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Susceptibility-Guided Landslide Detection Using
Fully Convolutional Neural Network

Yangyang Chen ", Dongping Ming
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Abstract—Automatic landslide detection based on very high
spatial resolution remote sensing images is crucial for disaster pre-
vention and mitigation applications. With the rapid development
of deep-learning techniques, state-of-the-art semantic segmenta-
tion methods based on fully convolutional network (FCNN) have
achieved outstanding performance in the landslide detection task.
However, most of the existing articles only utilize visual features.
Even if the advanced FCNN models are applied, there is still a
certain amount of falsely detected and miss detected landslides. In
this article, we innovatively introduce landslide susceptibility as
prior knowledge and propose an innovative susceptibility-guided
landslide detection method based on FCNN (SG-FCNN) to detect
landslides from single temporal images. In addition, an unsuper-
vised change detection method based on the mean changing mag-
nitude of objects (MCMO) is further proposed and integrated with
the SG-FCNN to detect newly occurred landslides from bitemporal
images. The effectiveness of the proposed SG-FCNN and MCMO
has been tested in Lantau Island, Hong Kong. The experimental
results show that the SG-FCNN can significantly reduce the amount
of falsely detected and miss detected landslides compared with the
FCNN. It can conclude that applying landslide susceptibility as
prior knowledge is much more effective than using visual features
only, which introduces a new methodology of landslide detection
and lifts the detection performance to a new level.

Index Terms—Convolutional neural network (CNN), landslide
detection, landslide susceptibility mapping, Lantau Island, remote
sensing.

Manuscript received 30 August 2022; revised 8 December 2022; accepted 27
December 2022. Date of publication 30 December 2022; date of current version
9 January 2023. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021 YFC3000400, in part
by the Fundamental Research Funds for the Central Universities, in part by the
Advance Research Project of Civil Space Technology, and in part by the National
Natural Science Foundation of China under Grant 41872253. (Corresponding
author: Dongping Ming.)

Yangyang Chen and Junchuan Yu are with the China Aero Geophysical Survey
and Remote Sensing Center for Natural Resources, Beijing 100083, China
(e-mail: jimmyxiyangyang @hotmail.com; yujunchuan@mail.cgs.gov.cn).

Dongping Ming is with the School of Information Engineering, China Uni-
versity of Geosciences, Beijing 100083, China, and also with the Polytechnic
Center for Natural Resources Big-data, Ministry of Natural Resources of China,
Beijing 100036, China (e-mail: mingdp@cugb.edu.cn).

Lu Xu, Yan Li, and Xiao Ling are with the School of Information En-
gineering, China University of Geosciences, Beijing 100083, China (e-mail:
xlirs@cugb.edu.cn; liyanturbo@ 163.com; lingx0527 @ 163.com).

Yanni Ma is with the China Aero Geophysical Survey and Remote Sensing
Center for Natural Resources, Beijing 100083, China, and also with the School
of Information Engineering, China University of Geosciences, Beijing 100083,
China (e-mail: mayanni @mail.cgs.gov.cn).

Yueqin Zhu is with the National Institute of Natural Hazards, Ministry
of Emergency Management, Beijing 100085, China (e-mail: yueqinzhu@
163.com).

Digital Object Identifier 10.1109/JSTARS.2022.3233043

, Member, IEEE, Junchuan Yu, Lu Xu, Yanni Ma, Yan Li,
, and Yueqin Zhu

I. INTRODUCTION

EASONAL torrential rainfall triggers vast landslides on the
S southeast coast of China every year, especially in moun-
tainous terrains [1]. It is worth noting that with the rapid growth
of urbanization and city expansion, the mountainous area once
inhospitable has gradually changed into urban infrastructures.
Therefore, landslide occurrence has posed an increasing threat
to lives and property on the southeast coast of China in recent
years. Taking Hong Kong Special Administration Region as an
example, two fatalities were reported, and more than a hundred
municipal roads were damaged or closed as a result of a landslide
triggered by the rainstorm on 7th June 2008 [2]. To alleviate the
negative impact of landslides and landslide-induced geohazards,
industry and academia need to conduct in-depth research on
landslide monitoring, susceptibility analysis, and early warning
(3], [4].

Landslide inventories are the basis for carrying out the re-
search mentioned above [4], [5] and can be obtained vialandslide
detection [6]. Therefore, it is vital to detect landslides precisely,
quickly, and automatically [7]. In the early stages, landslide
detection mainly relied on geological field survey [8]. Field
survey can get highly reliable landslide information, but it is
labor intensive [9] and can only be applied on a site-specific
or local scale [4]. With the rapid development of satellite and
sensor techniques since the 1970s, remote sensing products
have been widely applied in the geoscience field [10], making
it possible to detect landslides on a regional scale. Initially,
remote-sensing-based landslide detection primarily relied on
visual interpretations performed by geological experts [11]. In
the 21st century, the launch of Google Earth and the emergence
of open-source data have made it much easier to acquire remote
sensing products with different sources and modalities [12],
[13]. Although the promotion of remote sensing products im-
proves the efficiency of landslide detection, visual interpretation
still requires a considerable amount of human consumption [6],
which leads to undesirable detection efficiency on a regional
scale [14]. Besides, visual interpretation based on expertise and
experience is subjective [11], [15]. Hence, visual interpretation
failed to satisfy the demand for rapid landslide detection on a
regional scale [4].

With advances in computer hardware and pattern recognition
techniques, the accuracy of computer vision algorithms
gradually approaches visual interpretation in various domains,
which also benefits landslide detection. Remote-sensing-based
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landslide detection is now moving from visual interpretation
toward automatic interpretation [16], among which machine
learning (ML)-based methods are the most representative. By
extracting and utilizing low-level features of remote sensing
images, various traditional ML models, such as maximum
likelihood [17], support vector machine (SVM) [18], [19], and
random forest (RF) [20], have raised the efficiency of landslide
detection with acceptable accuracy. The spatial resolution
of remote sensing images has significantly increased over
the last few decades. However, very high spatial resolution
(VHR) remote sensing images suffer severe interclass similarity
[21], [22]. For example, muddy tracks and dry riverbanks are
indistinguishable from landslides because they share similar
spectral features. Interclass similarity poses a conundrum for
traditional ML algorithms, and it is challenging to obtain ideal
landslide detection results by utilizing only low-level features.
Mining the high-level features of VHR remote sensing images
is the key to improving detection accuracy and reliability.

After entering the new century, numerous powerful deep-
learning (DL) models have been launched and put to scientific
use. As the most mature and widely applied DL model, the
convolutional neural network (CNN) has exceptional advantages
in high-level feature extraction and representation [23], which
makes up for the defects of traditional ML models [24]. CNN
has now been widely used in the geoscience domain, such as
scene classification [25], land-cover classification [26], [27],
change detection [28], [29], and ground target detection [30].
In recent years, many scholars have applied CNN in landslide-
related domains, such as landslide susceptibility mapping [31],
[32], landslide deformation prediction [33], [34], and especially
landslide detection. There are mainly two types of CNN-based
landslide detection models: Patch-based CNN (PBCNN) and
fully CNN (FCNN) [35].

Yu et al. [36] first introduced the PBCNN and region growth
algorithm to detect landslides. Ghorbanzadeh et al. [37] ap-
plied PBCNN to detect landslides in Nepal from Rapid Eye
images and has proved that the PBCNN outperforms traditional
ML methods, including SVM, RF, and multilayer perceptron.
Sameen and Pradhan [38] utilized the PBCNN with advanced
residual blocks to detect landslides in Malaysia’s Cameron high-
lands based on spectral features and topographical information
derived from remote sensing products. Ji et al. [39] introduced
the three-dimensional attention-boosted PBCNN model to de-
tect landslides in Zhijin County, China, and achieved higher
detection accuracy than other recent attention-based models.
Although the PBCNN has made significant progress in the
automatic intelligent detection of landslides, defects still exist.
The principle of the PBCNN is to classify each pixel one by
one, whose detection results will suffer from salt—pepper noise.
In addition, for each pixel, a square image patch is clipped
and fed into CNN for classification, which leads to extremely
low efficiency and a heavy computational burden [26], thus
limiting the efficiency of the PBCNN for detecting landslides
on a regional scale.

The FCNN can generate pixelwise detection results at once
[40], not predicting only the central pixel of the input image
patch. Therefore, the FCNN can avoid the shortage of the

PBCNN effectively and has drawn the attention of an increasing
number of scholars. Meena et al. [41] compared the detection
performance of U-Net, SVM, K-nearest neighbor, and RF in the
Rasuwa district, Nepal. The U-Net achieved higher accuracy
than other traditional ML models. Prakash et al. [42] modified
U-Net using ResNet34 as the backbone and achieved better
performance than pixel-based and object-based ML methods
in Douglas County, USA. Liu et al. [43] modified U-Net by
adding a residual learning unit and used it to improve the
accuracy of postearthquake landslide detection in Jiuzhaigou,
China. Braganolo et al. [40] utilized U-Net and the compound
loss function to detect landslide scars from Landsat 8 images,
and the result outperformed RF and the PBCNN. Ghorbanzadeh
et al. [44] proposed an object-based image analysis (OBIA)-
based ResU-Net to detect landslides in east Iburi, Japan, which
achieved 22% higher intersection over union (IoU) than the
original ResU-Net. Liu et al. [45] proposed an improved Mask
R-CNN models for landslide detection in Jiuzhaigou, China, and
achieved satisfactory accuracy with precision, recall, and overall
accuracy (OA) of 95.8%, 93.1%, and 94.7%, respectively.

To date, scholars have been trying to apply advanced DL
models to landslide detection, and the results show that DL
models are superior to traditional ML models, especially the
FCNN. However, since landslides are indistinguishable from
some land cover features, false and miss detection still exist.
One reason is the lack of datasets containing vast landslide
samples with all kinds of features combined with the negative
samples. Although adopting a data augmentation strategy can
expand small datasets to a certain extent, detection results are
still less than satisfactory.

Introducing auxiliary information is a promising strategy
to improve landslides’ detection accuracy further. Some re-
searchers [16], [42], [46], [47], [48], [49], [50] fed remote
sensing images and auxiliary information, such as elevation,
aspect, land cover, and normalized difference vegetation index
(NDVI) into CNN. It allows CNN to explore richer high-level
features, especially the connection between landslide occurrence
and surrounding environmental conditions, achieving higher
detection accuracy. However, the auxiliary information is in-
dispensable for training and testing regions. Besides, accurate
geometric registration of different auxiliary information layers
and correlated remote sensing images are also necessary. Mean-
while, the structure of the classical CNN needs to be redesigned
carefully. Applying auxiliary information to the postprocessing
of landslide detection results is another solution. For example,
Shi et al. [51] used a binary mask operation to optimize landslide
detection results based on road vectors, building vectors, and
slope maps. The results showed that the precision and F1-score
were substantially improved. However, the selection of auxiliary
information and the determination of corresponding thresholds
are often subjective. In addition, applying a specific type of
auxiliary information is unreasonable. For instance, a binary
mask operation may mistakenly remove detected landslides that
crossed the road.

The landslide detection methods reviewed above are based
on single temporal images and are feasible for generating the
initial version of the landslide inventory. In actual applications,
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Fig. 1. Location of Lantau Island.

detecting newly occurred landslides is equally essential [6]. With
the help of bitemporal (postlandslide and prelandslide) images,
the boundaries and occurrence time of newly occurred landslides
can be obtained precisely [52]. Some researchers have recently
applied the FCNN to detect newly occurred landslides. Stacking
the postlandslide and prelandslide images and feeding it into the
FCNN is the most widely applied strategy. However, the spectral
difference of bitemporal images extracted by shallow layers may
not represent semantic change and mistakenly propagate to deep
layers, leading to false detection [53]. Shi et al. [51] first used
the FCNN to detect landslides from postlandslide and preland-
slide images, respectively. The newly occurred landslides were
detected by utilizing the change detection technique based
on OBIA, which outperformed unsupervised change detection
methods based on the changing magnitude image (CMI) and
all CNN-based rivals. Nevertheless, for all supervised methods,
including the FCNN, detecting newly occurred landslides from
bitemporal images require a much larger amount of labor on
sample labeling than detecting landslides from single-temporal
images, leading to lower processing efficiency.

To address the abovementioned issues, we propose a novel
susceptibility-guided landslide detection method based on
FCNN (SG-FCNN). Specifically, the landslide susceptibility
map generated by the state-of-the-art CNN model is intro-
duced as prior knowledge, which guides the FCNN to detect
landslides from single-temporal remote sensing images. The
landslide susceptibility map can provide the spatial probability
of landslide occurrence in the near future [54], [55], which is
obtained based on the analysis of landslide-related auxiliary
information (also known as landslide predisposing factors). To
the best of our knowledge, this is the first time that landslide sus-
ceptibility has been introduced as prior knowledge to guide the
detection of landslides. Additionally, an unsupervised change
detection method based on the mean changing magnitude of
objects (MCMO) is proposed and jointly used with the proposed
SG-FCNN, which expands the application field of the proposed
SG-FCNN to the detection of newly occurred landslides from
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bitemporal remote sensing images. Itis also the first time that the
unsupervised change detection method has been integrated with
the FCNN to detect newly occurred landslides from bitemporal
images.

This article is organized as follows. Section II introduces the
study area. Section III presents an in-depth description of the
proposed methods. Section IV shows the experimental details
and results. Sections V and VI provide the discussion and
conclusion, respectively.

II. STUDY AREA

In this article, Lantau Island, Hong Kong (shown in Fig. 1),
which is situated on the southeast coast of China, is selected
as the study area. As the largest outlying island in Hong Kong
[56], Lantau Island is dominated by mountainous terrain and
composed of volcanic rock and granite.

There are three reasons for selecting Lantau Island as the
study area. First, Lantau Island has a subtropical monsoon
climate with 2200 mm of average annual rainfall and frequent
torrential rainfall, which triggers a vast number of landslides
every year. Especially in June 2008, a record-breaking rainstorm
triggered 2610 landslides (shown in Fig. 2), causing havoc and
two fatalities on Lantau Island [57]. The types of natural terrain
landslides on Lantau Island include debris flows, rockfalls, and
slumps, among which debris flows appear most frequently [58].
Second, with the expansion of urban areas, an increasing number
of infrastructures and landmarks have been built on Lantau
Island over the past decades. Most of them are densely pop-
ulated, such as Chek Lap Kok International Airport, Hong Kong
Disneyland Resort, Tung Chung New Town, Discovery Bay,
and Ngong Ping. Therefore, landslide prevention and mitigation
on Lantau Island is crucial for Hong Kong authorities. Third,
to carry out landslide-related applications and research, the
Civil Engineering and Development Department of Hong Kong
established the Enhanced Natural Terrain Landslide Inventory
(ENTLI) based on annually updated digital aerial photos (DAPs)
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Fig.2. Landslides triggered by the rainstorm in June 2008 [2]. (a) Nam Chung
Tsuen, Tai O. (b) North Lantau highway. (c) Keung Shan Kwum Yum Temple.
(d) Sham Wat road.

via visual interpretation by experts [59]. The latest version of
the ENTLI contains the crowns and trails of 5340 landslides
covered from 1974 to 2015 on Lantau Island. Related DAPs
are purchasable on the Hong Kong Map Service 2.0 website
(https://www.hkmapservice.gov.hk). Given the above, Lantau
Island is an ideal study area for landslide detection.

III. METHODOLOGY

This article proposed the SG-FCNN to detect landslides on
Lantau Island in 2008. Fig. 3 presents the detailed workflow. The
general outline is divided into landslide susceptibility mapping
and landslide detection.

For landslide susceptibility mapping, a series of landslide-
related predisposing factors were first collected. Afterward, a
state-of-the-art DL-based landslide susceptibility model, the en-
semble model based on channel-expanded pretrained CNN and
RF (CPCNN-RF) [31], was trained based on the predisposing
factor layers and the ENTLI (from 1994 to 2007). Finally, the
trained CPCNN-RF was applied to map the landslide suscep-
tibility of Lantau Island. The generated landslide susceptibility
map can be used to predict landslide occurrence after 2007. The
methodology of the CPCNN-RF and the landslide susceptibility
mapping process in Lantau Island have been detailed in [31].
Therefore, this article will not go into detail.

For landslide detection, there were two missions in this article:
1) detecting all landslides from single-temporal aerial images
acquired in 2008, which includes historical landslides before
2008 and newly occurred landslides in 2008. 2) Detecting
newly occurred landslides in 2008 from bitemporal aerial images
acquired in 2007 and 2008. The related data were collected
first, including the ENTLI (from 1994 to 2008) and the DAPs
collected in 2007 and 2008. Then, landslide polygons were
delineated by taking the record in the ENTLI (from 1994 to
2008) as referees, and an augmented training dataset along with
DAPs (2008) was produced. After that, all landslides (including
historical and newly occurred landslides) in DAPs (2008) were
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detected by the proposed MobileU-Net under the guidance of
landslide susceptibility. The boundaries of detected landslides
were then optimized by the dense conditional random field
(Dense CRF). Finally, to detect newly occurred landslides in
2008, bitemporal DAPs and the proposed MCMO were used
to identify and remove historical landslides from the detection
results of all landslides.

A. Data Collection and Preprocessing

1) Digital Aerial Photos: As shown in Fig. 4, a subset region
of central Lantau Island was selected as the study area. Two
testing regions are highlighted with red and green boundaries,
and the other remaining areas are training regions. Six scenes of
DAPs taken by the Geotechnical Engineering Office were pur-
chased and applied, four of which (Photo numbers: CW82126,
CW82130, CW82134, and CW82147) covered the whole study
area were acquired in November 2008. The other two scenes
(Photo numbers: CW79890 and CW79894) covered two testing
regions were acquired in November 2007. All applied DAPs are
digitized RGB aerial photographic films with a spatial resolution
of 0.5 m, which were acquired by a Zeiss RMK TOP 15 aerial
survey camera at a flying height of 8000 ft.

The data preprocessing of the DAPs was carried out in ENVI
5.1, including rational polynomial coefficient (RPC) generation,
orthorectification, mosaicking, bitemporal image registration,
and relative radiometric correction. First, 208 ground control
points for exterior orientation were selected using Google Earth
Pro. Based on which RPCs were generated as a reference
to the calibration certificate. After that, orthorectification was
conducted based on prepared RPCs and digital terrain model
with a spatial resolution of 5 m. Then, the seamless mosaic
technique was adopted to stitch the four scenes of the 2008 DAPs
into a single image. Finally, the automatic histogram matching
technique was applied for relative radiometric correcting of the
bitemporal DAPs.

2) Training Dataset: The proposed SG-FCNN is based on
semantic segmentation, and a pixelwise labeled reference map
is required. The ENTLI only records landslide crowns and trails
instead of the boundaries and cannot be directly used as a label
for semantic segmentation. Therefore, landslide boundaries in
the training regions were visually delineated as polygons by
reference to the DAPs (2008) and the ENTLI (from 1994 to
2008). In the training regions, 672 landslide polygons were
drawn and rasterized into binary label maps.

To make up the training dataset, DAPs and their corresponding
binary label maps were clipped into square patches with a size
of 416 x 416. In most previous articles, the grid-clipping
strategy is performed to generate square patches. However,
considering the arear of training regions are relatively small and
the complexity of the proposed SG-FCNN, the grid clipping
strategy can only generate 327 sample patches, which is not
enough for the SG-FCNN training. Hence, an overlapping
clipping strategy was applied; each clipped patch shared a 75%
overlapping area with the horizontally and vertically adjacent
patches. In total, 5139 sample patches were generated in the
training regions. To further improve the generalization ability of
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the SG-FCNN, data augmentation algorithms including flipping
(horizontal/vertical), rotation (90°/180°/270°), averaging blur,
Gaussian blur, bilateral blur, and adding random noise were
adopted. Since landslides covered less than 10% of the training
regions, data augmentation was only applied to square sample
patches with landslide labels to balance the number of positive
and negative pixels. In the end, 30 683 sample patches were
generated and were further divided into training samples and
validation samples at a proportion of 4:1.

Optimization

3,

Newly Occurred Landslides in 2008 Historical Landslides Before 2008 and

Newly Occurred Landslides in 2008

B. Landslide Detection Using FCNN

1) MobileU-Net: The convolutional encoder—decoder archi-
tecture is utilized in most of the existing FCNN models. The
high-level feature map of the input image is extracted in the
encoder part using convolutional feature extractors, and the
label of each pixel in the input image is predicted in the de-
coder part. U-Net [60] is one of the most successful convo-
lutional encoder—decoder architectures, and has been applied
in various tasks, including landslide detection. Compared to
the traditional encoder—decoder architecture, U-Net applies the
skip connection technique, which involves feature maps with
different abstract levels in the decoder process. The skip con-
nection effectively boosts semantic segmentation performance
and substantially reduces the feature loss of the convolution
operation in deep layers. The performance of the convolutional
encoder—decoder-based models partly depends on the encoder
structure. But the encoder of the original U-Net is the VGG-16,
which is heavy and inefficient.

Inspired by the characteristics of U-Net, we modified the
original U-Net and proposed the MobileU-Net (Fig. 5) to achieve
the balance between performance and efficiency in the landslide
detection task. The lightweight MobileNet-V2 [61] was applied
as the backbone encoder for feature map extraction in the U-Net.
Compared to the VGG-16 applied by the original U-Net, the
MobileNet-V2 introduced a depthwise separable convolution
block for feature map extraction, which can effectively save
computation resources. The depthwise separable convolution
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block was composed of a depthwise convolution and a 1 x 1
original convolution (also called pointwise convolution). As
shown in Fig. 6, by applying a single filter to each input channel,
the depthwise convolution can extract high-level features in
the spatial dimension and depth dimension. The subsequent
pointwise convolution created a linear combination of depthwise
convolution extracted features.

In the encoder part of MobileU-Net, a 3 x 3 original con-
volution and a total of 11 depthwise separable convolution
blocks (with 3 x 3 deepwise convolution) were used for hierar-
chal high-level feature extraction. During the decoder process,
feature maps extracted by the first, third, and fifth depthwise
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separable convolution blocks were concatenated with the first,
second, and third unsampled feature maps, respectively. In
addition, considering that deconvolution operation has more
trainable parameters compared with the combination of unpool-
ing and traditional convolutional operation, the latter can also
effectively avoid the checkerboard effect [62] and was applied
for feature map upsampling. Finally, feature maps extracted by
the last convolution layer in the decoder part were fed into the
Softmax classifier to generate the pixelwise probability map of
landslide detection.

Considering that the augmented dataset produced in Sec-
tion III-A-2 was still too small to train MobileU-Net from
scratch fully, a fine-tuning strategy was applied. The convolution
parameters of MobileNet-V2 pretrained by the ImageNet image
classification dataset were reloaded before the network training.
Moreover, applying data augmentation to square sample patches
with landslide labels enlarged the proportion of positive pixels,
the percentage of negative pixels remained high. It may have led
to MobileU-Net becoming more likely to misclassify landslide
pixels into non-landslide pixels.

The Dice loss [63] and the weighted binary cross-entropy
(BCE) loss [64] can both effectively avoid negative impacts
caused by imbalanced samples in the training process. Signif-
icantly, the Dice loss can optimize the F;-score of detected
landslides directly. Thus, the compound loss function of the Dice
loss and the weighted BCE loss was applied during the training
process of the MobileU-Net, which is defined as follows:

Compound Loss = Weighted BCE Loss + Dice Loss

= —[w (1 —y;;)log ()
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for the pixel on the ith row and the jth column of each sample,
andy; ; andt; ; represent the predicted label and the ground truth
label, respectively. w stands for the ratio of landslide pixels to the
total in the training dataset. € is a constant with a Keras default
value of 1077,

2) Overlapping Mosaic Detection Strategy: After the train-
ing process, MobileU-Net is prepared for landslide detection.
Limited by the network structure, the input data size should
have been restricted to 416 x 416 x 3. Therefore, images of the
testing regions cannot be fed into the MobileU-Net directly. Ap-
plying a grid-clipping strategy was a viable solution. However,
the reliability of the landslide detection result near the boundary
of the clipped patch was relatively poor. The problem was severe
for some landslides that were clipped and divided into multiple
patches. An overlapping detection mosaic strategy was applied
(as shown in Fig. 7) to solve the above issues.

First, images of testing regions were clipped into several
overlapped square image patches with a size of 416 x 416 x 3,
which was the same as the overlapping clipping strategy applied
in the training dataset generation. Then, the clipped patches
were fed into the MobileU-Net for pixelwise landslide detection.
Next, the central region of the predicted patch was designated as
the target area and clipped. Finally, a sliding-window strategy
was applied to mosaic the detection result of predicted patches
into seamless detection results. By utilizing the overlapping
mosaic detection strategy, only the highly reliable central region
of the predicted patch was retained.

C. Landslide Detection Using SG-FCNN

To further boost the detection performance of the FCNN, this
section innovatively proposed the SG-FCNN by applying the
probability average test time augmentation PA-TTA and the SG
strategy. The MCMO change detection strategy is also proposed
to detect newly occurred landslides using SG-FCNN.

1) Probability Average Test Time Augmentation (PA-TTA):
To reduce the miss detection rate of the FCNN, the PA-TTA was
first proposed. The overlapping clipped image patches in the
testing region were augmented using the same augmentation

Then, all probability maps based on different augmentation
methods were averaged

AP (P,) = —ZfZ.PPi )

where P, stands for the cth pixel in testing region. PF; is the
prediction probability of the ith augmentation method. AP(P,.)
denotes the averaged prediction probability of P,.. If AP(P.)
exceeds 20%, the pixel P. would be kept as landslide candidates,
while others were considered fuzzy boundaries and were dis-
carded. Finally, the generated candidate pixels were converted
into landslide candidate objects based on the eight-neighborhood
pixel-object conversion criteria [51], [65].

2) Landslide Detection Under the Guidance of Susceptibil-
ity: Even though the proposed FCNN has applied advanced DL
techniques, false detection of other land cover features, such as
muddy roads and buildings that could be misclassified as land-
slides, remained inevitable. Hence, additional postprocessing is
necessary to remove falsely detected landslides.

Landslide susceptibility maps can portray the spatial proba-
bility of landslide occurrence in the near future [54], [55], which
is obtained based on the analysis of landslide-related auxiliary
information (also known as landslide predisposing factors) [66].
Landslide susceptibility mapping methods have been reviewed
comprehensively by some scholars [5], [54], [67] and thus are not
covered in this article. Recent articles have shown that methods
based on CNN also perform the best in landslide susceptibility
mapping [31], [68], [69], [70]. If the CNN-predicted landslide
susceptibility can be used as prior knowledge in the detection
process, it is promising to further improve the detection perforce
of FCNN.

Thus, the CNN-predicted landslide susceptibility was intro-
duced as prior knowledge to remove falsely detected landslides
as follows:

> [LS (Py) x LDP (Py)]
N

For the ath landslide candidate object O,, the P, and N
stand for the bth pixel and the total number of pixels in O,
respectively. For pixel P,, LDP(P,) represents the landslide
detection probability of P, and LS(F;) denotes the probability

SLDP (0,) =

s ByeOq. (3)
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value of CNN-predicted landslide susceptibility. SLDP(O,)
represents the SG landslide detection probability of O,, and
is obtained by averaging LS(P,) x LDP(P,). The threshold of
susceptibility guidance, Tsypp, was set as 20% based on the
division of five equal intervals, which indicated a very low
SG landslide detection probability. If SLDP(O,) is lower than
Tsipp, the landslide candidate object O, would be identified
as a falsely detected landslide and removed. If SLDP(O,,) is
higher than Ts; pp, the landslide candidate object O, would be
identified as a correctly detected landslide and retained.

3) Boundary and Morphological Optimization: In the SG-
FCNN, boundary and morphological optimization (BMO) was
applied to enhance the precision of detected landslides further.
In the MobileU-Net, feature maps extracted by the encoder
had lower resolution than the input image. To obtain pixelwise
landslide detection results of the same size as the input image,
an unpooling and convolution operation was applied to low-
resolution feature maps in the decoder part. However, the input
image was not involved in the decoder part; thus, the detected
landslides’ boundary is coarse and fails to fit the actual boundary.

The Dense CRF [71] was applied based on aerial images’
spectral and textural features to refine the boundary of detected
landslides. Compared to the traditional CRF, which only utilizes
the connections between the target pixel and its adjacent pixels,
the Dense CRF can utilize the connections between all pixel
pairs of the input image and refine the boundary of the detected
landslides in greater detail. The Dense CRF confirmed to Gibbs
distribution

exp (—E (X]1))

Pla= Z0)

X|1) = @

where [ is the input image and x is the predicted result to be
optimized. E (X |I) is the Gibbs energy, which is composed of
unary potential v, (x;) and pairwise potential v, (x;,y;) as a
following formula:

E (all) = Z% (i) +pr (i, y5) 5)
wu (xz) - —logP(xi) (6)
Vp (T, y5) = p (i, y5)

Appearance Kernel Smoothness Kernel

(7

where (i, y;) is the label compatibility. w! and w? are the
weights of appearance kernel potential and smoothness kernel
potential, respectively. The appearance kernel potential is used
for clustering pixels with similar spectral features into the same
class, in which 6, and 6}, are the degree of spatial nearness and
spectral similarity. The smoothness kernel potential is applied
to remove isolated regions [72] with a spatial nearness degree
controlled by 6.
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After the Dense CRF optimized the boundaries of the detected
landslides, two widely used morphological optimization algo-
rithms, namely, area opening and hole filling [73], [74], were
implemented to improve the detection accuracy further. The area
opening was applied to remove those detected landslides that
were unreasonably small, while the hole filling was applied to
fill up those small holes inside correctly detected landslides.

4) Detection of Newly Occurred Landslides Based on
MCMO: Landslides detected by the SG-FCNN have the advan-
tages of high accuracy and reliability, making them suitable as
the basis for detecting newly occurred landslides. As reviewed
in Section I, the FCNN has also achieved state-of-the-art perfor-
mance in detecting newly occurred landslides. However, the un-
supervised CMI-based change detection strategies have unique
advantages in efficiency [75] and are still widely applied in
practical applications. Thus, combining the proposed SG-FCNN
with the CMI-based change detection strategy is a promising
way to improve the detection performance of newly occurred
landslides.

Based on the proposed SG-FCNN, this article further pro-
posed an unsupervised change detection strategy, MCMO, to
detect newly occurred landslides based on bitemporal images
and the landslide detection results from postlandslide images.
First, the CMI is generated based on the coregistered postland-
slide and prelandslide images

>, abs (DNF™ —
255 x N,

DNiPost)

CM (F.) = ()
where P, stands for the cth pixel in testing region. D NF™ and
D NPt are the grey value of P, in the ith band of the prelandslide
image and postlandslide image, respectively. The greater the
CM(P.), the greater the change has been experienced. Then,
based on the changing magnitude of each pixel, the historical
landslides can be removed from the landslide detection results
of postlandslide images as follows:

2. [CM (Py)]
N

where O, stands for the eth detected landslide objects of the
postlandslide image. For O, CM(P,) is the changing magnitude
of the dth pixel, and NV is the total number of pixels. Therefore,
MCM(O.) denotes the mean changing magnitude of O,. Tycem
is the threshold for judging whether O, has changed or not.
If MCM(O,.) exceeds Tycm, the detected landslide object O,
would be identified as a historical landslide or other unchanged
land cover features. Tyicp Was set to 25% based on trial and error.
Finally, the proposed MCMO strategy obtained the detection
result of newly occurred landslides by deleting those O, with an
MCM value above Tyicm.

MCM (O,) = , Pa € Oc ©)

IV. EXPERIMENTS AND RESULTS

The landslide susceptibility mapping and landslide detection
experiments were carried out on a Windows 10 OS with a
3.6 GHz Core 17-7700 and an NVIDIA GeForce GTX 1080.
TensorFlow-GPU 1.7.0 was selected as the DL platform for
implementing the FCNN, the SG-FCNN, and the CPCNN-RF.
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(a) DAP 2007. (b) DAP 2008. (c) Evaluation samples overlaid on DAP 2008.
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DAPs and evaluation samples in testing region B. (a) DAP 2007. (b) DAP 2008. (c) Evaluation samples overlaid on DAP 2008.

TABLE I
STATISTICAL DETAILS OF EVALUATION SAMPLES
Total area All landslides Newly oc.curred Historical landslides
N landslides
(m’) Number Area (m°) Number Area (m°) Number  |Area (m?)

Testing region A 4292 166 106 60 621 100 59 129 6 1492
Testing region B 2936253 70 21785 54 17 284 16 4501
Total 7228 419 176 82 406 154 76 413 22 5993

The Dense CRF model was implemented with Python wrapper,
pydensecrf 1.0rc3 (https://github.com/lucasb-eyer/pydensectf).

There were two missions in this article: detecting all landslides
(including historical and newly occurred landslides) in 2008 and
detecting newly occurred landslides in 2008. To evaluate the
detection performance in two testing regions, two ground truth
datasets were visually delineated by reference to the ENTLI
(from 1994 to 2008) and coregistered DAPs (2007 and 2008), as

shown in Figs. 8 and 9. The statistical details of the evaluation
samples are given in Table I.

A. Detection of All Landslides

During the training procedure of the FCNN, an Adam opti-
mization algorithm was selected to update the networks’ weights
iteratively. Considering the hardware performance of the
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experimental environment, the batch size and the initial learning
rate were set as 8 and 0.001, respectively. If the validation loss
did not decrease within three epochs, the learning rate would
reduce by 90%. The early stopping strategy was applied based on
validation loss to avoid overfitting. The network training would
be terminated if the validation loss did not decrease within 10
epochs.

As for the overlapping mosaic detection strategy, the target
area constituted 5% of the corresponding predicted patch. The
hyperparameters of the Dense CRF, namely, 0,, 03, 0, w', and
w?, were set to 30, 20, 1.0, 1.5, and 1.0 in testing region A,
and were set to 30, 10, 1.0, 1.1, and 1.0 in testing region B,
according to the suggestion of Kra henbu hl and Koltun [71]
and the optimization experience of Shi in Lantau Island [51].
The Dense CRF optimized the initial detection results for 10
iterations. Taking the characteristics of landslides and ground
dataset on Lantau Island into account, the thresholds for area
opening and hole filling were set as 25 and 200 m?, respectively.

When detecting landslides using the SG-FCNN, we applied
the landslide susceptibility map generated by the state-of-the-art
CPCNN-RFE. All details of the CPCNN-RF and susceptibility
mapping process in Lantau Island can be found in [31]. It cannot
present all details about the CPCNN-RF due to space limitations.

The CPCNN-RF was trained based on 10 landslide predispos-
ing factor layers of Lantau Island and landslide crowns recorded
in the ENTLI (from 1994 to 2007). The applied landslide
predisposing factor layers had a spatial resolution of 30 m,
which included elevation, aspect, slope, plan curvature, profile
curvature, distance to fault, lithology, topographic wetness index
(TWI), land cover, and NDVI. Elevation, slope, aspect, profile
curvature, and plan curvature were calculated using the digital
elevation model (DEM) (30 m per pixel) provided by Esri
China (HK). Lithological and fault lines were extracted from the
simplified geological map provided by Esri China (HK). TWI
was calculated from DEM using hydrology tools in ArcGIS.
Land cover was obtained from the FROM-GLC product (30 m
per pixel) [76]. NDVI was calculated using Landsat TM images
with 30-m spatial resolution, which was taken on 14th March
2006. After training ended, the predisposing factor layers of
Lantau Island were divided into 163 052 grids with a spatial
resolution of 30 m and fed into the trained CPCNN-RF for
landslide susceptibility mapping. The derived landslide suscep-
tibility map is given in Fig. 10, which has been ranked into five
grades.

Landslide crowns recorded in the ENTLI (from 1994 to 2007)
were used as testing samples to evaluate the reliability of the
derived landslide susceptibility map. The OA and the area under
the receiver operating characteristic curve were determined in
SPSS Statistic 26 as statistical evaluation metrics. The evaluation
results illustrated that the landslide susceptibility map generated
by the CPCNN-RF has achieved satisfactory accuracy, which
qualified it to be used as an indicator to distinguish the areas
that were not prone to landslide occurrence.

For the two testing regions, Figs. 11 and 12 show the inter-
mediate process of the SG-FCNN. Figs. 13 and 14 show the
detection results of all landslides in 2008.

1007

113°51'00" E 113°54'00" E 113°57'00" E 114°00'00" E 114°03'00" E

T E T —~

® Landslide Recorded in ENTLI (2008) ! . ! ‘ , L

I Very Low Susceptibility
I Low Susceptibility

Moderate Susceptibility o A -

[ High Susceptibility — '

I Very High Susceptibility

22°19'00" N
22°19'00" N

Testing Accuracy
AUC =0.95
OA=88.78%

22°16'00" N
I
22°16'00" N

22°13'00" N
T

1
22°13'00"N

13°51'00" E 113°54'00" E 113°57'00" E 114°00'00" E 114°0300" E

Fig. 10. Landslide susceptibility map generated by CPCNN-RF based on
ENTLI (1994-2007) [31].

To highlight the superiority of the proposed SG-FCNN, we
further compared it with the PBCNN, the FCNN, and the FCNN
with postprocessing based on auxiliary information. The applied
PBCNN is the per superpixel multiscale CNN based on SEEDS
(SEEDS-MCNN) [26] with a MobileNet-V2 backbone. The
applied FCNN includes the original U-Net (with VGG-16 back-
bone) [60], DeepLab-V3 (with MobileNet-V2 backbone) [61],
and the proposed MobileU-Net. The postprocessing strategy
based on auxiliary information is referenced to Shi’s strategy for
FCNN-based landslide detection in Lantau Island [51]: Creating
a buffer zone based on road vectors with a distance of 10 m.
If the overlapping area of the landslide object and buffer zone
exceeds 30% of the landslide object, discard the corresponding
landslide object. If more than 50% area of the landslide object
with a slope less than 10°, discard the corresponding landslide
object. The applied road vector of Lantau Island was downloaded
from https://www.openstreetmap.org. The slope map of Lantau
Island was calculated based on the DEM with a spatial resolution
of 5 m, provided by ESRI Hong Kong. All comparative mod-
els mentioned above were pretrained by the ImageNet image
classification dataset and applied the training data augmentation
strategy mentioned in Section IT1I-A-2. All FCNN-based compar-
ative models applied the overlapping mosaic detection strategy
mentioned in Section III-B-1.

B. Detection of Newly Occurred Landslides

Landslides detected by the SG-FCNN in the DAPs (2008)
were used as the basis for detecting newly occurred landslides
in 2008. The CMI of the two testing areas was generated based on
the coregistered DAPs (2007) and DAPs (2008), using ArcMap
10.3. Figs. 15 and 16 illustrate the intermediate process of the
SG-FCNN with MCMO strategy in testing region A and B.
Figs. 17 and 18 represent the detection results of newly occurred
landslides in 2008.

The proposed MCMO change detection strategy was
compared with the change detection strategy applied by the
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object-oriented change detection CNN (CDCNN) [51]. In the
CDCNN, FCNN is used to detect landslides from prelandslide
and postlandslide images separately. Based on this, newly
occurred landslides are identified by analyzing the IoU of
paired landslide objects detected from the prelandslide and

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

113°54'30" E

100%
Landslide Susceptibiity
- 0% (LSinEq.2)

0 125 250 375 500
—=—=|mA

113°56'15" E

22°16'45" N

22°16"15" N

22°16'30" N

22°16'00" N

113°54'00" E 113°54'30" E 113°54'00" E 113°54'30" E
| | | |
—— oy \b\
oy o
44 =
)
i \ 2 \
&N
N
y - -
y
P/~
~\ P~ S =
-} SR
A e
-
§ & ¥ N
) g3 L
b 4 - >
g
ol : o~
{ v -4
z
” | 470
] 2.
B
- 100% - 89.5% Susceptibility Guided
Landslide Detection Landslide Detection
Probability Probability
20% (LDPinEq2) B 35% (SLDPinEq2)
0 1256 250 375 mmA ’ 0 1256 250 375 SOOMA
-

(b)

(c)

Intermediate process of SG-FCNN in testing region A. (a) Landslide susceptibility. (b) Landslide detection probability. (c) Susceptibility-guided landslide

113°55'45" E 113°56"15" E 113°55'45" E 113°56'15" E
P4
100% = - 97.8% Susceptibility Guided
- Landslide Detection © Landslide Detection
Probability { = _| Probability
20% (LDPin Eq.2) 4 © 7| i 3.1% (SLOPinEq2) B¢
0 150 300 450 600 4 2 0 150 300 450 600 -
L A A n Al bl
E \ » \
o0 + v 4
S A 2 A
. » = RY
NS A y § 1)
s < » ¢ .
< = " 3
, © .
0 ] 2 2
4 7 £ 39 / < \ \ _’: .
Vg sl 9 W a rlew
L4 3 o’
a # 2N s

(b)

equations:

postlandslide images. If a landslide object detected in the

postlandslide image failed to pair with a landslide object

in the prelandslide image, or the IoU of paired landslide
objects is less than 50%, the corresponding landslide is newly

occurred.

()

C. Evaluation of Detection Results

Precisio PNq
recision —=
PN,
PN,
Recall =

PN,

Intermediate process of SG-FCNN in testing region B. (a) Landslide susceptibility. (b) Landslide detection probability. (c) Susceptibility-guided landslide

Four widely used metrics, including precision, recall, F;
score, and IoU were applied and can be defined by the following

(10)

an
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Detection results of all landslides in testing region A. (a) Ground truth. (b) PBCNN (SEEDS-MCNN) [26]. (c) FCNN (original U-Net) [60]. (d) FCNN

(DeepLab-V3) [61]. (e) FCNN (MobileU-Net). (f) FCNN (MobileU-Net) + PA-TTA. (g) FCNN (MobileU-Net) + BMO. (h) FCNN (MobileU-Net) + BMO +
post-processing strategy based on auxiliary information [51]. (i) SG-FCNN (MobileU-Net) + BMO.



1010 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

113°55'45" E 113°56'15" E 113°55'45" E 113°56"15" E 113°55'45" E 113°56'15" E
- | | — = _ I‘_ | - | |
o B Al Landsides o | mE A Landsides o B A Landslides
T o150 300 4s0 LY ‘, T 4o 150 300 4s0 LY T |0 150 300 4s0 LENY al -
- — w— 2 = r———————— T ——— A ™,
& “—TPB1 N S N2 P 7
~ ra ra N
: i & I \
FoTny T2 Ly o
o AN o A /
/_ 3 A\ ) £ s
- TP-B3* 4 < T 5
z > z z )
o PB4 b o | :
© | [ -
: g PP & e 28
N Y ~ N N 2V ra vl
N Y —— ~ N N 7%
: - A A
(a) (c)
113°55'45" E 113°56'15" E 113°55'45" E 113°56"15" E 113°55'45" E 113°56'15" E
? I : = =z | > z I I iy
E@ B Al Landsides | ‘uvu BB Al Landslides % B A Landslides
& _| & _| i = | i
© 7 | e —m A 8 O 7| " A A O T | 5" A 8~
3 = T \
N 3 N 4 & 4 3
N oA / 7 j’\ N s 4 ,r)f\ N o T o
N Byt \ 3 \
e ¢ L 0 ¢ R "
T “\ l? ] "\ T \;
el 4 RN sy
NS A » 1) g \ NS A ¥
[y < & % - . < p
z % = < > .
z s 2 s 3
0 - n oy ‘lQ -
o] A z e > 4 o] 4 > 4 Z
=1 oz el oz o 24P
N ’ 2 sl N ’ P - N ’ f law
N e , N ¢ & R N SO o —
Ny e \ o f/ \\\ o
(d) (e) (f)
113°55'45" E 113°56'15" E 113°55'45" E 113°56"15" E 113°55'45" E 113°56'15" E
> | | - | | = | | _
o B Al Landsides FP-81 s 0 B Al Landslides o B Al Landsiides FP-B19 o
S _{]o 150 300 450 600 i\ FP-B2 S o 150 300 450 600 i FP-B9 X [0 150 300 450 600 t
© | m— s A - X © L m— s A < © | s— s A -
by 5 by 5 ! by TPB55"  rpais
N 4 ¥ N 3 N r's %
N e 7 AalE N 4 g N 7 £
-~ i J ~ A i 4 ~ 24 B 2]
' 4 7 A 7 .\ FP-B20 ¢
<> B FP-B3 S EP-810 Pl 3
, 'y FP-B11 2 y TP-B6 _& 'y FP-B167 7
s L A FP-B22— Sl FP-B17,
A7 8 34 . ¥ LA e FPB21 7. v} v
l ~ < - i3 ~ <
Z |rp.ss ; ; z FP-B12 z :
o) l‘ W , o A ol o) o TP-B7
©—] % FPB5 2 R ~ o -
T PP - - |~ . - e oz
| T / v A s ﬁ / Y i e g i1 e i
FP-B7 7’7 FP-B13 Y Y
FE-BESSY ¥ I\ - TSN NG . \eFpB1g ~ e

(9

(h) (i)

Fig. 14.  Detection results of all landslides in testing region B. (a) Ground truth. (b) PBCNN (SEEDS-MCNN) [26]. (c) FCNN (original U-Net) [60]. (d) FCNN
(DeepLab-V3) [61]. (e) FCNN (MobileU-Net). (f) FCNN (MobileU-Net) + PA-TTA. (g) FCNN (MobileU-Net) + BMO. (h) FCNN (MobileU-Net) + BMO +
postprocessing strategy based on auxiliary information [51]. (i) SG-FCNN (MobileU-Net) + BMO.

2 X Precision x Recall
FiS = 12
12C0Te Precision + Recall a2

PN,

ToU=—— % _
°U= PN, 7 PN,

13)

where PN, stands for the pixel number of correctly detected
landslides. PNy, is the pixel number of detected landslides. PN,
is stands for the pixel number of landslide ground truth. PNy is
the pixel number of detected landslide that is not matched with
corresponding ground truth. Precision measures the proportion

of correctly predicted landslide pixels in predicted landslide
pixels. Recall measures the proportion of landslide pixels that
are correctly detected. F; Score and IoU are both comprehensive
indexes. The F; Score is the harmonic mean of precision and
recall, and the IoU measures the extent of the overlap of detected
landslides and ground truth. The evaluation results of the two
testing regions are given in Tables IT and III.

While detecting all landslides in 2008, the FCNN was superior
to the PBCNN. The detection accuracy of the MobileU-Net was
much higher than that of the original U-Net and is comparable
to that of the MobileU-Net. The MobileU-Net only have 6
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Fig. 15. Intermediate process of the SG-FCNN with MCMO in testing region A. (a) Changing magnitude. (b) Mean changing magnitude.
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Fig. 16. Intermediate process of the SG-FCNN with MCMO in testing region B. (a) Changing magnitude. (b) Mean changing magnitude.

315 522 parameters, which is only half of that of the original
U-Net and one-third of that of the DeepLab-V3. Thus, the
MobileU-Net is much more efficient and has the best compre-
hensive performance among all FCNN models. With the help
of the susceptibility guidance strategy, the detection accuracy of
the proposed SG-FCNN was improved significantly compared
to the original FCNN. In particular, the SG-FCNN with BMO
achieved the outstanding performance with the highest pre-
cision, F; Score, and IoU in all testing regions. However, a
small number of land cover features were falsely identified as
landslides by the SG-FCNN.

While detecting newly occurred landslides in 2008, the de-
tection accuracy of the SG-FCNN with the proposed MCMO
change detection strategy was significantly improved compared
with the SG-FCNN with the change detection strategy of CD-
CNN [51]. In addition, no matter what change detection strategy
was combined with the proposed SG-FCNN, the detection accu-
racy of newly occurred landslides was higher than the detection
accuracy of all landslides. Especially in testing region B, by
utilizing the proposed MCMO change detection strategy, the
detection accuracy of newly occurred landslides was sharply
improved compared with the detection accuracy of all landslides.
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Detection results of newly occurred landslides in testing region B. (a) Ground truth of newly occurred landslides in 2008. (b) SG-FCNN -+ change

detection strategy of CDCNN [51]. (¢) SG-FCNN + MCMO change detection strategy.

V. DISCUSSION
A. Effectiveness of Susceptibility Guidance Strategy

This article modified the FCNN and innovatively proposed the
SG-FCNN by introducing the susceptibility guidance strategy.
For each landslide candidate object, its averaged probability
of landslide detection merged with the landslide susceptible
probability.

In the proposed SG-FCNN, visual and environmental condi-
tions would be considered simultaneously during the detection
process. Landslide candidates with low visual detection prob-
ability in high landslide susceptibility zones can be detected
[see TP-AS and TP-A6 in Fig. 13(1)]. In contrast, landslide
candidates with high detection visual probability in low
landslide susceptibility zones can be discarded [see FP-A1 and

FP-A2inFig. 13(g), FP-B1 to FP-B8 in Fig. 14(g)]. Tables Il and
IIT show that the SG-FCNN is superior to the original MobileU-
Net and the MobileU-Net with PA-TTA on all evaluation indices.
In testing region A, the F; Score and IoU of the SG-FCNN
reached 0.9049 and 82.63%, respectively. In testing region B,
the SG-FCNN achieved an F; Score of 0.7938 and an IoU of
65.81%.

Compared to the state-of-the-art postprocessing method based
on auxiliary information (road vectors, building vectors, and
slope) [51], the proposed SG-FCNN also has a clear lead on
all evaluation indices. Compared to the SG-FCNN, FP-A3 in
Fig. 13(h) and FP-B9 to FP-B14 in Fig. 14(h) were falsely
detected, TP-AS to TP-A10 in Fig. 13(i) and TP-BS5 to TP-B7 in
Fig. 14(i) were not detected. The reason for the success of the
proposed SG-FCNN is that it extracted knowledge (landslide
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TABLE II

QUANTITATIVE EVALUATION RESULTS OF LANDSLIDE DETECTION RESULTS IN TESTING REGION A
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Detection mission | Method Implementation details Precision (%)| Recall (%) | F; Score | IoU (%)
PBCNN SEEDS-MCNN (with MobileNet-V2 Backbone) [26] 19.45 93.61 0.3221 19.19
Al landslides Original U-Net (with VGG-16 Backbone) [60] 60.89 90.46 0.7279 | 57.22
(historical and Deeplab V3 (with MobileNet-V2 Backbone) [61] 85.05 87.25 0.8615 75.67
newly occurred) | FONN MobileU-Net 85.44 89.39 08737 | 77.57
MobileU-Net + MV-TTA 86.32 88.52 0.8741 77.63
MobileU-Net + PA-TTA 79.38 93.53 0.8587 75.25
MobileU-Net + BMO 91.43 84.79 0.8799 78.55
MobileU-Net + Postprocessing strategy based on auxiliary information [51] 86.77 88.46 0.8761 77.95
MobileU-Net + BMO + Postprocessing strategy based on auxiliary
information [51] 93.01 85.03 0.8884 79.93
SG-FCNN SG-FCNN (MobileU-Net + PA-TTA + Susceptibility guidance strategy) 82.63 93.52 0.8774 78.16
SG-FCNN + BMO 91.17 89.81 0.9049 82.63
Newly occurred SG-FCNN + BMO + Change detection strategy of CDCNN [51] 92.36 89.91 0.9112 83.69
landslides SG-FCNN SG-FCNN + BMO + MCMO Change detection strategy 93.54 89.91 0.9169 | 84.65
TABLE III
QUANTITATIVE EVALUATION RESULTS OF LANDSLIDE DETECTION RESULTS IN TESTING REGION B
Detection mission Method Implementation details Precision (%) | Recall (%) F score ToU (%)
SEEDS--MCNN (with
PBCNN MobileNet-V2 Backbone) 5.36 94.70 0.1014 5.34
[26]
Original U-Net (with VGG-16
Backbone) [60] 46.37 80.48 0.5884 41.68
Deeplab V3 (with MobileNet-
V2 Backbone) [61] 67.31 79.94 0.7309 57.59
MobileU-Net 64.72 79.20 0.7124 55.32
. MobileU-Net + MV-TTA 65.47 78.02 0.7120 55.28
All landslides -
(historical and FCNN MobileU-Net + PA-TTA 53.14 87.93 0.6624 49.53
newly occurred) MobileU-Net + BMO 67.23 75.53 0.7114 55.20
MobileU-Net +
Postprocessing strategy based 70.06 79.25 0.7437 59.20
on auxiliary information [51]
MobileU-Net + BMO +
Postprocessing strategy based 72.82 76.72 0.7472 59.64
on auxiliary information [51]
SG-FCNN (MobileU-Net +
PA-TTA + Susceptibility 71.12 87.93 0.7864 64.80
SG-FCNN guidance strategy)
SG-FCNN + BMO 73.89 85.74 0.7938 65.81
SG-FCNN + BMO + Change
detection strategy of CDCNN 75.29 85.98 0.8029 67.07
Newly occurred
landslides SG-FCNN [51]
SG-FCNN + BMO + MCMO
Change detection strategy 89.57 83.42 0.8638 76.03

susceptibility) from auxiliary information (landslide predispos-
ing factors and the distribution of historical landsides) instead
of using auxiliary information directly. As prior knowledge,
landslide susceptibility condenses assorted auxiliary informa-
tion related to landslide occurrence and considers the occurrence
rule of historical landslides simultaneously. Given the above,
introducing landslide susceptibility can significantly improve
the detection accuracy of FCNN and expand the application
range of landslide susceptibility.

B. Effectiveness and Indispensability of PA-TTA and
Susceptibility Guidance

While aiming to improve the detection accuracy of the FCNN,
this article proposed an SG-FCNN that used PA-TTA and inno-
vatively introduced landslide susceptibility as prior knowledge
for landslide detection. After the FCNN initially detected the
landslides, the PA-TTA was applied, and landslide susceptibility
was involved in guiding the detection process. Misdetections
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were avoided, and false detections were eliminated, thus, adding
to the accuracy of the landslide detection.

There are three reasons for applying the PA-TTA rather than
the max voting test time augmentation (MV-TTA). First, the
MV-TTA has few advantages in landslide detection. As shown
in Tables II and III, the detection accuracy of the MobileU-Net
slightly increased after applying the MV-TTA. Second, the PA-
TTA is implemented based on the probability map instead of the
binary detection result. Thus, a generated average probability
map of landslide detection can be analyzed with a landslide
susceptibility map, and SG landslide detection can be realized.
Third, the proposed PA-TTA only discarded those pixels with
very low averaged probability and can detect more landslide
candidates than the original FCNN with or without the MV-TTA.
As presented in Table II and III, applying the PA-TTA can effec-
tively avoid the misdetection of landslides with a significantly
higher recall.

Compared with applying the MV-TTA, applying the PA-TTA
would result in lower precision and high recall rate because
the probability threshold of the PA-TTA is set as 20% in-
stead of 50% to detect landslide candidates as much as pos-
sible. But most falsely detected landslides can be removed
with ensued joint analysis guided by landslide susceptibility.
Thus, it can be concluded that the PA-TTA and the suscep-
tibility guidance strategy are interdependent and indispens-
able. Without PA-TTA, applying the susceptibility guidance
strategy would result in a low recall rate. Without the sus-
ceptibility guidance, applying the PA-TTA would not achieve
high precision.

C. Effectiveness of Combining SG-FCNN With MCMO

As discussed above, the original SG-FCNN can detect all
landslides (both historical and newly occurred landslides) from
single temporal DAPs with high precision. To further expand
the application scope of the SG-FCNN, an unsupervised change
detection strategy MCMO was proposed to detect newly oc-
curred landslides from bitemporal DAPs. As shown in Tables II
and II1, after integrating with the proposed MCMO strategy, the
SG-FCNN achieved significantly higher accuracy in detecting
newly occurred landslides than the original SG-FCNN. The
result is especially obvious in testing region B, where the F
Score and IoU increased by 0.07 and 10.22%, reaching 0.8638
and 76.03%, respectively. The detection accuracy of testing
region A is much higher, with an F; Score of 0.9169 and
IoU of 84.65%, but the accuracy only increased by 0.012 and
2.02%, respectively. As shown in Figs. 17(c) and 18(c), the
SG-FCNN successfully identified newly occurred landslides
from all landslides with the help of the proposed MCMO. Espe-
cially in testing region B, numerous falsely detected landslides
from a single temporal image, such as stony creeks [FP-B15
to FP-B18 in Fig. 14(i)], bare rocks [FP-B21 in Fig. 14(i)] and
muddy tracks [FP-B21 in Fig. 14(i)] has also been identified
as unchanged objects and removed. Compared to testing region
B, the land-cover composition in testing region A is relatively
simple, and the visual characteristics of landslides are clear
and distinguishable. Thus, the detection result of all landslides
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by the SG-FCNN in testing region A is already satisfactory,
and the number of falsely detected landslides is scarce. This
also explains why the accuracy increase in testing region A
is lower than in testing region B after applying the proposed
MCMO strategy.

In this article, the proposed MCMO was compared with
the state-of-the-art change detection strategy of the CDCNN
developed by Shi et al. [51]. As presented in Tables II, III,
Figs. 17(b), and 18(b), the change detection strategy of the
CDCNN has achieved a certain effect. Almost all historical
landslides were identified and removed from the detection results
of the SG-FCNN. In comparison, the proposed MCMO strategy
is more effective with much higher accuracy in the two testing
regions. The MCMO performs better as all unchanged land
cover features, including historical landslides, can be identified
and removed. In contrast, the change detection strategy of the
CDCNN only identified and removed historical landslides but
ignored other unchanged land cover features [FP-A12 to FP-A16
in Fig. 17(b), FP-B22 to FP-B26 in Fig. 18(b)]. In testing
region B, some newly occurred landslides were misidentified
as historical landslides and removed by the change detection
strategy of the CDCNN [see FP-B27 and FP-B28 in Fig. 18(b)].
In addition, applying the MCMO strategy only need to calculate
the mean changing magnitude of detected landslides based on
CMI with a simple operation, and the whole processing time is
less than a second. In contrast, the change detection strategy of
the CDCNN needs to carry out an additional landslide detection
process of prelandslide images using the SG-FCNN or FCNN,
which significantly increases the processing time and computa-
tion burden. Thus, the MCMO strategy is much more efficient
and easier to implement.

Given the above, with the help of the proposed MCMO,
the proposed SG-FCNN has better accuracy and efficiency in
detecting newly occurred landslides.

D. Defects of Proposed Landslide Detection Method

Despite the advantages of the proposed SG-FCNN and
MCMO, false and misdetection of landslides cannot be avoided
completely. A small number of muddy tracks, stony creeks,
and other surface exposures not caused by landslides [FP-A4
to FP-A11 in Fig. 13(i), FP-B15 to FP-B21 in Fig. 14(i)] were
falsely detected using the SG-FCNN due to the lack of assorted
negative samples. In addition, the proposed method failed to
detect those small landslides with a large length—width ratio
because it is difficult to distinguish them from narrow roads
based only on visual features [TP-A1 to TP-A4 in Fig. 13(a),
TP-B1 to TP-B4 in Fig. 14(a)]. Although the proposed MCMO
strategy can identify most of the falsely detected landslides
as unchanged land cover features and then discard them, the
others were still falsely detected because of the coregistration
error of bitemporal images away from the isocenter [FP-A17
in Fig. 17(c)] and surface changes not caused by landslides
[FP-A18 in Fig. 17(c), FP-B29 and FP-B30 in Fig. 18(c)].
Meanwhile, a small amount of newly occurred landslides were
falsely identified as unchanged objects and removed [TP-B§
and TP-BY in Fig. 18(a)] because their spectral characteristics
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were not changed significantly. Introducing nonoptical remote
sensing products and high-level feature extractions methods on
a multiscale should be considered in future research.

Besides, the proposed SG-FCNN would result in additional
time cost and parameter amount compared with the FCNN. The
PA-TTA strategy requires the FCNN to detect the landslides
multiple times. Thus, the additional time cost caused is obvious.
The specific time cost depends on the number of applied data
augmentation methods. In contrast, the PA-TTA strategy will not
introduce new parameters. As for the SG strategy, the additional
cost and parameter amount depend on the complexity of the
applied landslide susceptibility mapping model. We will try to
further improve the efficiency of the SG-FCNN by utilizing more
efficient data-augmentation methods and landslide susceptibility
model in our future article.

In addition, although the applied CPCNN-RF has achieved
the best performance in Lantau Island, the generated landslide
susceptibility map still could not guarantee 100% accuracy of
landslide occurrence. The errors of the landslide susceptibility
mapping would be transferred to landslide detection in the
proposed SG-FCNN. Thus, it is equally important to study how
to improve the reliability of landslide susceptibility mapping and
reduce the negative impact caused by error transmission in our
future article. Furthermore, limited by the quality of the data
source, the spatial resolution of the landslide susceptibility map
generated by the CPCNN-RF is only 30 m, which is inconsistent
with the spatial resolution of DAPs. Applying a fine-grained
landslide susceptibility map is a promising direction for min-
imizing the error caused by data scaling and improving the
detection performance further.

VI. CONCLUSION

This article took a high-incidence area of landslide in Lantau
Island as the study area and researched FCNN-based landslide
detection method. First, various algorithm optimization methods
such as overlapping mosaic detection strategy, compound loss
function, and dense CRF were applied, which improved the
detection accuracy of FCNN toward landslides’ boundary. Based
on this, the SG-FCNN was proposed to detect landslides under
the guidance of landslide susceptibility. Through the analysis
of experimental results, it can be concluded that the proposed
landslide susceptibility guidance strategy has shown great po-
tential in detecting landslides. By introducing landslide suscepti-
bility as prior knowledge, the proposed SG-FCNN significantly
outperforms the FCNN and the state-of-the-art post-processing
method based on auxiliary information, with fewer false de-
tection. Besides, an unsupervised change detection strategy,
MCMO, was proposed and integrated with the SG-FCNN to
detect newly occurred landslides based on bitemporal VHR
remote sensing images. The proposed MCMO strategy is easy to
implement and superior to the state-of-the-art change detection
technique in terms of detection accuracy and efficiency. Apply-
ing the MCMO can fully utilize the merits of the unsupervised
change detection strategy and the proposed SG-FCNN.

Given the above, the proposed SG-FCNN and MCMO strat-
egy raises the performance of landslide detection to a new level
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but also presents a new methodology for landslide detection
by introducing landslide susceptibility as knowledge guidance,
which is considered more important. The application range of
landslide susceptibility maps would not be limited to landslide
risk management and can be adopted in landslide inventory
mapping. Considering that this is the first attempt to integrate
landslide susceptibility and detection, this article also has a
certain insufficiency as discussed in Section V-D, which should
be addressed in our future article.
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