCNN, TBCNN, VIT, SPECTRALFORMER, AND LIIT CLASSIFICATION METHOD ON THE
MUUFL DATASET IN TERMS OF OA, AA, AND KAPPA

No Class Classification performance of various methods
SVM EMAP [ 3-DCNN CPCNN  TBCNN [ WiT SpectralFormer ~ LIIT
Trees 97.93 98.94 81.24 92.84 83.44 84.51 90.46 91.85
Mostly Grass 53.02 75.33 72.61 43.02 85.64 77.22 81.58 82.54
Mixed Ground 79.84 86.26 69.26 82.03 71.35 68.05 67.75 71.71
4 Dirt and Sand 78.10 88.79 87.75 98.73 88.24 92.32 95.89 95.28
s Roads 86.78 92.41 80.90 77.24 91.74 72.08 84.15 86.27
6 Water 60.89 56.52 98.88 100.0 100.0 99.45 98.63 98.88
7 Building Shadows 50.83 53.41 84.38 88.84 90.76 80.74 89.87 88.37
8 Buildings 94.82 94.90 84.39 98.32 90.68 92.81 95.77 93.87
9 Sidewalks 50.44 62.47 57.35 37.35 74.16 45.45 65.68 75.21
10 Yellow Curbs 35.26 27.09 87.09 43.37 78.31 75.21 80.72 85.77
[ 0| Cloth Panels 72.80 86.60 99.38 98.22 96.45 96.11 98.22 99.38
OA (%) 82.25 88.31 79.28 84.85 84.32 80.50 86.27 88.46
AA (%) 69.19 74.79 82.11 78.18 86.43 80.36 86.25 88.65
K % 100 77.16 84.84 73.53 80.04 79.90 74.98 82.12 84.88

The bold entities indicate the best classification accuracy of each category and each evaluation metric.

TABLE VIII
CLASSIFICATION PERFORMANCE OF THE SVM, EMAP, 3-DCNN, CPCNN, TBCNN, VIT, SPECTRALFORMER, AND LIIT CLASSIFICATION METHOD ON THE
TRENTO DATASET IN TERMS OF OA, AA, AND KAPPA

No Class Classification performance of various methods
SVM EMAP [ 3-DCNN  CPCNN TBCNN [ ViT SpectralFormer LIT
[ Apple Trees 70.12 96.27 98.46 99.20 99.72 97.39 91.09 99.17
2 Buildings 96.40 96.73 85.82 97.60 91.67 97.83 97.67 98.71
e Ground 76.40 99.04 94.08 99.33 91.92 97.82 95.49 98.91
4 Wood 99.76 99.81 99.79 99.99 95.32 99.97 98.64 100.0
Vineyard 94.19 99.57 99.52 99.89 97.07 99.39 98.98 100.0
Roads 94.24 97.31 93.05 97.04 98.55 96.39 91.82 98.55
OA (%) 91.71 98.68 97.40 99.30 96.46 98.84 96.91 99.59
AA (%) 88.52 98.12 95.12 98.84 95.71 98.13 95.62 99.22
Kk %X 100 89.02 98.24 96.52 99.07 95.28 98.41 95.82 99.46

The bold entities indicate the best classification accuracy of each category and each evaluation metric.
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Fig. 8. Classification result maps for different comparison methods on the Houston dataset. (a) Ground truth, (b) SVM (OA = 94.94%), (c) EMAP (OA =
98.88%), (d) 3-DCNN (OA = 98.75%), (¢) CPCNN (OA = 95.63%), (f) TBCNN (OA = 95.44%), (g) ViT (OA = 98.75%), (h) SpectralFormer (OA = 97.59%),
(i) LIIT (OA = 99.84%), and (j) color map.
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Classification result maps for different comparison methods on the MUUFL dataset. (a) Ground truth, (b) SVM (OA = 82.25%), (c) EMAP (OA =

88.31%), (d) 3-DCNN (OA = 79.28%), (e) CPCNN (OA = 84.85%), (f) TBCNN (OA = 84.32%), (g) ViT (OA = 80.50%), (h) SpectralFormer (OA = 86.27%),

(i) LIIT (OA = 88.46%), and (j) color map.
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Classification result maps for different comparison methods on the Trento dataset. (a) Ground truth, (b) SVM (OA = 91.71%), (c) EMAP (OA =

98.68%), (d) 3DCNN (OA = 97.40%), (¢) CPCNN (OA = 99.30%), (f) TBCNN (OA = 96.46%), (2) ViT (OA = 98.84%), (h) SpectralFormer (OA = 96.91%),

(1) LIIT (OA = 99.59%), and (j) color map.

of each classification method on the MUUFL dataset. It can be
observed that because the CNN-based method focuses on the
description of local space, its description of ground objects is
smoother and mostly blocky. Others are rougher, showing more
map noise. The LIIT method has better classification perfor-
mance, and the generated map has fewer noise pixels and fewer
misclassification phenomena. Compared with the ViT model, the
introduction of convolution layer enables LIIT to have stronger
spatial feature-encoding capability and more reasonable image
description; Compared with TBCNN and CPCNN, LIIT is more
effective in fusing HSI and LiDAR data, and more detailed in
expressing pixel boundaries.

3) Trento Dataset: Table VIII and Fig. 10, respectively, show
the classification comparison of each classification algorithm on
the Trento dataset. The Trento dataset is relatively easy to be clas-
sified due to its orderly distribution of ground objects and blocky
space, but it still has certain challenges in some categories. For
example, in the buildings and roads categories, the similarity
between the two on the spectral curve has caused difficulties
in the classification of single HSI data. Therefore, how to effec-
tively combine HSI and LiDAR data is the key to overcoming this
problem. CPCNN introduced weight contribution into feature
extraction to promote the consistency between multimodal data,
and the classification accuracy on both categories exceeded 97%
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Classification performance of various methods with different number of training samples on three datasets. (a) Houston dataset. (b) MUUFL dataset.

TABLE IX
CLASSIFICATION ACCURACY OF THE PROPOSED LIIT METHOD USING DIFFERENT ABLATION STRATEGIES ON THE THREE MULTISOURCE DATASETS

. Houston MUUFL Trento
HSI | LiDAR | L-MSFI | MSFSM OA (%) | AA (%) | Kk x100 | OA (%) | AA (%) | Kk x 100 | OA (%) | AA (%) | ~ x 100
IV X X X 66.44 72.14 63.82 72.21 63.61 65.05 95.21 87.02 93.63
X Vv X X 46.30 48.11 42.31 53.57 34.90 39.55 89.19 73.90 85.23
V4 Vv X X 69.25 73.68 66.77 73.02 63.83 63.93 97.37 95.50 96.50
VA Vv Vv X 70.60 74.45 68.22 74.19 64.56 66.70 97.78 94.22 97.04
v Vv Vv v 72.63 75.75 70.08 76.62 68.67 70.16 98.09 97.09 97.46

OA. The LIT proposed in this article promotes the commu-
nication between multimodal data through the design of an
interactive structure. The use of MSFSM adaptively estimates
the importance of features and further overcomes the redundancy
problem of fusion features. The classification accuracy of this
method in buildings and roads categories exceeds 98.5% OA,
which is superior to each state-of-the-art method, which proves
the rationality and effectiveness of LIIT in feature extraction and
data fusion.

In order to analyze the performance robustness of LIIT when
the number of samples changes, we further carried out the
classification results comparison experiment between LIIT and
various methods when the number of samples changes from less
to more. Among them, the selection of training samples on the
Houston and MUUFL datasets is 1% —20% of the total samples
and there are 10—50 samples on the Trento dataset. The experi-
mental results are shown in Fig. 11. Not only in large sample size,
but also in small sample size, the classification performance of
the LIIT method is still better than those of the advanced CNNs
and transformers. This experiment shows that the LIIT method
has strong robustness and excellent classification performance.
In addition, the most outstanding classification results are ob-
tained on all datasets, which also proves that the method is strong
in universality and can be applied to various multimodal remote
sensing data classification scenarios.

D. Ablation Experiments for the Proposed Method

In order to observe the impact of each module on the model
performance more intuitively, we reselected and allocated the
samples on the three datasets in block allocation mode, making
them more challenging for classification. Figs. 12—14 show the

(®)
Fig. 12. Housotn dataset. (a) Training labels for ablation experiment.
(b) Testing labels for ablation experiment.

(@)

(b)

Fig. 13. MUUFL dataset. (a) Training labels for ablation experiment.
(b) Testing labels for ablation experiment.

distribution of training samples and test samples for Houston,
MUUFL, and Trento datasets, respectively. For Table 1X, the
results of ablation experiments show that in the joint classifi-
cation task of HSI and LiDAR, the use of a single HSI data
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TABLE X
COMPARISON OF RUNNING TIME OF EACH METHOD ON DIFFERENT DATASETS

Running time of various methods

SVM EMAP 3-DCNN CPCNN  TBCNN ViT SpectralFormer LIT
Houston Train(s) 223.09 154.76 211.41 411.85 111.08 76.21 256.65 411.03
Test(s) 243 0.98 1.41 0.21 0.28 1.31 2.12 10.83
MUUFL Train(s) 26.83 35.48 139.51 245.07 31.57 53.59 206.24 124.49
Test(s) 2.16 4.29 12.17 0.95 0.99 5.08 3.64 13.52
Trento Train(s) 5.27 6.51 57.89 110.65 108.38 22.51 107.85 54.16
Test(s) 0.58 1.23 5.71 0.51 0.54 3.16 1.98 8.23

(b)

Fig. 14.  Trento dataset. (a) Training labels for ablation experiment. (b) Testing
labels for ablation experiment.

has superior classification performance, indicating that HSI data
plays a leading role in the classification process, and the LIDAR
data is used as a supplement to the information level. With
the introduction of LiDAR data, the classification accuracy of
each dataset has significantly increased, which shows that the
reasonable use of LiDAR data can help it to achieve a more
detailed description of ground objects. L-MSFI is designed to
extract the local-global semantic features of multisource data,
and its interactive information transmission structure helps to
achieve communication between features. The results show that
both the Houston and MUUFL datasets help improve OA by
about 1.1%. The introduction of MSFSM replaces the tradi-
tional linear addition and concatenation fusion actions. With
the dynamic model training process, the high-weight features
in the multimode are adaptively selected. This process avoids
the generation of fusion redundancy while ensuring sufficient
information. As shown in the table, the impact of MSFSM on
performance is also critical. The results of ablation experiments
show that all modules and modal data in the LIIT play an
indispensable role in breaking through the model performance
bottleneck. With the introduction of each component, the model
classification accuracy continues to rise, which is sufficient to
prove the rationality of each component and the effectiveness of
performance improvement.

E. Analysis of Running Time

Time complexity is another important index to describe the
model. Table X shows the comparison of training and testing
time required for each method to complete a classification
process. It can be seen that CNN-based methods generally have

high time complexity. The transformer-based models also has
many network parameters due to its embedded self-attention
module. The LIIT method is not superior to other methods in
terms of time due to the use of transformer and convolutional
layer. It is worth noting that the number of samples has a
significant impact on the running time. With the increase of
the number of samples, the running time of the model increases
nonlinearly, especially for the complex model LIIT, which is
reflected in Table X that the training time of the LIIT method
on the Houston dataset is significantly longer than the other
two datasets. In addition, the dual branch model has more
structural parameters than the single branch model, but it has
a more adequate feature extraction process, and the benefit of
its performance improvement is considerable.

IV. CONCLUSION

In this article, an LIIT model is proposed to solve the prob-
lems of incomplete HSI and LiDAR data collaborative feature
capture and insufficient multisource feature fusion. Specifically,
a local-based multisource feature interactor (L-MSFI) is de-
signed. Its local-based feature modeling process alleviates the
feature homogeneity of self-attention. Meanwhile, a HSI and
LiDAR data interactive feature coding environment has been
created, which promotes mutual learning between multisource
features. In addition, an MSFSM is developed to dynamically
filter multimodal features, overcoming the balance problem of
HSI and LiDAR features in fusion. The comparative analysis
experiment was carried out on three multisource remote sensing
classification datasets (Houston, MUUFL, and Trento). Com-
pared with the state-of-the-art CNNs and transformers, LIIT
has more performance advantages. In the future, lightweight
multisource remote sensing classification model is our goal to
better balance performance and network complexity.
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