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A Discriminative Feature Learning Approach With
Distinguishable Distance Metrics for Remote
Sensing Image Classification and Retrieval

Zhiqi Zhang ", Wen Lu

Abstract—The fast data acquisition rate due to the shorter revisit
periods and wider observation coverage of satellites results in
large amounts of remote sensing images every day. This brings the
challenge of how to accurately search the images with similar visual
content as the query image. Content-based image retrieval (CBIR)
is a solution to this challenge, its performance heavily depends on
the effectiveness of the image representation features and similar-
ity evaluation metrics. Ideal image feature representations have
dispersed interclass, compact intraclass distribution. However, the
neural networks employed by many CBIR methods are trained
with cross entropy loss, which does not directly optimize the metrics
that evaluates interclass variance over intraclass variance, hence,
their feature representations are suboptimal. Meanwhile, the tradi-
tional distance metrics used by many CBIR methods cannot index
the similarity of feature representations well in high-dimensional
space. For better CBIR performance, we propose a discriminative
feature learning approach with distinguishable distance metrics
for remote sensing image classification and retrieval. By balancing
the diagonal elements and nondiagonal elements of the within-class
scatter matrix of deep linear discriminant analysis, our proposed
loss function, balanced deep linear discriminant analysis, can bet-
ter optimize the Rayleigh—Ritz quotient, which measures inter-
class variance over intraclass variance. In addition, the proposed
distance metrics, reciprocal exponential distance (RED), is more
capable of maintaining distance contrast in high dimensionality,
therefore, it can better index similarity for feature representations
in high dimensionality. Both visual interpretations and quantitative
metrics of extensive experiments demonstrated the effectiveness of
our approach.

Index Terms—Content-based image retrieval (CBIR),
convolutional neural network, distance metrics, feature
representation, linear discriminant analysis (LDA), remote
sensing.
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1. INTRODUCTION

OWADAYS, a global earth observation system has been
N formed, which can quickly obtain a large amount of high
spatial resolution, high temporal resolution, and high spectral
resolution remote sensing imagery [1]. Image retrieval is the
task that collects relevant images for a query from the im-
agery repository, it can prepare the auxiliary data or narrow
the search space for many remote sensing images processing
tasks, such as image matching, image registration, and image
fusion [2], [3], [4]. Accurate retrieval of the interested images
from the remote sensing imagery repository can reduce the
boring workload spent on manual searching and filtering a large
number of images. As the ground stations receive the remote
sensing images, after initial preprocessing, they are stored in
a dedicated database [5]. Traditional image retrieval methods
search images based on the metadata that describes the images,
and the keywords were manually input in advance. However, the
high complexity of remote sensing images cannot be described
easily by keywords, and a higher and higher volume of remote
sensing images makes manual annotation more and more time-
consuming and costly. Content-based image retrieval (CBIR)
methods have been introduced to overcome the shortcomings
of the traditional database query techniques, they retrieve the
desired images automatically by their visual content similarities
to the query image. CBIR consists of the following three steps:
generation of image feature representations, similarity calcula-
tion of feature representations, and similarity ranking of feature
representations.

Effective image feature representations play a decisive role
in the CBIR performance, therefore, how to generate more
discriminative feature representations is a research focus [6].
According to the abstract level, the feature representations are
classified as the low-level, the middle-level, and the high-level.
The low-level feature representations are designed by domain
experts and are built by mining the spectral, texture, or shape
cues of remote sensing imagery [7], [8]. By embedding the
low-level hand-crafted feature descriptors into representative
visual vocabulary space, the middle-level feature representations
are more invariant to appearance differences caused by changes
of scale, rotation, or illumination [9], [10]. Since neural networks
can automatically learn strong feature extraction ability by
back-propagation, its intermediate layer outputs are employed
as high-level features, which include semantic information.
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The high-level features usually show overwhelming superiority
over the low-level and the middle-level features [11].

Neural networks can generate high-level features through
unsupervised, supervised, and transfer learning methods. As
an unsupervised learning method, the autoencoder attempts to
reconstruct input images through encoder layers, an embedding
representation layer, and decoder layers [12], [13]. Although
the autoencoder saves the effort to label the images, its feature
representations are less powerful than CNNs trained by super-
vised methods. Although the image classification and retrieval
tasks differ in terms of their goals, the classification labels
can guide the CNN layers to learn feature representations tar-
geted to the labels. As transfer learning methods, some CNNs
pretrained on image classification datasets of other domains,
such as ImageNet [14], can also generate meaningful feature
representations, but due to the large difference between remote
sensing images and general images, their feature representations
are less effective than those generated by the CNNs trained with
the target domain remote sensing image datasets.

Some supervised learning methods rely on specially designed
loss functions for more discriminative feature representations.
Xiong et al. [15] utilized the center loss function to penal-
ize the distances between the feature representations and their
corresponding class centers [6]. Cao et al. [16] constructed a
Triplet network with Euclidean distance metrics learning objec-
tive function to extract the representative features in a semantic
space in which images from the same class are close to each
other while those from different classes are far apart. For more
distinguishable feature representations, Liu et al. [17] used a
softmax function rather than a hinge function to deal with the
limitation of triplet loss and presented a novel optimal structured
loss to force the positive pairs within a limitation and push the
negative ones far away from a given boundary. Liu et al. [18]
proposed a center-metrics learning method and coupled it with
positive—negative center loss to deal with within-class variations.
The purpose of all these loss functions is to produce more dis-
criminative feature representations with low intraclass variance
and high interclass variance, however, their methods do not
directly optimize metrics that evaluate interclass variance over
intraclass variance, therefore, are not efficient approaches.

As a supervised dimensionality reduction and classification
method, linear discriminant analysis (LDA) projects the input
data into a low-dimensional subspace and finds the optimal
linearly separable boundaries between classes in that subspace
by maximizing the trace of between-class scatter matrix and
minimizing the trace of within-class scatter matrix. Since LDA
is a linear transformation, it was born not good at processing
data with the nonlinear distribution. Inspired by Kernel PCA,
nonlinear kernel methods are also introduced to LDA [19], but
those approaches are either limited by some fixed nonlinear
transformations or have very complicated computation [20].
CNN has been widely recognized as a successful nonlinear
representation learner, to utilize the such talent of CNN, Dorfer
et al. put LDA on top of CNN to form deep linear discriminant
analysis (DLDA) [21]. In contrast with the abovementioned
methods, DLDA directly optimizes the generalized Rayleigh—
Ritz quotient that measures interclass variance over intraclass

variance. Instead of maximizing the likelihood of target labels
as the conventional cross entropy loss, the eigenvalues along the
discriminant eigenvector directions are maximized. By focusing
on directions in the latent space with the smallest discriminative
power, DLDA learns linearly separable hidden representations
with similar discriminative power in all directions of the latent
space. Although the CNN trained by DLDA outperforms that
trained by cross entropy, we find the proportion of nondiagonal
elements to diagonal elements in the within-class scatter matrix
is too large that the separative capacity of individual dimensions
is suboptimal. For higher image classification accuracy and bet-
ter feature representations, we propose a regularization method
on within-class scatter matrix to strengthen the discriminative
ability of each dimension and name it balanced deep linear
discriminant analysis (BDLDA).

Similarity ranking of feature representations also plays a
vital role in image retrieval accuracy. The dimensions of the
feature representations output by the CNN intermediate layer
usually range from several hundred to several thousand. For
calculating the similarity of two feature representations in such
high-dimensional feature embedding space, many CBIR meth-
ods employ the Euclidean distance or the Manhattan distance
metrics as a natural extension of their traditional use in two
or three-dimensional spatial applications. However, the per-
formance of similarity indexing in high dimensions degrades
rapidly, because, for a given point in high-dimensional space,
the distance ratio of its nearest neighbor to its farthest neigh-
bor is almost 1 for a wide variety of data distributions and
distance functions. In such a case, the nearest neighbor prob-
lem becomes meaningless, since the contrast between the dis-
tances to different data points does not exist [22]. To relieve
the detrimental effects of the high dimensionality curse, we
present a new distance metrics named reciprocal exponential dis-
tance (RED), which continues to be contrasting with increasing
dimensionality.

In summary, the feature representations generated by neural
networks trained by conventional loss functions, for example,
the cross entropy, are not so discriminative, hence restricting
the performance of CBIR methods. Meanwhile, the Euclidean
distance metrics and the Manhattan distance metrics used by
many image retrieval methods cannot index the similarity of
feature representations well in high-dimensional space. Toward
these two improvement directions, we propose a discriminative
feature learning approach with distinguishable distance metrics
for remote sensing image classification and retrieval. The con-
tributions of this article can be summarized in the following two
aspects.

1) By balancing the diagonal elements and nondiagonal el-
ements of the within-class scatter matrix of DLDA, our
proposed loss function, BDLDA, can better optimize the
Rayleigh—Ritz quotient, which measures interclass vari-
ance over intraclass variance. Therefore, the CNN trained
by BDLDA has higher image classification accuracy and
can generate more discriminative image feature represen-
tations.

2) Our proposed distance metrics, RED, is more capable
of maintaining distance contrast in high dimensionality,
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therefore, it can better index similarity for feature repre-
sentations in high dimensionality.

II. RELATED WORK

In this section, we first revisit the basic ideas of LDA and then
introduce DLDA.

A. Linear Discriminant Analysis

As a supervised dimensionality reduction and classification
method, LDA projects the input data into a low-dimensional
subspace and finds the optimal linearly separable boundaries
between classes in that subspace. Denote R¢ 5 {@'")}7 | are
the instances of the jth class of which there are multiple
number of classes [23]. Between-class scatter matrix Sp and
within-class scatter matrix Sy, are introduced to measure the
effectiveness of separation in the lower dimensional subspace.
The between-class scatter matrix is defined as

RS Sp = nj(p; —p)(p; —p)" ()
=1

where ¢ is the number of classes and
Rdau'—#in-uv—lix- 2)
= == ;= i
k=1 Mk j=1 =

is the weighted mean of means of classes or the total mean of
data. The within-class scatter matrix is defined as

R 5 Gy = ii (w,@ _ /J’j) (ng) _ Hj)T G)

j=11i=1

where n; is the sample size of the jth class.

The target of LDA is to find the optimal linear projection
directions, {u;}_, whereu; € R that maximize the between-
class scatter matrix S g and minimize the within-class matrix
Sw, so the instances belong to different classes get far from
each other while the instances of the same class get close to one
another. The optimization problem is

tr (U'SpU
max f(U) := M “)
U tr (U'SwU)
where R>P 5 U = [uy, ..., u,).

The solution to the generalized Rayleigh—Ritz quotient prob-
lem is

U = eig (SySB) (5)

where eig( ) denotes the eigenvectors of the matrix that are
stacked column-wise.

Sw might be singular and not invertible, especially in small
sample size problems, where the number of available training
samples is smaller than the dimensionality of the sample space.
Meanwhile, the estimation of Sy overemphasizes high eigen-
values whereas small eigenvalues are underestimated. To make
Sw invertible and correct the bias, a very small positive number
A is added to the diagonal of Sy [24], [25], [26]. In this case,

the solution is

U = eig ((Sw + 1) "'Sg). (©6)

B. Deep Linear Discriminant Analysis

Since each eigenvalue v; is the quantitative measurement of
the discrimination ability in the direction of the corresponding
eigenvector u;, as a nonlinear extension of the classic LDA,
DLDA replaces the cross entropy loss function with eigenvalue-
based loss function to encourage CNN to learn feature repre-
sentations with discriminative distribution parameters [21]. To
avoid CNN focusing on maximizing the eigenvalues of which
the eigenvectors already separate the classes and ignoring the
eigenvalues whose eigenvectors poorly discriminate the classes,
the optimization object of CNN is limited to the smallest of all
c — 1 valid eigenvalues so that all of the ¢ — 1 latent feature
dimensions would be trained on balance. The target of DLDA
is to find the optimal model parameters © of CNN such that the
produced latent features have low intraclass variance and high
interclass variance

k
1
argé)nax Z Zl v;
1=

with {vy, .. V1t e} (7)

Dorfer et al. [21] relied on the distances to the linear decision
hyperplanes for classification [27]. Assume e = {e;}_1 are the
corresponding eigenvectors, based on the LDA projection matrix
A :=[ey,...,e. 1] and the per-class mean hidden representa-
tions H, := [Ry ..., k], the distances of test sample hidden
representation h; to the linear decision hyperplanes are defined
as

vk} = {vj|v; < min{vy, ..

1 _ _
d=h/T" - 5diag (H.T") with T=H.,AA" (8)

where T are the decision hyperplane normal vectors. The class
probabilities vector is p/, = 1/(1 + e~¢) and is further normal-
ized by p. = pl./ > pl. So the class with the largest probability
is the prediction.

III. PROPOSED METHOD

If one observes the sample distribution on each individual
output dimension of the CNN trained by cross entropy, he would
find each individual output dimension only differentiates one
class, leaving other classes clustered together in that dimension.
In contrast, if one observes the sample distribution on each
individual output dimension of the CNN trained by DLDA,
he would find each individual output dimension differentiates
several classes, asillustrated in Fig. 5. Although Dorferetal. [21]
showed DLDA outperforms cross entropy as a loss function for
image classification task, we find the interclass variance in Fig.
5 is still not large enough and the intraclass variance is still not
small enough, which causes some samples of different classes
overlapping. To strengthen the discriminative ability of each
individual output dimension as well as keep them complement
each other, we propose a new loss function named BDLDA,
which makes output dimensions have more dispersed interclass,
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more compact intraclass distribution. And then we present the
novel RED for better similarity indexing of feature representa-
tions in high-dimensional space.

A. Balanced Deep Linear Discriminant Analysis

Each diagonal element of the within-class scatter matrix Sy
is the variance of a single output dimension, which represents
the internal information within that dimension; while each non-
diagonal element is the covariance of a pair of dimensions,
which reflects pairwise mutual relationship. In Sy, the number
of diagonal elements is much fewer than that of nondiagonal
elements, which causes the internal information overwhelmed
by the pairwise mutual relationship. In other words, a small
portion of diagonal elements and a large portion of nondiagonal
elements make the CNN trained by DLDA focus on training the
cooperative discriminative ability of all the dimensions, while
putting less emphasis on training the separative capacity of in-
dividual dimensions. To strengthen the discriminative ability of
each dimension, we propose a new loss function that balances the
diagonal elements and nondiagonal elements of the within-class
scatter matrix Sy .

In BDLDA, Sw is regularized by the following formula to
weaken the influence of nondiagonal elements that reflect the
dimensional pairwise mutual relationship

Sy = aSw + (1 — a)diag(Sw) + AT with0 < o < 1.
©))
The operation diag(.Sw ) means leaving the diagonal elements
of Sw unchanged and setting all the nondiagonal elements to
zero.
The partial derivative of the objective function with respect
to hidden layer H becomes

01 1< 0Sg
PHEL T E S (‘

A E ) ei. (10

Compared to the original Sy, the diagonal elements of S7,,
remain unchanged but all the nondiagonal elements are scaled
down by a factor of . Note thatif a« = 1, S{,V = Sw;ifa =0,
all the nondiagonal elements of S(,V are zero, in this case, the
regularized DLDA loss function will concentrate on training the
separative capacity of every single dimension while completely
ignoring the coordination among dimensions.

Overemphasize cooperation at the cost of suppressing individ-
ual discretion, in this case, « = 1, or overemphasize individual
judgment at the expense of losing coordination, in this case,
« = 0, might not be the best choice in regularizing Sy .

To strike a balance between the dimension internal infor-
mation and the dimensions pairwise mutual relationship, the
proposed method BDLDA sets

an

where c is the number of classes.

B. Reciprocal Exponential Distance

After the image feature representations are output by the
middle layer of CNN, a distance metrics is needed for sim-
ilarity calculation. Not contented with the existing distance
metrics, we propose a novel distance metrics for measuring
proximity in high-dimensional space, which is sensitive to the
number of dimensions on which two data points are similar,
and is more distinguishable for distances in high-dimensional

space. RED between two data points X = (x1, 23, ..., z,) and
Y = (y1,92,.-,yn) € R™ is defined as
RED(X,Y) = < — L. (12)

Z?:l e*‘iﬂz‘*yil
The range of RED is the same as the Minkowski distance,
namely [0, +00).
As X approaches Y in all dimensions,

lim RED(X,Y)=0.
X-=Y
As X departs Y in all dimensions
RED(X,Y) =

lim
—Yi)—00

+ 0.
V(x;
Since the denominator of RED formula is the sum of the
exponentials of the negative coordinates difference in each di-
mension, the dimensions with close coordinate values dominate
the value of the function.
Define dl = ‘SL’Z‘ — yi‘

ORED(X.Y)  ne% (13)
ad; (e
Assume ¢ is a finite positive number, if 3i # j: d; < €
ORED(X,Y)
li " 0. 14

According to (14), for RED, the influence of a certain di-
mension on the fluctuation of the distance value fades with the
increasing coordinates difference.

Define d; = |z; —

,_1)
aMD X Y)
_ <Z dp> d?il. (15)
Assume ¢ is a finite positive number, if Vi # j: d; < €
OMD(X.,Y)
li — =1 1

On the contrary, according to (16), for the Euclidean dis-
tance and the Manhattan distance, the dimensions with large
coordinates difference values consistently play significant roles
in determining the distance value, while the influences of the
dimensions with close coordinate values are neglect able.

Intuitively, two data points in high dimensionality are consid-
ered similar if their coordinates in most dimensions are close.
Considering such two data points, their coordinates in a majority
of dimensions are close, but in a minority of dimensions are
far away. If measured by the traditional Minkowski distance
metrics (the Euclidean distance and the Manhattan distance),
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their similarity value would be dominated by the minority of
dimensions and, hence, be misjudged. However, different from
the traditional Minkowski distance metrics that emphasize the
divergent dimensions, RED judges proximity by focusing on
similar dimensions, which accords with human intuition.

To verify RED can better maintain distance contrast in high
dimensionality, we plotted the histograms of pairwise distances
of different distance metrics and compared their dispersion. To
simulate the similarity evaluation among the feature represen-
tations, we sampled 10 thousand 1024-dimensional data points
from the standard normal distribution, and randomly formed 10
million pairs of data points. Then, we calculated the pairwise
distances by the Euclidean distance, the Manhattan distance,
and RED.

In statistics, the quartile coefficient of dispersion (QCD) is a
measure of the dispersion of the distribution. It is defined as

QCD — Q3 — Q1

Q3 + Q1
where (01 and @3 denote the first and third quartiles of the
dataset. We adopted this concept as the criterion for assessing
the differentiating ability of distance metrics.

The histograms of the pairwise distances along with QCD
of the three distance metrics are presented in Fig. 1. From the
heights and shapes of the histograms as well as the QCD values,
it can be seen that RED performs better than the other distance
metrics in maintaining distance contrast.

a7)

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the image classification net-
work used to generate feature representations of remote sensing
images, then we present the image classification experimental re-
sults on two remote sensing image datasets to compare BDLDA
with cross entropy and DLDA. At last, we present the image
retrieval experimental results to validate the effectiveness of our
proposed methods for remote sensing image retrieval tasks.

A. Experimental Network

We conducted experiments on an efficient lightweight image
classification network MKANet-Class [28]. Aimed at the char-
acteristics of top view remote sensing imagery, MKANet-Class

600 800 1000 1200
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Histograms of the pairwise distances calculated by the Euclidean distance, the Manhattan distance, and the RED, respectively.

TABLE I
NETWORK ARCHITECTURE OF MKANET-CLASS

Stages Output Size Operation Output Channels
Input Image 256 X 256 3
Stage 1 128 x 128 ConvS2 32
Stage 2 64 x 64 ConvS2 64
Stage 3 32 x 32 ConvS2 128
32 x 32 MKA module 128
Stage 4 16 x 16 ConvS2 256
16 x 16 MKA module 256
Stage 5 8 x 8 ConvS2 512
8 x 8 MKA module 512
Classification Head 1 GAP 512
1 Dropout 512

1 Linear number of classes

ConvS2: 3x 3 convolution with stride 2, batch normalization, ReLLU activation.
GAP: Global Average Pooling.

was designed to better extract representation features of multi-
scale ground objects. Its backbone consists of two initial con-
volutional layers and three multibranch Kernel-sharing Atrous
convolution (MKA) modules, and its classification head consists
of an average pooling layer and a linear layer.

As shown in Fig. 2, the MKA module includes the following
three parts.

1) Multibranch kernel-sharing depthwise atrous convolu-

tions with dilation rates (1, 2, 3).

2) Multibranch depthwise convolutions.

3) Concatenation and pointwise convolution.

The network architecture of MKANet-Class is illustrated in
Fig. 3 and detailed in Table I, the 512-dimension feature vectors
output by the GAP layer are used for feature representations of
images in CBIR tasks.

B. Image Classification Experimental Results on RSSCN7

RSSCNT7 [29]is aremote sensing image dataset (see Fig. 4 ), it
contains wide diversity of scene images captured under changing
seasons and varying weathers. It has seven typical scene classes
of image size 400 x 400 pixels, for each class, there are 400
images sampled on four different scales with 100 images per
scale. In this experiment, the total of 2800 images were split as
a training set, validation set, and test set with the ratio of 3:3:4.

Training details: AdamW [30] was used as an optimizer
with batch size 280, and the base learning rate was 0.001 with
cosine decay. The number of epochs was 1000 with a warmup
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strategy at the first 50 epochs. For a fair comparison, all the
networks were trained from scratch without pretraining on other
datasets.

Data augmentation: Random cropping into size 384 X
384 pixels, random flipping, random rotation, and color jittering
operations were employed on the input images in the training
process.

As presents in Table II, MKANet-Class outperformed other
state-of-the-art lightweight networks when they were trained
with cross entropy loss function. LDA-based loss function,
DLDA and BDLDA, helped MKANet-Class widen the leading
advantage. MKANet-Class trained with BDLDA shows fairly
good performance, surpassing the MKANet-Class trained with
cross entropy and DLDA by 2% and 1.4%, respectively. We also
conducted comparative experiments on MobileNetV3, BDLDA
performed better than cross entropy and DLDA by 0.81% and
0.59%, respectively.

For the training samples, the distributions of the feature
representations generated by the last layer of MKANet-Class
trained with DLDA are illustrated in Fig. 5. It can be seen that
the interclass variance is not large enough and the intraclass
variance is not small enough, which causes some samples of
different classes overlap.

895

Distribution of the feature representations generated by the last layer of MKANet-Class trained with DLDA, each subfigure represents an individual

TABLE II
COMPARISON OF BDLDA WITH CROSS ENTROPY AND DLDA ON RSSCN7
DATASET
Method Accuracy (%)
Cross Entropy:
MobileNetV3 [31] 85.71 £ 0.26
REGNETX-400MF [32] 86.14 + 0.68
ShuffleNetV2 x1.0 [33] 86.91 + 0.59
STDC1-Class [34] 88.82 + 0.38
ResNet34 [35] 88.86 + 0.11
MKANet-Class 89.67 + 0.64
DLDA:
MobileNetV3 [31] 85.83 £+ 0.13
MKANEet-Class 90.22 + 0.25
BDLDA:
MobileNetV3 [31] 86.52 + 0.04
MKANet-Class 91.62 £ 0.30

Each method was trained and tested 5 times
to report the mean accuracy and variance.

For the training samples, the distributions of the feature

representations generated by the last layer of MKANet-Class
trained with BDLDA are illustrated in Fig. 6. It shows BDLDA
can make MKANet-Class produce more discriminative feature
representations with lower intraclass variance and higher inter-
class variance.
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Fig. 6. Distribution of the feature representations generated by the last layer of MKANet-Class trained with BDLDA, each subfigure represents an individual
dimension.

TABLE III
COMPARISON OF BDLDA WITH CROSS ENTROPY AND DLDA ON
OPTIMAL-31 DATASET

Method Accuracy (%)
Cross Entropy:

REGNETX-400MF [32] 56.97 + 1.21
MobileNetV3 [31] 60.17 + 1.47
STDCI1-Class [34] 61.00 £+ 0.08
ShuffleNetV2 x1.0 [33] 61.83 £+ 0.06
ResNet34 [35] 67.97 £ 0.70
MKANet-Class 69.95 + 1.41
DLDA:

MKANet-Class 76.34 £ 0.13
BDLDA:

MKANet-Class 77.30 &+ 0.07

Each method was trained and tested 5 times to report the mean accuracy and
variance.

C. Image Classification Experimental Results on
OPTIMAL-31

OPTIMAL-31 [36] is a remote sensing image dataset (see
Fig. 7), it contains 31 scene classes of image size 256 X
256 pixels. For each class, there are 60 images. This dataset

is more challenging than other datasets since it contains more
classes and fewer samples per class. In this experiment, the total
1860 images were split as a training set, validation set, and test
set with the ratio of 3:3:4.

Training details: AdamW was used as an optimizer with batch
size 558, and the base learning rate was 0.001 with cosine decay.
The number of epochs was 2000 with a warmup strategy at the
first 20 epochs. For a fair comparison, all the networks were
trained from scratch without pretraining on other datasets.

Data augmentation: Random cropping into size 224 X
224 pixels, random flipping, random rotation, and color jittering
operations were employed on the input images in the training
process.

As presented in Table III, the MKANet-Class trained by
BDLDA also gained a satisfactory result, exceeding that trained
by DLDA by 1%. The MKANet-Class trained with both methods
surpassed that trained with cross entropy by more than 6%,
which demonstrates the superiority of LDA-based loss functions
over cross entropy. The reason can be explained by Figs. 8-
10. As illustrated in Fig. 8, the MKANet-Class trained by cross
entropy was soon overfitted. After the 1000th epoch, the training
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Fig. 7. Images and classes of OPTIMAL-31 dataset.
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Fig. 8. Average loss and accuracy scores of training and validation set of the MKANet-Class trained with a cross entropy loss function.
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Fig. 9. Training set mean eigenvalue and validation set accuracy score of the MKANet-Class trained with DLDA loss function.
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Fig. 10.  Training set mean eigenvalue and validation set accuracy score of the MKANet-Class trained with BDLDA loss function.
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TABLE IV
IMAGE RETRIEVAL EXPERIMENTAL RESULTS OF MKANET-CLASS ON RSSCN7
DATASET
P@10
Loss Function Euclidean Manhattan RED
Cross Entropy 0.8691 0.8718 0.8794
DLDA 0.8862 0.8865 0.8912
BDLDA 0.8932 0.8931 0.8963
P@?20
Loss Function Euclidean Manhattan RED
Cross Entropy 0.8695 0.8695 0.8797
DLDA 0.8860 0.8874 0.8916
BDLDA 0.8932 0.8957 0.8987
mAP@10
Loss Function Euclidean Manhattan RED
Cross Entropy 0.8869 0.8879 0.8927
DLDA 0.8938 0.8954 0.8990
BDLDA 0.8982 0.8991 0.9016
mAP@20
Loss Function Euclidean Manhattan RED
Cross Entropy 0.8808 0.8825 0.8900
DLDA 0.8922 0.8939 0.8982
BDLDA 0.8979 0.8986 0.9023
mAP
Loss Function Euclidean Manhattan RED
Cross Entropy 0.8461 0.8548 0.8796
DLDA 0.8951 0.8987 0.9049
BDLDA 0.9106 0.9128 0.9167

set average loss was nearly zero, and the validation set accuracy
stopped increasing. In contrast, as shown in Figs. 9 and 10, for the
MKANet-Class trained by DLDA and BDLDA, the training set
mean eigenvalue kept increasing, and the validation set accuracy
grew with it.

It can also be seen from Figs. 9 and 10 that the training set
mean eigenvalue of BDLDA was larger than that of DLDA.
Since each eigenvalue v; is the quantitative measurement of
the discrimination ability in the direction of the corresponding
eigenvector u;, it verifies the feature representations generated
by the network trained with BDLDA are more discriminative
than those generated by the network trained with DLDA. This
is in accordance with the experimental results that the accuracy
scores of the validation set and test set of BDLDA were higher
than those of DLDA.

D. Image Retrieval Experimental Results on RSSCN7

We used the training set and validation set as dictionary set,
the test set as query set for image retrieval experiments. Three
commonly used performance metrics, mean average precision
(mAP), mean average precision at k (mAP@Xk), and precision
at k (P@k), where k is the number of retrieved images, are
used to evaluate the retrieval performance. Given one query with
the known label information in advance, precision at k& (P@k)
denotes the consistency rate that k returned results share the
same label with the query [2]. In addition, mAP is defined as

Q| n;

Z precision(R;)
k=1

1
AP = — 18
mAP =g (1%

1
iz M
where ¢; € () represents one query and n; denotes the number of
returned results relevant to g; in the dataset. Suppose the relevant

TABLE V
IMAGE RETRIEVAL EXPERIMENTAL RESULTS OF MOBILENETV3 ON RSSCN7
DATASET
P@10
Loss Function Euclidean Manhattan RED
Cross Entropy 0.8280 0.8279 0.8377
DLDA 0.8506 0.8509 0.8530
BDLDA 0.8554 0.8568 0.8573
P@20
Loss Function Euclidean =~ Manhattan RED
Cross Entropy 0.8259 0.8280 0.8375
DLDA 0.8496 0.8507 0.8533
BDLDA 0.8584 0.8597 0.8612
mAP@10
Loss Function Euclidean Manhattan RED
Cross Entropy 0.8475 0.8472 0.8524
DLDA 0.8594 0.8587 0.8596
BDLDA 0.8621 0.8631 0.8661
mAP@20
Loss Function Euclidean ~ Manhattan RED
Cross Entropy 0.8403 0.8409 0.8491
DLDA 0.8594 0.8586 0.8606
BDLDA 0.8616 0.8642 0.8670
mAP
Loss Function Euclidean ~ Manhattan RED
Cross Entropy 0.7746 0.7933 0.8362
DLDA 0.8460 0.8478 0.8478
BDLDA 0.8471 0.8511 0.8586

results are ordered as {r1,72,...,7y, }, and then I?;;, represents
the set of ranked retrieval results from the top result to 7.

We calculated and ranked similarity based on the 512-
dimension feature vectors output by the GAP layer of MKANet-
Class. As presented in Table IV, BDLDA-based feature repre-
sentations perform better than cross entropy-based and DLDA-
based feature representations on all the image retrieval perfor-
mance metrics. Their performance gaps are approximate to those
in the image classification experiments, which demonstrates
that the image feature representations play a decisive role in
the CBIR performance and those generated by BDLDA are
more discriminative. Meanwhile, compared with the Euclidean
distance and the Manhattan distance, RED can further increase
image retrieval accuracy at no additional computational cost.
Our proposed two methods, BDLDA and RED, combined to-
gether achieve the best result.

We also conducted comparative experiments based on the
1024-dimension feature vectors output by the second to last
linear layer of MobileNetV3. As presented in Table V, as a
loss function, BDLDA outperforms cross entropy and DLDA
on generating more effective image feature representations. And
RED maintains superiority over the Euclidean distance and the
Manhattan distance in similarity calculation of image feature
representations of higher dimensions.

E. Image Retrieval Experimental Results on OPTIMAL-31

Under the same experimental setting as the RSSCN7 dataset,
we conducted image retrieval experiments based on the image
feature representations generated by MKANet-Class on the
OPTIMAL-31 dataset. As presented in Table VI, the advan-
tages of BDLDA and RED expand on this more challenging
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TABLE VI
IMAGE RETRIEVAL EXPERIMENTAL RESULTS OF MKANET-CLASS ON
OPTIMAL-31 DATASET

P@10
Loss Function Euclidean Manhattan RED
Cross Entropy 0.6329 0.6443 0.6648
DLDA 0.6805 0.7043 0.7255
BDLDA 0.7180 0.7335 0.7447
P@20
Loss Function Euclidean =~ Manhattan RED
Cross Entropy 0.6114 0.6232 0.6500
DLDA 0.6694 0.6964 0.7296
BDLDA 0.7149 0.7344 0.7533
mAP@10
Loss Function Euclidean Manhattan RED
Cross Entropy 0.6924 0.6999 0.7151
DLDA 0.7299 0.7440 0.7543
BDLDA 0.7439 0.7557 0.7576
mAP@20
Loss Function Euclidean Manhattan RED
Cross Entropy 0.6698 0.6774 0.6971
DLDA 0.7181 0.7399 0.7563
BDLDA 0.7365 0.7500 0.7638
mAP
Loss Function Euclidean Manbhattan RED
Cross Entropy 0.5694 0.5838 0.6132
DLDA 0.6148 0.6486 0.7106
BDLDA 0.6864 0.6985 0.7399

dataset which contains more classes and fewer samples per class.
BDLDA and RED combined together achieve the best result.

V. CONCLUSION

As an effective solution to remote sensing image retrieval,
CBIR retrieves the desired images automatically by their visual
content similarities to the query image. Although the image
classification and retrieval tasks differ in terms of their goals, the
classification labels can guide the CNN layers to learn feature
representations targeted to the labels. The feature representa-
tions are then indexed by the similarity metrics for selecting
the images with similar visual content as the query image. The
CBIR performance heavily depends on the effectiveness of the
image representation features and similarity evaluation metrics.
Ideal image feature representations have dispersed interclass,
compact intraclass distribution. However, the neural networks
employed by many CBIR methods are trained with cross entropy
loss, which does not directly optimize the metrics that evaluates
interclass variance over intraclass variance, hence, their feature
representations are suboptimal. Meanwhile, the traditional dis-
tance metrics used by many CBIR methods cannot index the
similarity of feature representations well in high-dimensional
space. For higher image classification accuracy and better CBIR
performance, we propose a discriminative feature learning ap-
proach with distinguishable distance metrics for remote sensing
image classification and retrieval. By balancing the diagonal
elements and nondiagonal elements of the within-class scatter
matrix of DLDA, our proposed loss function, BDLDA, can better
optimize the Rayleigh—Ritz quotient, which measures interclass
variance over intraclass variance. In addition, the proposed
distance metrics, RED, is more capable of maintaining distance
contrast in high dimensionality, therefore, it can better index

similarity for feature representations in high dimensionality. In
the experiments, compared with cross entropy and DLDA, our
proposed BDLDA can raise image classification and retrieval
accuracy by several percents. In addition, RED can further
increase image retrieval accuracy by around one percent at no
additional computational cost.

In future research, we will investigate and improve the perfor-
mance of BDLDA on unbalanced datasets. Extending the appli-
cation of BDLDA to other tasks, such as semantic segmentation
and object detection, is also a potential research orientation.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and members of the editorial team for their comments and
suggestions.

REFERENCES

[1] Z. Zhang, Z. Qu, S. Liu, D. Li, J. Cao, and G. Xie, “Expandable on-
board real-time edge computing architecture for Luojia3 intelligent remote
sensing satellite,” Remote Sens., vol. 14, no. 15, 2022, Art. no. 3596.

[2] Y.Li,J. Ma, and Y. Zhang, “Image retrieval from remote sensing big data:
A survey,” Inf. Fusion, vol. 67, pp. 94-115, 2021.

[3] M. Wang, Z. Zhang, Y. Zhu, Z. Dong, and Y. Li, “Embedded GPU imple-
mentation of sensor correction for on-board real-time stream computing
of high-resolution optical satellite imagery,” J. Real-Time Image Process.,
vol. 15, no. 3, pp. 565-581, 2018.

[4] W.Mi, Z. Zhiqi, D. Zhipeng, J. Shuying, and H. SU, “Stream-computing
based high accuracy on-board real-time cloud detection for high resolu-
tion optical satellite imagery,” Acta Geodaetica et Cartographica Sinica,
vol. 47, no. 6, 2018, Art. no. 760.

[5] L. Deren, “Towards geo-spatial information science in big data era,” Acta
Geodaetica et Cartographica Sinica, vol. 45, no. 4, 2016, Art. no. 379.

[6] W. Xiong, Y. Lv, Y. Cui, X. Zhang, and X. Gu, “A discriminative feature
learning approach for remote sensing image retrieval,” Remote Sens.,
vol. 11, no. 3, 2019, Art. no. 281.

[7] Z. Shao, W. Zhou, Q. Cheng, C. Diao, and L. Zhang, “An effective
hyperspectral image retrieval method using integrated spectral and textural
features,” Sensor Rev., vol. 35, pp. 274-281, 2015.

[8] Z.Shao, W. Zhou, L. Zhang, and J. Hou, “Improved color texture descrip-
tors for remote sensing image retrieval,” J. Appl. Remote Sens., vol. 8,
no. 1, 2014, Art. no. 083584.

[9] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in Proc. IEEE Int. Conf. Comput. Vis., 2003,
vol. 3, pp. 1470-1470.

[10] Z. Shao, W. Zhou, and Q. Cheng, “Remote sensing image retrieval with

combined features of salient region,” Int. Arch. Photogrammetry, Remote

Sens. Spatial Inf. Sci., vol. 40, no. 6, 2014, Art. no. 83.

Y.Li, Y. Zhang, C. Tao, and H. Zhu, “Content-based high-resolution remote

sensing image retrieval via unsupervised feature learning and collaborative

affinity metric fusion,” Remote Sens., vol. 8, no. 9, 2016, Art. no. 709.

[12] J. Ren, Z. Wang, and M. Xu, “An autoencoder-based learning method
for wireless communication protocol identification,” in Proc. Int. Conf.
Commun. Netw. China, 2017, pp. 535-545.

[13] W. Zhou, Z. Shao, C. Diao, and Q. Cheng, “High-resolution remote-
sensing imagery retrieval using sparse features by auto-encoder,” Remote
Sens. Lett., vol. 6, no. 10, pp. 775-783, 2015.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248-255.

[15] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning
approach for deep face recognition,” in Proc. Eur. Conf. Comput. Vis.,
2016, pp. 499-515.

[16] R. Cao et al., “Enhancing remote sensing image retrieval using a triplet
deep metric learning network,” Int. J. Remote Sens., vol. 41, no. 2,
pp. 740-751, 2020.

[17] P.Liu, G. Gou, X. Shan, D. Tao, and Q. Zhou, “Global optimal structured
embedding learning for remote sensing image retrieval,” Sensors, vol. 20,
no. 1, 2020, Art. no. 291.

[11]



ZHANG et al.: DISCRIMINATIVE FEATURE LEARNING APPROACH WITH DISTINGUISHABLE DISTANCE METRICS 901

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

(32]

(33]

[34]

[35]

[36]

Y. Liu, Z. Han, C. Chen, L. Ding, and Y. Liu, “Eagle-eyed multitask CNNs
for aerial image retrieval and scene classification,” IEEE Trans. Geosci.
Remote Sens., vol. 58, no. 9, pp. 6699-6721, Sep. 2020.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher
discriminant analysis with kernels,” in Proc. IEEE Signal Process. Soc.
Workshop, 1999, pp. 41-48.

L. Li, M. Doroslovacki, and M. H. Loew, “Discriminant analysis deep
neural networks,” in Proc. 53rd Annu. Conf. Inf. Sci. Syst., 2019, pp. 1-6.
M. Dorfer, R. Kelz, and G. Widmer, “Deep linear discriminant analysis,”
2015, arXiv:1511.04707.

K. B. J. G. R. Ramakrishnan and U. Shaft, “When is ‘nearest neighbor’
meaningful?,” in Proc. 7th Int. Conf. Database Theory, 1999, pp. 217-235.
B. Ghojogh, F. Karray, and M. Crowley, “Fisher and kernel fisher discrim-
inant analysis: Tutorial,” 2019, arXiv:1906.09436.

J. H. Friedman, “Regularized discriminant analysis,” J. Amer. Stat. Assoc.,
vol. 84, no. 405, pp. 165-175, 1989.

J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, ‘“Regularization
studies of linear discriminant analysis in small sample size scenarios with
application to face recognition,” Pattern Recognit. Lett., vol. 26, no. 2,
pp. 181-191, 2005.

A. Stuhlsatz, J. Lippel, and T. Zielke, “Feature extraction with deep neural
networks by a generalized discriminant analysis,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 4, pp. 596-608, Apr. 2012.

J. Friedman et al., The Elements of Statistical Learning (Springer Series
in Statistics), vol. 1, no. 10. New York, NY, USA: Springer, 2001.

Z. Zhang, W. Lu, J. Cao, and G. Xie, “MKANet: An efficient network
with Sobel boundary loss for land-cover classification of satellite remote
sensing imagery,” Remote Sens., vol. 14, no. 18, 2022, Art. no. 4514.

Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature
selection for remote sensing scene classification,” IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 11, pp. 2321-2325, Nov. 2015.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2017, arXiv:1711.05101.

A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 1314-1324.

I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dolldr, “De-
signing network design spaces,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 10428-10436.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 116-131.

M. Fan et al., “Rethinking BiseNet for real-time semantic segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 9716~
9725.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

Q. Wang, S. Liu, J. Chanussot, and X. Li, “Scene classification with
recurrent attention of VHR remote sensing images,” /IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 2, pp. 1155-1167, Feb. 2019.

Zhiqi Zhang received the B.Sc. degree in geographic
information systems from Huazhong Agricultural
University, Wuhan, China, the B.Eng. degree in com-
puter science and technology from the Huazhong Uni-
versity of Science and Technology, Wuhan, China, the
M.Eng. degree in computer technology and the Ph.D.
degree in photogrammetry and remote sensing from

"\‘_ ' ! Wuhan University, Wuhan, China, in 2006, 2006,
b, » 2015, and 2018, respectively.
3 He is currently an Associate Professor with the

School of Computer Science, Hubei University of

Technology, Wuhan, China. His research interests include system architecture,
algorithm optimization, Al, and high-performance processing of remote sensing.

Wen Lu received the B.Eng. degree in materials
physics from the Wuhan University of Technology,
Wuhan, China, in 2007. He is currently working
toward the M.Sc. degree in computer science and
technology with the School of Computer Science,
Hubei University of Technology, Wuhan, China.

His research interests include computer vision, re-
mote sensing, machine learning, and deep learning.

Xiaoxiao Feng received the B.Sc. degree in surveying
and mapping from Southeast University, Nanjing,
China, in 2014 and the M.Sc. degree in earth ex-
ploration and information technology from the China
University of Geology, Wuhan, China, in 2017, and
the Ph.D. degree in photogrammetry and remote sens-
ing from Wuhan University, Wuhan, China, in 2021.

She is currently a Lecturer with the School of
Computer Science, Hubei University of Technology,
Wauhan, China. Her research interests include high
spatial resolution and hyperspectral remote sensing
image processing and analysis.

Jinshan Caoreceived the Ph.D. degree in photogram-
metry and remote sensing from the School of Remote
Sensing and Information Engineering, Wuhan Uni-
versity, Wuhan, China, in 2012.

He is currently an Associate Professor with the
School of Computer Science, Hubei University of
Technology, Wuhan, China. His research interests
include geometric calibration, sensor orientation, and
image registration of high-resolution satellite im-

agery.

Guangqi Xie received the Ph.D. degree in pho-
togrammetry and remote sensing from the State Key
Laboratory of Information Engineering in Surveying,
Mapping, and Remote Sensing, Wuhan University,
Wuhan, China, in 2021.

He is currently a Lecturer with the School of
Computer Science, Hubei University of Technology,
Wauhan, China. His research interest includes image
matching and registration, pansharpening, and image
super-resolution.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


