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Land Surface Temperature Retrieval From Landsat 9
TIRS-2 Data Using Radiance-Based

Split-Window Algorithm
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Hua Li , Junlei Tan , and Xiuguo Liu

Abstract—The thermal infrared sensor-2 (TIRS-2) carried on
Landsat 9 is the newest thermal infrared (TIR) sensor for the
Landsat project and provides two adjacent TIR bands, which
greatly benefits the land surface temperature (LST) retrieval at
high spatial resolution. In this article, a radiance based split window
(RBSW) algorithm for retrieving LST from Landsat 9 TIRS-2 data
was proposed. In addition, the split-window covariance-variance
ratio (SWCVR) algorithm was improved and applied to Landsat 9
TIRS-2 data for estimating atmospheric water vapor (AWV) that
is required for accurate LST retrieval. The performance of the
proposed method was assessed using the simulation data and satel-
lite observations. Results reveal that the retrieved LST using the
RBSW algorithm has a bias of 0.06 K and root-mean-square error
(RMSE) of 0.51 K based on validation with the simulation data.
The sensitivity analysis exhibited a LST error of <1.75 K using the
RBSW algorithm when the uncertainties in input parameters (i.e.,
AWV, emissivity, and at-sensor radiance) were considered. There is
a marginal discrepancy between LST retrievals using the estimated
AWV and moderate resolution imaging spectroradiometer AWV,
with a difference in bias of −0.14 K and RMSE of 0.22 K, which
indicates that the improved SWCVR method can provide an op-
tional means to obtain AWV inputted in LST retrieval. With regard
to the validation using the in situ measurements, the retrieved LST
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from Landsat 9 TIRS-2 data exhibits a bias of 0.44 K and RMSE
of 1.98 K, respectively, showing a higher accuracy than the USGS
Landsat LST product with bias of 1.21 and RMSE of 2.56 K. In
conclusion, the proposed algorithm combining RBSW algorithm
and improved SWCVR algorithm for LST retrieval from Landsat
9 has a good accuracy without dependence on external atmospheric
data, and it is expected to be a reliable method for LST generation
from Landsat 9 TIRS-2 data.

Index Terms—Land surface temperature (LST) retrieval,
Landsat 9 thermal infrared sensor-2 (TIRS-2) data, radiance-
based split window (RBSW) algorithm, split-window covariance-
variance ratio (SWCVR) algorithm.

I. INTRODUCTION

A S AN essential climate variable, land surface temperature
(LST) is widely used in surface soil moisture estimation

[1], [2], crop evapotranspiration estimation [3], [4], calculation
of urban heat island intensity [5], [6], [7], [8] and calculation
of surface radiative fluxes [9], [10]. Long-term temporal and
spatial distribution of LST is pivotal for the studies of surface
energy and water balance [11], [12], carbon cycle in the Earth-
atmosphere continuum [13], global climate change [14], [15].
Since its wide use, LST has been scheduled as a high-priority
parameter of IGBP [16]. Thermal infrared (TIR) remote sensing
(RS) is considered as an effective mean to attain LST due to the
direct connection between LST and surface thermal emission
[17], [18].

Landsat 9, the latest satellite in the Landsat family, was
launched on September 27, 2021, which continues the Landsat
data record for fifty years [19]. To the great extent, Landsat 9 is a
copy of Landsat 8, carrying two sensors, i.e., an operational land
imager-2 and a thermal infrared sensor-2 (TIRS-2) [19]. Similar
with Landsat 8 TIRS-1, Landsat 9 TIRS-2 has two TIR bands,
i.e., band 10 ranged from 9.8 to 11.8 μm and band 11 ranged
from 11 to 13 μm. Some previous studies retrieve LST from
Landsat 8 TIRS-1 data using multiple single channel methods
[20], [21], [22], [23], [24], [25], [26], [27]. In addition, some
scholars have recently tried to use split window (SW) algorithm
to retrieve LST from Landsat 8 TIR data after stray light cor-
rection and achieved comparable LST retrieval accuracy with
single-channel algorithm [26], [27], [28]. Following Landsat 8
TIRS-1, USGS recently released the analysis ready data (ARD)
LST product developed from Landsat 9 TIRS-2 data using the
operational single-channel method [23]. Landsat 9 TIRS-2 is
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an improved version of Landsat 8 TIRS-1 by solving two main
issues, i.e., the scene select mirror failure and stray light effect
[29]. Two adjacent TIR bands of Landsat 9 TIRS-2 allow for the
implementation of SW algorithm to retrieve LST.

The SW method is the most widely used method for LST
retrieval based on TIR RS data, which utilizes the difference
of atmospheric absorption between two adjacent TIR channels
centered at 10–12 μm [30]. Since Price first developed an SW
method [31], various SW methods have been proposed for LST
retrieval [17], which are grouped into two categories: linear
SW method [26], [32], [33], [34], [35], [36] and nonlinear
SW method [28], [37], [38], [39], [40], [41]. The linear SW
method estimates the LST by linearly combining the bright-
ness temperatures measured by the two adjacent TIR bands;
whereas the nonlinear SW method adds a term of the square
of the difference between two brightness temperatures into the
linear one [17]. Many studies have improved the SW method by
modeling the effect of land surface emissivity (LSE), viewing
zenith angle (VZA), and atmospheric water vapor (AWV) on
LST retrieval and integrating them into the coefficients of SW
method [35], [42], [43]. In addition, the two-channel SW method
was extended to the three- and four-channel SW method in
recent studies, and it was found that the three- and four-channel
SW method has better results than the two-channel one [44],
[45]. However, the three- and four-channel SW methods are not
suitable for Landsat 9 TIRS-2 data with only two thermal bands
available. By simplifying radiative transfer equation (RTE) and
reserving more of the physical mechanism derived from RTE and
Planck function, we proposed the radiance-based split-window
(RBSW) algorithm with high accuracy of LST retrieval [46]. As
such, this article focuses on adapting the RASW algorithm to
Landsat 9 TIRS-2 data.

In the implementation of SW algorithm, AWV is required for
describing the atmospheric effect [47]. In general, according to
spectral region, the AWV estimation algorithms can be grouped
into three categories: near-infrared algorithms; TIR algorithms;
and microwave algorithms [48]. Since Landsat 9 has only one
near-infrared channel and no microwave channel, only the TIR
algorithms can be used to estimate AWV from Landsat 9 data.
The split window covariance-variance ratio (SWCVR) algo-
rithm was developed by Sobrino et al. [49] for AWV retrieval
from TIR data and optimized by Li et al. [48] by introducing
two constraints, and adapted to Landsat 8 TIRS-1 data [47] and
VIIRS/S-NPP data [50]. The SWCVR method was developed
for AVHRR/ATSR TIR data at ∼1 km spatial scale under the
assumption that LSE and atmosphere remain the same over the
N neighboring pixels [49]. However, constant LSE over the N
neighboring pixels is unreasonable for high resolution TIR data
with significant spatial heterogeneity. To deal with this problem,
in this article, pixel grouping based on LSE is introduced into
the SWCVR method to adapt to Landsat 9 TIRS-2 data for
estimating AWV.

This article aims to develop an integrated method based on
RBSW and SWCVR algorithms to retrieve LST using Land-
sat 9 TIRS-2 data. The main characteristic of the proposed
method is that it simplifies the RTE and reserves more of the
physical mechanism derived from RTE without depending on

any external atmospheric data. To assess the performance of
the proposed method, a comprehensive simulation dataset was
compiled by using the TIGR atmospheric profiles and ASTER
emissivity library. Meanwhile, in situ measurements from the
surface radiation budget (SURFRAD) network over the contigu-
ous U.S. and the Heihe watershed allied telemetry experimental
research (HiWATER) experiment over northwestern China were
used to validate all the Landsat 9 LST retrievals available since
its launch.

II. METHODOLOGY

A. Radiance Based Split Window Algorithm

Different from the other SW algorithms, the RBSW algorithm
uses at-sensor radiance for two adjacent TIR channels as input,
instead of at-sensor brightness temperature. First, the black body
equivalent-surface emittance is retrieved from two at-sensor
radiances using the SW equation, and then LST is estimated from
the black body equivalent-surface emittance using the inverse of
the Planck function. The RBSW algorithm for retrieving LST
from Landsat 9 TIRS-2 can be written as [46]

Ts =
c2λ

−1
10

LN
(

c1λ−5
10

B10(TS) + 1
) (1)

with

B10 (TS) = A0 L10 +A1L11 +A2 (2)

where Ts represents the LST; LN represents natural logarithm
function;B10(TS) represents the blackbody radiance with a tem-
perature of LST; L10 and L11 represent the at-sensor radiances
for bands 10 and 11; c1 = 1.19104×108 Wμm4m−2sr−1 and c2
= 1.43877×104 μmK; λ10 is the effective wavelength for band
10 (10.8372 μm); A0, A1 and A2 are intermediate variables of
RBSW algorithm and can be calculated from

A0 =
D11

C10D11 − C11D10
(3)

A1 =
−D10

k (C10D11 − C11D10)
(4)

A2 =
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(5)
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C10/11 = ε10/11 τ10/11 (6)
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1− τ10/11

) [(
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)
τ10/11ϕ10/11 + 1

]
(7)

where ε10/11 is the LSE for band 10 or 11; k and b are the
radiative parameters used for radiance conversion between two
bands based on Planck’s function; and τ10/11 and ϕ10/11 are the
atmospheric parameters for band 10 or 11, respectively. k and
b can be calculated from L10 and the effective wavelength for
bands 10 and 11 using the following formulas:
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TABLE I
COEFFICIENTS ak (k = 0, 1, . . . 3) OF RBSW ALGORITHM FOR LANDSAT 9

TIRS BANDS 10 AND 11

b =
c1λ

−5
11(

c1λ
−5
10L

−1
10 + 1

)(λ10λ−1
11) − 1

− kL10 (9)

where λ11 is the effective wavelength for band 11 (12.0253 μm).
Since the maximum VZA of Landsat 9 TIRS-2 is about 7.5˚,
the effect of VZA on the RTE is insignificant [36]. Thus, the
formulas for calculating τ10/11 and ϕ10/11 can be rewritten as

τ10/11 = a0 w + a1 (10)

ϕ10/11 = a2 LN (w) + a3 (11)

where w is the AWV; ak (k = 0, 1, . . . 3) are coefficients of
RBSW algorithm for Landsat 9 TIRS-2 data and can be obtained
from a simulation dataset.

The simulation dataset was constructed by atmospheric radia-
tive transfer code MODTRAN 5.2 with input of surface char-
acteristics and atmospheric conditions, and spectrally resam-
pled using the spectral response function of Landsat 9 TIRS-2
sensor. 1393 clear-sky atmospheric profiles were selected from
TIGR2000 dataset, in which profiles with the relative humidity
greater than 90% in any layer were considered as cloudy, and
inputted into MODTRAN as the atmospheric conditions. A total
of 81 selected ASTER emissivity samples were used as surface
characteristics, including 13 rock samples, 54 soil samples, 4
man-made samples, 4 vegetation samples and 6 water-ice-snow
samples. In addition, eight grades of LST were set based on the
bottom air temperature (Tb), including Tb − 10 K, Tb − 5 K,
Tb, Tb + 5 K, Tb + 10 K, Tb + 15 K, Tb + 20 K, Tb + 25 K
[25]. In total 902 664 simulation data were obtained (1393
atmospheric profiles× 8 LSTs × 81 emissivities) and divided
into two groups. Two thirds of simulation data were used for
fitting RBSW algorithm (named as SD1), and remaining third
were employed for validating the RBSW algorithm (named as
SD2). The coefficients of RBSW algorithm for Landsat 9 TIRS-2
data were calculated by global fitting the RBSW algorithm based
on the SD1, as given in Table I and Fig. 1.

B. Estimation of Land Surface Emissivity

With the pronounced advantage of its simplicity, the normal-
ized difference vegetation index thresholds Method (NDVITHM)
has been applied to various VNIR and TIR instruments, such as
Landsat 4/5/7/8 [51]. The soil component emissivity calculated
from ASTER GED LSE data can be used to further improve
the Landsat LSE estimation using NDVITHM [52]. Introducing
ASTER GED LSE data into NDVITHM, the LSE estimation for
Landsat 9 TIRS-2 bands 10 and 11 involves three steps. First,
the bare soil emissivities for the ASTER TIR bands 13 and 14
are obtained by removing the vegetation component from the
ASTER emissivity using the fractional vegetation cover (FVC)

Fig. 1. Histogram of the error on LST of the fitting RBSW algorithm using
the simulation data.

[23].

εA13/A14, bare =
εA13/A14 − εA13/A14, vegfASTER, veg

1− fA13/A14, veg
(12)

where εA13/A14 represents the LSE for ASTER band 13 or
14 from ASTER GEDV3 dataset, εA13/A14, bare represents the
emissivity of bare soil for ASTER band 13 or 14, εA13/A14, veg

represent the pure vegetation emissivity for ASTER band 13
or 14, fASTER, veg represents ASTER FVC. And then, the
estimated emissivities of bare soil for ASTER bands 13 and
14 are spectrally adjusted to that for Landsat 9 TIRS-2 bands 10
and 11 using regressed linear equations as follows [53]:

ε10/11, bare = b0 εA13, bare + b1εA14, bare + b2 (13)

where ε10/11, bare represents the emissivity of bare soil for
Landsat 9 TIRS-2 band 10 or 11, bk (k = 0, 1, 2) represent
the coefficients of the regression equation. Finally, the LSE for
Landsat 9 TIRS-2 bands 10 and 11 is estimated by adding vege-
tation emissivity information to the Landsat bare soil emissivity
using the Landsat FVC as follows [51]:

ε10/11 = fLandsat, veg · εL10/11, veg

+ (1− fLandsat, veg) · ε10/11, bare (14)

where ε10/11 represents the LSE for Landsat 9 band 10 or
11, ε10/11, veg represents the emissivity of pure vegetation for
Landsat 9 band 10 or 11, fLandsat, veg represents Landsat FVC.
Landsat and ASTER FVC can be calculated as follows [54]:

fASTER/Landsat, veg

=

(
NDVIASTER/Landsat − NDVIASTER/Landsat, bare

NDVIASTER/Landsat, veg − NDVIASTER/Landsat, bare

)2

(15)

where NDVIASTER/Landsat represents the ASTER/Landsat
NDVI, NDVIASTER/Landsat, veg and NDVIASTER/Landsat, bare
represent the ASTER/Landsat NDVI for pure vegetation and
bare soil, with value of 0.86 and 0.2, respectively [55].
Based on the similar method, replacing NDVI with normalized
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TABLE II
COEFFICIENTS bk (k = 0, 1, 2) FOR LANDSAT 9 TIRS-2 BANDS 10 AND 11

Fig. 2. Histograms of error in LSE for band 10 (left) and for band 11 (right)
using regressed linear equations.

TABLE III
EMISSIVITIES OF PURE VEGETATION, SNOW AND WATER FOR LANDSAT 9

TIRS-2 BANDS 10 AND 11, AND ASTER BANDS 13 AND 14

difference snow index, the impact of snow cover on the emis-
sivity estimation is adjusted.

A set of emissivity samples from ASTER spectral library was
employed to fit the (13) and calculate emissivities for pure veg-
etation, snow and water for Landsat 9 TIRS-2 bands 10 and 11,
and ASTER bands 13 and 14. The spectral emissivity was con-
verted to the band-effective emissivity by spectral resampling
with spectral response function of Landsat 9 TIRS-2 and ASTER
TIR bands. The regression coefficients bk (k = 0, 1, 2) for
Landsat 9 TIRS-2 bands 10 and 11 were calculated by fitting
the (13) based on 71 samples, including 13 rock samples, 54
soil samples and 4 man-made samples, as given in Table II and
Fig. 2. Emissivities of pure vegetation, snow and water were
calculated by averaging emissivities of three vegetation samples,
three snow samples, and two water samples, respectively, and
the results for Landsat 9 TIRS-2 bands 10 and 11, and ASTER
bands 13 and 14 are given in Table III.

C. Calculation of Atmospheric Water Vapor Content

Assuming that LSE and atmosphere remain unchanged, or
the influences of their spatial variations are less than instrument
noise effect over the N neighboring pixels, the SWCVR algo-
rithm for retrieving AWV from Landsat 9 TIRS-2 data can be

written as (Li et al. 2003 and Sobrino et al. 1994)

w = c0

(
τ11
τ10

)
+ c1 (16)

with

τ11
τ10

=
ε10
ε11

·
∑N

k = 1 (T10,k − T ∗
10) (T11,k − T ∗

11)∑N
k = 1 (T10,k − T ∗

10)
2

(17)

r2 =

(∑N
k=1 (T10,k − T ∗

10) (T11,k − T ∗
11)

)2

∑N
k=1 (T10,k − T ∗

10)
2 ∑N

k=1 (T11,k − T ∗
11)

2
(18)

where w represents AWV; τ10 and τ11 represent transmittance
of TIRS-2 bands 10 and 11; c0 and c1 represent the coefficients
of AWV model; k represents pixel k; T10,k and T11,k represent
brightness temperature of TIRS-2 bands 10 and 11 for pixel
k; T ∗

10 and T ∗
11 represent the mean brightness temperature of

Landsat 9 TIRS-2 bands 10 and 11 over N pixels, respectively;
r2 represents the correlation coefficient between two brightness
temperatures (i.e., T10,k and T11,k) for the N neighboring pixels,
which is used to test whether the assumptions made for (17) are
valid. According to the work of Li et al. [48], a reliable result
requires a r2 value no less than 0.95. The coefficients c0 and c1
were calculated by fit the (16) using the SD1 (see Section II-A),
as shown in Fig. 3.

The SWCVR method is developed for TIR data at coarse
spatial resolution (e.g., AVHRR/ATSR TIR data with ∼1 km
spatial resolution), when applied to Landsat 9 TIRS-2 at a spatial
resolution of 0.1 km, it has some limitations and needs to be
improved. There is an important assumption that LSE over the
N neighboring pixels remains constant in SWCVR method.
However, this assumption is unreasonable for high resolution
TIR data with significant spatial heterogeneity. In this article,
therefore, pixel grouping based on the LSE ratio is introduced
to adapt SWCVR method to Landsat 9 TIRS-2 data. The N
neighboring pixels are grouped with equal-interval based on the
maximum and maximum emissivity ration (ε10

ε11
) of the whole

image and the number of groups (M). The comprehensive AWV
(w) for N neighboring pixels is calculated from the AWV and
pixel number of the effective group with r2 of larger than 0.95
using the weighted sum method as follows:

w =

∑i=M
i=1 Niwi∑i=M
i=1 Ni

(19)

where wi represents the AWV for group i calculated using the
(16), Ni represents the valid pixel number for group i.

In the original SWCVR method, the emissivity ratio ( ε10ε11
) is

taken as 1 at a kilometer scale considering the pixel is mixed by
different types of surfaces. However, the variation of emissivity
ratio ( ε10ε11

) for high resolution TIR data is larger than that of
coarse spatial resolution. In this article, the mean emissivity ratio
( ε10ε11

) for each group is estimated and used in (17) to improve
the calculation of the transmittance ratio.
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Fig. 3. Relationship between AWV and the transmittance ratio of bands 11 and 10 (right) and the histogram of error on AWV based on the linear regression
relationship (left).

TABLE IV
DETAILS OF THE HIWATER AND SURFRAD SITES

D. Validation of AWV Using in situ Data

The AERONET program provides long-term, continuous,
global observations of spectral aerosol optical depth, precip-
itable water, and other related parameters to support aerosol
research and characterization, validation of satellite retrievals
[47]. The AWV was estimated using the observed data in the
water absorption band (approximately 940 nm) [56], [57]. A
total of 12 AERONET stations (see Table IV) were chosen for
the validation of AWV retrieved using the SWCVR and the
improved SWCVR methods.

In order to compare with in situ AWV, the retrieved AWV
are spatially matched with each AERONET site based on the

longitude and latitude of the site. The in situ AWV for the transit
time of Landsat 9 satellite is calculated by linearly interpolating
two in situ measurements temporally closest to the transit time.
Then, a pair of retrieved and in situ AWVs can be generated
through spatially and temporally matching.

E. Validation of LST Using in situ Data

The continuous and high-quality surface radiation budget
and meteorological measurements taken from SURFRAD and
HiWATER networks can promote the RS retrieval validation
and climatology studies [58], [59], [60], [61]. The temporal
resolution of longwave radiation measurements at SURFRAD
and HiWATER sites is 1 to 3 min. Four SURFRAD sites and two
HiWATER sites have been employed to validate the retrieved
LST from Landsat 9 TIRS-2 data, see Table V and Fig. 4. in
situ LST Ts was estimated from measured broadband upwelling
and downwelling longwave radiation measured (i.e., Rg and
Rd) from SURFRAD and HiWATER sites based on the Stefan-
Boltzmann law [21], [62]:

Ts =

[
Rg − (1− εb)Rd

εb

]1/4
(20)

where εb represents broadband emissivity and can be calculated
from ASTER narrowband emissivity using the following regres-
sion equation [63]:

εb = 0.197 + 0.025εA10 + 0.057εA11 + 0.237εA12

+ 0.333εA13 + 0.146εA14 (21)

where εA10 to εA14 represent the LSE for ASTER bands 10
to 14. The retrieved LST and in situ LST were spatially and
temporally matched to generate LST pairs, similar as validation
of AWV.
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TABLE V
DETAILS OF THE HIWATER AND SURFRAD SITES

Fig. 4 Photographs of the four SURFRAD sites (i.e., BND, GWN, PSU, and SXF) and two ARM sites (i.e., DM and SDQ).

TABLE VI
BIAS AND RMSE BETWEEN THE RETRIEVED AND SIMULATED LSTS AT DIFFERENT AWV RANGES (G CM−2)

III. RESULTS

A. Validation of the RBSW Algorithm Using Simulation Data

The performance of the RBSW algorithm for Landsat 9
TIRS-2 data was assessed using SD2 (see Section II-A). As
shown in Fig. 5, LST errors concentrate around zero under low
AWV, and are more scattered with increasing AWV. The main
reason is the larger influence of atmosphere on LST retrieval
from satellite data with the AWV increasing. The correction
to atmospheric effect for LST retrieval has greater uncertainty
within higher AWV conditions. As given in Table VI, the bias of
RBSW algorithm is close to zero except for AWV range from 4.0
to 5.0 g cm−2. The RMSE of RBSW algorithm increases with
increasing of AWV, and the RMSE increases from 0.10 to 2.37 K
when the AWV is lower than 7 g cm−2. The RMSE is less than
1 K when AWV is lower than 5.0 g cm−2 and less than 2.50 K

when AWV is lower than 7.0 g cm−2. The total bias and total
RMSE of RBSW algorithm for whole AWV range are 0.06 and
0.51 K, respectively. Table VII gives bias and RMSE between the
retrieved and simulated LSTs for different types of land cover.
The RMSE of RBSW algorithm for different land cover types
are close, and the RMSE difference is less than 0.15 K. There
is a weak growth trend of RMSE from man-made (0.42 K), soil
(0.47 K), rock (0.53 K), vegetation (0.56 K) to water-snow-ice
(0.59 K). This indicated that the RMSE slightly increases with
the increasing of LSE based on the simulation data validation in
which there are no error in input parameter.

B. Sensitivity Analysis of RBSW Algorithm

The sensitivity of RBSW algorithm to LSE, at-sensor radi-
ance and AWV was analyzed considering different AWV and
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TABLE VII
BIAS AND RMSE BETWEEN THE RETRIEVED AND SIMULATED LSTS FOR DIFFERENT TYPES OF LAND COVER

Fig. 5. Box plot (top) and density scatter plot (bottom) of the difference
between the retrieved LST for RBSW algorithm and simulated LST.

LSE conditions, as shown in Fig. 6. Fig. 6(a)–(c) represents
the possible error of estimated LST using RBSW algorithm
aroused by the probable LSE error. The RBSW algorithm is
more sensitive to the error in ε10 than to the error in ε11 and the
same errors in both ε10 and ε11. Such as, at AWV of 2 g cm−2,
an ε10 error of 0.01 arouses a LST error of 0.91 K, whereas an
ε11 error of 0.01 arouses a LST error of 0.57 K, and the same
ε10 and ε11 error of 0.01 arouses a LST error of 0.37 K. This is
because that the LST is directly calculated fromB10(Ts) and ε10
using the (1) of RBSW algorithm. Fig. 6(d)–(f) represents the
possible error of estimated LST using RBSW algorithm aroused
by the probable at-sensor radiance error. The LST estimation
error aroused by the at-sensor radiance error in single band
increases with the AWV, whereas the LST estimation error
aroused by the at-sensor radiance error in both bands 10 and
11 marginally changes with the AWV. The RBSW algorithm is
more sensitive to the at-sensor radiance error in a single channel
than to the same error on L10 and L11. For example, at AWV of
2 g cm−2, an L10 error of 0.04 Wm−2sr−1μm−1 (i.e., NEΔT of
0.28 K at 300 K) causes a LST error of 0.67 K, an L11 error of
0.04 Wm−2sr−1μm−1 causes a LST error of 0.46 K, whereas the
same L10 and L11 error of 0.04 Wm−2sr−1μm−1 arouses a LST
error of 0.21 K. Fig. 6(g) and (i) represents the possible error of
estimated LST using RBSW algorithm aroused by the probable
AWV error under low LSE (i.e., ε10 = 0.949 and ε11 = 0.955),

moderate LSE (i.e., ε10 = 0.961 and ε11 = 0.967) and high LSE
(i.e., ε10 = 0.981 and ε11 = 0.987) conditions. The error in
LST estimation aroused by the AWV error increases with the
AWV under low and moderate LSE, whereas the error in LST
estimation aroused by the AWV error marginally changes with
the AWV under high LSE. The sensitivity of RBSW algorithm to
the AWV decrease with the increasing of LSE. Such as, at AWV
of 2 g cm−2, an AWV error of 0.6 g cm−2 leads to a LST error
of 0.43 K for low LSE, 0.26 K for moderate LSE and 0.01 K for
high LSE. When the errors of 0.04 Wm−2sr−1μm−1 in L10, 0.01
in ε10, 0.6 g cm−2 in AWV, the total errors in LST estimation
are 1.10 K for low LSE and low AWV (i.e., 0.5 g cm−2), 1.74 K
for low LSE and high w (i.e., 4.5 g cm−2), 1.10 K for high LSE
and low w, and 1.53 K for high LSE and high w, respectively.

C. Application of the RBSW Algorithm for Landsat 9
TIRS-2 Data

A Landsat 9 image acquired over southeastern Australia on
13 February 2022 was employed to estimate LSE, AWV, and
LST, as shown in Fig. 7. Fig. 7(a) and (b) shows that the LSE of
bands 10 and 11 mainly range from 0.96 to 0.99. The vegetation
has a higher LSE, whereas the bare land has a lower LSE. The
LSE of band 10 is generally lower than that of band 11, which
is in agreement with the statistic from LSE spectral library.

In order to obtain the optimal AWV estimation, the AWV
results were estimated using different window size and the
number of groups and compared with the moderate resolution
imaging spectroradiometer (MODIS) AWV. As shown in Fig. 8,
the RMSE between MODIS AWV and the retrieved AWV using
the improved SWCVR decreases with the increase of window
size. There is a sharp decline of RMSE with the window size
from 20 to 60, and the RMSE tend to be stable after window
size of 80. The RMSE increases with increase of group number
when the window size is less than 40; whereas it decreases with
increase of group number when the window size is larger than
40. Therefore, the window size is set to 100 to extract the N
(100×100) neighboring pixels, and the number of group (M) is
set to 3. Fig. 7(c) showed the map of AWV estimated using
the improved SWCVR with window size of 100 and group
number of 3. The AWV retrieved from Landsat 9 TIRS-2 data
are between 1.4 and 2.8 g cm−2. The retrieved AWV has a similar
spatial distribution with the MODIS AWV [see Fig. 7(d)], like
the AWV over south is larger than that of north. Fig. 9(a) showed
the bias and RMSE between MODIS AWV and the retrieved
AWV are −0.27 and 0.40 g cm−2, respectively.

Fig. 7(e) shows the map of LST retrieved using RBSW algo-
rithm with input of the retrieved AWV and LSE. The retrieved
LST mainly range from 300 and 320 K over the study area.
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Fig. 6. LST estimation error aroused by the possible LSE error (a, b, and c), at-sensor radiance error (c, d, and f) under different AWV, and LST estimation error
aroused by the possible AWV error for low LSE (g), moderate LSE (h) and high LSE (i) conditions under different AWV.

The retrieved LST shows a similar spatial distribution with
USGS LST [see Fig. 7(f)], but it is lower than that of USGS LST,
especially for high LST region. As shown in Fig. 9(b), the bias
(RMSE) between the retrieved LST with input of retrieved AWV
and the retrieved LST with input of MODIS AWV are −0.14 K
(0.22 K), indicating that the LST retrieval with input of AWV
estimated using the improved SWCVR method and MODIS
AWV give quite close results. Therefore, the improved SWCVR
method can provide an optional means to obtain AWV for LST
retrieval from Landsat 9 TIRS-2 data, especial for the region with
no overlap between MODIS data and Landsat 9 data. Fig. 9(c)
and (d) shows that the bias and RMSE between the retrieved
and USGS LSTs are around −1.9 and 2.1 K, respectively. In
the following, the in situ LST data was employed to validate the
retrieved and USGS LSTs.

D. Evaluation of AWV and LST Retrievals Using
in situ Measurements

The evaluation of AWV retrieval from Landsat 9 TIR-2 data
based on the SWCVR and the improved SWCVR methods
were performed using the in situ AWV measurements from
AERONET stations. The acquired date of Landsat 9 data is
between November 2021 and November 2022. As shown in
Fig. 10, the in situ AWV ranges from 0 to 6 g cm−2. Most of
points which are distributed around the 1:1 line present a good
accuracy, whereas the less points below the 1:1 line indicate
an underestimation of AWV. At the AWV range between 0 and

3 g cm−2, the bias (RMSE) is −0.06 g cm−2 (0.48 g cm−2)
for SWCVR method and −0.03 g cm−2 (0.47 g cm−2) for the
improved SWCVR method, respectively, showing a close perfor-
mance between SWCVR and the improved SWCVR methods.
At the AWV range between 3 and 6 g cm−2, the bias (RMSE)
is −0.70 g cm−2 (1.20 g cm−2) for SWCVR method and
−0.59 g cm−2 (1.07 g cm−2) for the improved SWCVR method,
respectively, indicating the accuracy of the improved SWCVR
method is better than SWCVR method. Validation using 173 in
situ measurements from 12 AERONET stations shows that the
total bias (RMSE) is −0.19 g cm−2 (0.69 g cm−2) for SWCVR
method and −0.15 g cm−2 (0.64 g cm−2) for the improved
SWCVR method, respectively.

The evaluation of retrieved LST using RBSW algorithm and
USGS LST were performed using in situ LST measurements
from HiWATER and SURFRAD networks. The number of
Landsat-in situ LST pairs is 58 at SURFRAD sites and 40 at
HiWATER sites, in total 98 clear-sky pairs of Landsat and in situ
LSTs. As shown in Fig. 11, the in situ LST are between 260 K
and 320 K, and has a high relevant correlation with retrieved LST
using the proposed method and USGS LST. The bias (RMSE) at
SURFRAD sites is 0.57 K (1.73 K) for the proposed method and
0.99 K (2.40 K) for USGS LST, respectively. The bias (RMSE)
at HiWATER sites is 0.26 K (2.27 K) for the proposed method
and 1.51 K (2.76 K) for USGS LST, respectively. Validation
using in situ data shows that the proposed method achieves a
good accuracy (with bias of 0.44 K and RMSE of 1.98 K) and
is superior than USGS LST (with bias of 1.21 K and RMSE



1108 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 7. (a) Map of the LSE for Landsat 9 TIRS-2 bands 10. (b) Map of the LSE
for Landsat 9 TIRS-2 band 11. (c) Map of the AWV estimated using the improved
SWCVR method. (d) Map of the AWV from MODIS MOD05 product. (e) Map
of LST retrieved using the proposed method. (f) Map of the LST from USGS
ARD product. Landsat 9 and MODIS data were acquired over Southeastern
Australia on 13 February 2022.

of 2.56 K) based on 98 in situ LST data from HiWATER and
SURFRAD networks.

IV. DISCUSSION

A. AWV Retrieval From Landsat 9 TIR-2 Data

This article proposed an improved SWCVR method for re-
trieving AWV from Landsat 9 TIRS-2 data, which relieves the
LST retrieval from Landsat TIR data from its dependence on
atmospheric auxiliary data. For the previous missions of the
Landsat series, different atmospheric auxiliary data have been
used for LST retrieval, including meteorological observations,
MODIS atmospheric products [64] and reanalysis data [24].
Meteorological data is site-based measurement, which limits its
application at large scales, especially for regions where ground

Fig. 8. RMSE between MODIS AWV and the retrieved AWV using the
improved SWCVR with different window size and group number.

Fig. 9. (a) Histograms of difference between MODIS AWV and the retrieved
AWV using the improved SWCVR with window size of 100 and group number
of 3 and (b)–(d) between USGS and the retrieved LSTs. Retrieved LST represent
LST retrieved using RBSW algorithm with input of the retrieved AWV; Retrieved
LST∗ represent LST retrieved using RBSW algorithm with input of the MODIS
AWV.

stations are sparsely distributed [64]. In many regions, the Land-
sat image cannot be fully covered by the corresponding MODIS
image, even no overlap between them [65]. Compared with
Landsat TIR data, reanalysis atmospheric data normally have
very coarse spatial resolutions, which may cause uncertainties in
LST retrieval [55]. The AWV estimation from Landsat 9 TIRS-2
itself using the improved SWCVR method can greatly improve
the practicability of LST retrieval.

The accuracy of original SWCVR method increases with the
window size and decreases with the number of land cover types
(i.e., the LSE types) involved in the window [47]. In general, the
number of land cover types included in the window increases
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Fig. 10. Comparison between the in situ AWV and the retrieved AWV using
the proposed method and SWCVR method.

Fig. 11. Comparison between the in situ LST and the retrieved LST using the
proposed method and RTE method (USGS).

with its size, which forms a paradox in the perspective of the
performance of SWCVR. In the improved SWCVR method,
this paradox can be effectively alleviated by grouping pixels
based on LSE. As shown in Fig. 8, the RMSE between retrieved
and MODIS AWVs decreases with the window size when the
window size is below 80, and the RMSE decrease with the group
number when the window size is above 40. The atmosphere is
more spatially homogeneous than the land surface. In this article,
the window size was set to 100 (corresponding to a spatial resolu-
tion of 3 km), and the group number was set to 3. Compared with
MODIS AWV, the AWV retrieved using improved SWCVR has
a bias of −0.27 g cm−2 and RMSE of 0.40 g cm−2. Validation
using in situ AWV data from AERONET stations shows that the
total bias (RMSE) of the improved SWCVR is −0.19 g cm−2

(0.69 g cm−2).

B. LST Retrieval From Landsat 9 TIR-2 Data

The simulation data were divided two parts, including two
thirds of simulation data for fitting the RBSW algorithm and
another one third for validating RBSW algorithm. The total

RMSE of LST retrieval using the independent validating sim-
ulation data set is 0.51 K, which is close to the RMSE in the
fitting process (0.46 K). This indicates that the RBSW algorithm
has a good accuracy and is generally applicable. In addition,
the sensitivity of RBSW algorithm was analyzed considering
different land surface and atmosphere conditions. Within the
usual error range of input parameters, the overall LST error using
RBSW algorithm is less than 1.75 K. The cross validation with
USGS LST showed that the bias and RMSE between the esti-
mated LST and USGS LST are −1.97 and 2.12 K, respectively.
This LST difference is mainly caused by the different LST
retrieval algorithms. The proposed method is two channels SW
method, whereas the USGS LST used a single channel RTE
method [23].

The in situ LST data from HiWATER and SURFRAD sites
were used to validate the retrieved LST from Landsat 9 TIRS-2
data. The bias (RMSE) of USGS LST at SURFRAD sites is
0.99 K (2.40 K), which is in good agreement with the results
of Landsat 7 and 8 validated at same sites by Malakar et al.
[23]. The retrieved LST from Landsat 9 using RBSW algorithm
has a good accuracy, with a bias (RMSE) is 0.57 K (1.73 K)
at SURFRAD sites, which is better than the LST accuracy of
previous Landsat series sensors validated at same sites (i.e.,
Landsat 4/5/7/8) [62], [66]. This indicates that the SW algorithm
has better performance in atmospheric correction compared
with single channel algorithm considering that the same LSE
estimation method is used.

V. CONCLUSION

This article developed a SW method for LST retrieval from
the newly launched Landsat 9 TIRS-2 data. The AWV was
calculated using the improved SWCVR method in which a
method for grouping pixels was introduced to mitigate the
impact of high spatial heterogeneity of LSE. The LSE was
calculated by combining NDVITHM and ASTER GED LSE data.
The performance of the proposed method was evaluated using
the simulation data and ground data.

The sensitivity analysis showed that the RBSW algorithm
is more sensitive to the error in ε10 as compared to the error
in ε11 and the same errors in both ε10 and ε11. The RBSW
algorithm is more sensitive to the at-sensor radiance error in
a single channel than to the same error in L10 and L11. The
sensitivity of RBSW algorithm to the AWV decrease with LSE.
When the uncertainties are 0.04 Wm−2sr−1μm−1 (i.e., NEΔT
of 0.28 K at 300 K) for L10, 0.01 for ε10, 0.6 g cm−2 for AWV,
the overall errors in LST are between 1.10 K and 1.74 K under
different atmospheric and surface conditions.

The improved SWCVR method for estimating the AWV
has a good accuracy, with a bias (RMSE) of −0.27 g cm−2

(0.40 g cm−2), by cross validation with MODIS AWV data.
Validation using in situ AWV data from AERONET stations
shows that the total bias (RMSE) of the improved SWCVR is
−0.19 g cm−2 (0.69 g cm−2). The LST retrieval using the esti-
mated AWV show a similar result to that using the MODIS AWV
data. Therefore, the improved SWCVR method can provide an
optional means to obtain AWV for LST retrieval from Landsat



1110 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

9 TIRS-2 data, especial for the region with no overlap between
MODIS and Landsat 9 data.

Validation result based on the simulation data showed that the
RMSE of RBSW algorithm is less than 1 K under AWV of lower
than 5.0 g cm−2 and less than 2.5 K under AWV of lower than
7.0 g cm−2. The total bias and total RMSE of RBSW algorithm
for whole AWV range are 0.06 and 0.51 K, respectively. In
terms of the validation using SURFRAD and HiWATER in situ
measurements, the proposed method has a bias of 0.44 K and
RMSE of 1.98 K, respectively, showing a higher accuracy as
compared to the USGS Landsat ARD LST product.

In summary, it is effective for the proposed method to retrieve
LST from Landsat 9 TIRS-2 data. The main characteristic of
the proposed method is that it does not depend on auxiliary
atmospheric data, which can greatly improve its practicality.
More efforts are expected to paid to validate the estimated AWV
and LST using the proposed method with more land covers,
wider spatial ranges and long time series.
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