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Lightweight Reconstruction of Urban Buildings:
Data Structures, Algorithms, and
Future Directions
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Abstract—Commercial buildings as well as residential houses
represent core structures of any modern day urban or semiur-
ban areas. Consequently, 3-D models of urban buildings are of
paramount importance to a majority of digital urban applications,
such as city planning, 3-D mapping and navigation, video games
and movies, and construction progress tracking, among others.
However, current studies suggest that existing 3-D modeling ap-
proaches often involve high computational cost and large stor-
age volumes for processing the geometric details of the buildings.
Therefore, it is essential to generate concise digital representations
of urban buildings from the 3-D measurements or images so that
the acquired information can be efficiently utilized for various
urban applications. Such concise representations, often referred to
as “lightweight” models, strive to capture the details of the physical
objects with less computational storage. Furthermore, lightweight
models consume less bandwidth for online applications and facili-
tate accelerated visualizations. With many emerging digital urban
infrastructure applications, lightweight reconstruction is poised
to become a new area of research in the urban remote sensing
community. We aim to provide a thorough review of data structures,
representations, and state-of-the-art algorithms for lightweight 3-D
urban reconstruction. We discuss the strengths and weaknesses of
key lightweight urban reconstruction techniques, ultimately pro-
viding guidance on future research prospects to fulfill the pressing
needs of urban applications.

Index Terms—3-D urban models, data structures, deep learning,
geometric abstractions, level of detail (LOD) modeling, lightweight
reconstruction, point cloud, procedural encoding.

I. INTRODUCTION

APID growth in the urbanization with changing size of
cities has introduced uncertainty in the understanding of
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Fig. 1.
buildings that consume a storage space of 37 GB [2].

Mesh-based model of a large-scale city scene with 5061 distinct

the city dynamics. A solution to this ever-increasing problem
is 3-D city models which enable the smart city paradigm.
These digital models support a wide variety of applications,
such as 3-D mapping and navigation, urban planning and smart
cities, augmented/virtual reality (AR/VR), emergency response
training, movies and video games, and mining, among others.
Typically, point clouds of outdoor or indoor scenes and objects
are acquired through 3-D sensors, such as light detection and
ranging (LiDAR), and converted to triangular meshes using
specialized urban reconstruction algorithms before being used in
different real-world applications. These meshes usually contain
hundreds of millions of triangles, putting an enormous burden
on rendering, data transfer, and storage of applications. The
massiveness of the 3-D mesh volume can be understood such that
for a simple point cloud of a Stanford bunny of around 2 MBs, a
typical reconstructed mesh uses at least 20 MB of memory [1].
The ongoing studies related to geometric modeling show that
millions of triangles are required to represent the details of the
model. For instance, the city scene in Fig. 1 with 5061 distinct
buildings’ meshes comprise 671 million triangles that require
37 GB of storage space. This leads to the issues of large memory
size (number of faces increases the requirements of the meshes in
memory space) and computing capacity for a large-scale urban
scene models.

Modern day web-based urban applications demand concise
digital representations and, hence, favor lightweight reconstruc-
tion. Since this whole article is built around a comprehensive
review of lightweight reconstruction, we attempt to provide a
formal definition for the term lightweight reconstruction in the
context of 3-D reconstruction.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Lightweight Reconstruction can be defined as the process
of designing a reconstruction algorithm and/or a minimally
complex and less heavy data structure, to digitally represent
the physical object being modeled, that consumes minimum
storage space, thus facilitating accelerated rendering and fast
transmission of the model.

Lightweight models help in improving the overall efficiency
of 3-D reconstruction systems, especially for the applications
requiring real-time data transmission such as cloud-based 3-D
printing services [1]. The aim of the lightweight reconstruction
is to save memory without missing information and essential
details. Therefore, the advantage of lightweight models over
conventional heavy models is the preservation of the details
while using less complicated structures in terms of memory
usage. In some cases, the high quality of a reconstructed building
model does not necessarily mean high geometrical accuracy.
In contrast, it means lightweight building models are aligned
with the specific needs of urban applications rather than serving
visualization purposes only. For many graphics applications,
high-quality textures for geometrical rendering are prioritized
over the geometry detailing [3]. Hence, we need to sacrifice
the geometric accuracy of the building models to make the
reconstructed model lightweight and to be used for a wide range
of purposes.

A. Scope of the Survey

Over the past years, numerous papers [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16] have been dedicated to
review the existing developments in the area of 3-D city mod-
eling. Wang et al. [4] briefly discuss fundamental approaches
and principles of 3-D modeling for real as well as virtual cities.
Berger et al. [9] categorize surface reconstruction techniques
from point clouds for various applications, including urban
environment reconstruction. This categorization comprises pa-
rameters including point cloud artifacts (noise, outliers, missing
data), input requirements (oriented/unoriented normals), shape
class (CAD, indoor scene objects, urban environment, archi-
tectural), and reconstruction output (mesh, point set, implicit
field, volumetric segmentation). Xu et al. [10] explain various
techniques for building and civil infrastructure reconstruction
from point clouds, including 3-D point cloud acquisition and
reconstruction methods. Similarly, a recent paper by Wang
et al. [5] explores state-of-the-art deep learning-based 3-D ur-
ban modeling solutions that acquire data through mobile laser
scanning along with mobile mapping system related applica-
tions. Xia et al. [11] discuss geometric primitives-based ex-
traction methods from point clouds for urban reconstruction.
These primitives are categorized into two classes, i.e., shape
primitives (lines, surfaces, and volumetric shapes) and structure
primitives (skeletons and edges). Musialski et al. [7] provide
a comprehensive overview of urban reconstruction techniques
based on input data including point clouds as well as images.
In this survey, various methods are grouped under fundamental
categories, including point clouds and cameras (multiview stereo
(MVS) structure from motion), buildings and semantics [image-
based modeling, LiDAR-based modeling, inverse procedural

modeling (IPM)], facades and images (facade imagery, facade
decomposition, and modeling), and blocks and cities (ground
reconstruction, aerial reconstruction). Similarly, Wang et al. [12]
discuss various LiDAR-based urban modeling techniques based
on reconstructed objects, such as buildings, trees, power lines,
roads/bridges, and sculptures. Further, Ying et al. [6] present the
current stature and substantial future prospective of 3-D urban
modeling methods used in between 2015 and 2020 based on their
characteristics, data requirements, user and technology, and eth-
ical considerations. However, despite a strong requirement for
lightweight 3-D reconstruction, a survey consolidating various
techniques and representations for lightweight reconstruction
does not exist in the literature. Therefore, this article is timely
aligned to fill this gap.

B. Review Topics and Contributions

In general, polygonal meshes are used to store accurate
geometric details and hence constitute dense representations
of models. However, these dense representations pose major
challenges for storage, transmission speed, and object rendering,
especially for web-based interactive applications. Thus, there is a
requirement for the best representation of lightweight modeling
approaches in this domain. As the urban model data structures
and the modeling methodologies are closely related to the recon-
struction of the lightweight models, we first review the state-of-
the-art data representation methods of 3-D urban scenes com-
prising polygonal (triangular/quadrilateral/hexagonal) meshes,
constructive solid geometry (CSG), B-Rep (Bezier patches,
splines), and stellar decomposition. Additionally, we will review
lightweight modeling approaches and their limitations in the
context of urban scene. These algorithms include geometric
abstractions, level of detail (LOD) modeling and mesh deci-
mation through Gradient Tensors. Our specific contributions in
this article are listed as follows.

1) Review and assessment of potential data structures and

representations for lightweight models.

2) Consolidation and review of different algorithms that di-

rectly or indirectly focus on lightweight reconstruction.

3) Comprehensive list of future directions in the context of

lightweight 3-D urban reconstruction.

The rest of this article is organized as follows. Section II
presents a review of potential data structures for lightweight
reconstruction of 3-D urban scenes. Algorithms for lightweight
reconstruction are discussed in Section III. Section IV describes
some of the future directions in the context of lightweight
3-D reconstruction of urban scenes. Finally, the conclusion and
insights for future work are provided in Section V.

II. DATA STRUCTURES AND OTHER REPRESENTATIONS FOR
LIGHTWEIGHT MODELS

In graphics and remote sensing applications, three-
dimensional objects can be efficiently represented using differ-
ent geometric structures such as triangular meshes or CSG in
CAD systems. Geometric data structures specify the fundamen-
tal elements of a 3-D object, such as, surfaces, space, and scene
structure. This section describes the most common lightweight
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TABLE I
TYPICAL STORAGE REQUIREMENTS OF DIFFERENT MESH DATA STRUCTURES

Mesh Structure | Vertex Position Array |

Indices Array | Repr. Edge | Total Storage

12 bytes/vert
12 bytes/vert

Winged-Edge Structure

Indexed Mesh Storage
Half-Edge Structure

12 bytes/vert

36 bytes/vert
112 bytes/vert
112 bytes/vert

96 bytes/vert 4 bytes/vert

24 bytes/vert -
96 bytes/vert 4 bytes/vert

Polygonal Mesh
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Fig. 2. Potential urban modeling data structures and representations.
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Fig. 3. Mesh model of a curved building from [17].

data structures used to represent 3-D objects, including polyg-
onal (triangular/quadrilateral/hexagonal) meshes, CSG, B-Rep,
and stellar decomposition.

A. Polygonal Meshes

Polygonal meshes are useful representations with many appli-
cations in computer graphics, geometric modeling, mechanical
engineering, architecture, etc. As shown in Fig. 3, polygonal
mesh consists of information about the geometry and topology
of the 3-D shape in terms of vertices, edges, and faces that
helps in defining the shape of a polyhedral object. Although
triangles and quadrilaterals are the most common polygons used
for surface representation of real-world models, several concep-
tual architectural structures benefit from free-form meshes with
planar hexagonal faces. The most common data structures to
represent the meshes are indexed lists, winged edge [18], and
half-edge [19] data structures (see Fig. 4). These data structures
allow the efficient traversal of meshes. Table I lists the space
requirements for these structures.

: @
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Fig. 4. Depiction of different mesh data structures using vertices (orange),
faces (green), and edges (blue). (a) Indexed mesh structure. (b) Winged-edge
structure where each vertex and face points to an edge. (c) Half-edge structure
where each vertex and face points to a half-edge [20].

(b)

Fig. 5. CSG. (a) Example of CSG operations with expression [23]. (b) Four
categories of geometric primitives showing level of complexity in different
colors [24].

B. Constructive Solid Geometry

CSG is a modeling technique used in CAD systems to create
the complex geometry by combining primitives. As shown in
Fig. 5(a), the CSG representation (or commonly referred as CSG
tree) is an ordered binary tree where terminal nodes represent
primitives and each internal node defines a Boolean set operation
(union, intersection, and difference) applied to left and right
nodes or corresponding child nodes [12]. Transformations such
as scaling, rotation, and translation can be applied at any node
of the CSG tree. Some graph-based modeling methods [21],
[22] consider relationships between edges, primitives, or both
for rooftop modeling. Complex rooftop can be modeled through
roof topology graph, where rooftop modeling can be seen as
rooftop graph matching, with fundamental topology graph ele-
ments in a model library.

Geometric primitive is an integral part of the CSG trees and
is being used in many existing works [25], [26] to reconstruct
3-D model of building roofs and fagades from airborne laser
scanning (ALS) point clouds. It is defined as the simplest 3-D
geometric shape which is used to construct complex shapes
by assembling with others. Global intrinsic parameters of a



KAMRA et al.: LIGHTWEIGHT RECONSTRUCTION OF URBAN BUILDINGS: DATA STRUCTURES, ALGORITHMS, AND FUTURE DIRECTIONS 905

Urban scene

Fig. 6. Example of CSG model constructed from urban point cloud [27].

primitive are fixed and they are used to define the global size,
orientation, and position of the shape. In addition, primitives
are symmetric and all the primitives, except torus, are convex.
These primitives, as shown in Fig. 5(b), can be classified into
four categories [24], including planes, cube and cuboid, sphere,
cylinder, and cone, and other shapes such as ellipsoids, torus,
and nonrectangular parallelepipeds. Thus, CSG modeling often
comes in handy to divide complex modeling tasks into different
subtasks. Fig. 6 shows a CSG construction for 3-D point cloud
of urban buildings.

C. Boundary Representation (B-Rep)

Boundary representation is a method for representing a shape
using its boundaries. With this data structure, a solid struc-
ture can be depicted as a collection of connected surface ele-
ments defining the demarcation between interior and exterior
points [28] in terms of surfaces, curves, and points based on its
topology [29]. There are several types of surface representation
including Bézier and B-spline surfaces.

A Bézier surface is a parametric patch used to model smooth
surfaces that can be scaled indefinitely and can be defined by
a set of control points. These surfaces have better continuity,
less points to represent curved surfaces, and easy manipulation
with the help of control points. However, the number of control
points in Bézier representation is directly related to the degree
of the curve. Furthermore, a change in any control point affects
the entire curve that complicates the designing process in case
of region-specific modification. On the other hand, in case of
B-spline curves, the control points impart local control over the
curve unlike the global control in the Bézier curve. Therefore, for
region-specific modification, only the corresponding segment of
the curve gets altered.

B-Rep is suitable for constructing solid models of unusual
shapes. It is relatively easy to be converted into a wireframe
model due to face, edge, and vertex information. On the other
hand, wireframe models are less suitable for 3-D visualization
due to absence of face information. For solid modeling, both

(©)

Fig. 7. Examples of CP complexes. (a) Pure simplicial three-complex having
all top cells as tetrahedra. (b) CP complex containing top edges, triangles (in
yellow), quads (in blue), and a tetrahedron (in green). (c) Pseudomanifold having
triangles [30].
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Fig. 8. Example of stellar decomposition encoding for a region with 6 vertices
and 20 triangles. [30].

B-Rep and CSG are used. However, B-Rep describes the ori-
ented surface of a solid as a data structure in terms of vertices,
edges, and faces, whereas CSG uses a set of Boolean expression
of primitive solid objects to define a simpler structure. Further-
more, along with the Boolean operations, B-Rep has additional
operators, such as extrusion (or sweeping), chamfer, blending,
drafting, shelling, and tweaking. However, B-Rep requires large
storage, especially if curved object is approximated with poly-
hedral models.

D. Stellar Decomposition

Mesh data structures are usually efficient for simple sur-
faces which can be defined by small low dimensional meshes.
However, these mesh structures do not perform well in case of
larger and higher dimensional meshes. In such cases, flexibility
is required to deal with complex meshes, including irregularly
connected cell types with the help of exploiting locality within
the mesh.

The stellar decomposition [30] is a modern data structure that
supports efficient navigation of the topological connectivity of
simplicial and canonical polytope (CP) complexes. CP com-
plexes (as shown in Fig. 7) are a class of cell complexes based
on quadrilaterals, polygons, and pyramids. The stellar decom-
position is both scalable and flexible to support the generation
of optimal local data structures at runtime. Fig. 8 refers to the
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stellar decomposition encoding of arrays of vertices and top CP
cells that explicitly list the associated elements, vertices, and
triangles for each region r.

E. Assessment Mesh Versus Stellar Trees

A summary of different data structures mentioned in previous
sections is shown in Fig. 2. In this section, we critically analyze
the data structures based on the parameters, such as model
accuracy and computational cost of 3-D reconstruction.

A mesh model constructed from point clouds using a surface
reconstruction algorithm [31], [32] offers a decent representa-
tion. However, dense meshes generated from airborne images
have shown greater geometric accuracy and completeness [33],
whereas LiDAR scans provide less accurate representations
due to sparsity, outliers, noise, and occlusions. Some recent
advances in shape scanning and modeling [34], [35] utilize depth
information encoded into mesh with 3-D textures, which results
in the reconstruction of more realistic and geometrically accurate
model. However, a European-style city with 40 400 distinct
buildings [2] comprises 1.36 billion triangles with a storage
consumption of 61 GB that makes the use of conventional
meshes less suitable for web-based interactive applications.
Thus, mesh simplification [17], [36] and polygonization [37]
make a prominent candidate of meshes for lightweight urban
reconstruction. However, there are significant challenges with
mesh simplification technique that we will address in Section III.

On the other hand, Stellar tree based topological data struc-
tures have been used in mesh simplification [38] for local curva-
ture estimation and mesh validation. Simplicial complexes that
are not limited to triangle or tetrahedral meshes are complexes
that are defined as collections of p-dimensional hypertetrahedra,
and are known as p-simplices. We refer to the experimental anal-
ysis and comparison from [30], regarding storage comparison
among Stellar tree encodings, such as EXPLICIT and COM-
PRESSED (most compact encoding). By adjusting the tuning
parameter k,, the EXPLICIT and VERTEX-COMPRESSED
trees yield reduction in memory requirements with up to 20%—
50%. For instance, NEPTUNE triangular dataset with storage
requirement reduced from 32.0 to 26.2 MB for EXPLICIT trees,
while COMPRESSED trees reduced from 5.76 to 1.24 MB.

While Stellar tree based data structures and simplicial com-
plexes are widely used to discretize 3-D shapes, there is not
enough study on them regarding urban representations. From
our understanding, processing an urban model through stellar
trees might not be the best choice as storage reductions of-
fered in different encodings are limited. However, the efficient
nature of stellar trees in processing the specific regions of a
mesh by encoding topological relations might come in handy
for lightweight urban reconstruction. Due to different levels of
details required in lightweight reconstruction, such as geometric
primitives based simple compact representation that preserves
geometric structure, sharp features, and facade elements, we
believe stellar trees can be used as local correspondents to define
topological relations around feature areas of a mesh. Thus, we
consider stellar trees as a useful representation for lightweight
urban reconstruction.

Fig. 9. (a) CAD models of sample buildings (downloaded from open-
source 3-D modeling platform Sketchfab—nhttps://sketchfab.com/features/free-
3d-models). (b) Equivalent triangular mesh models.

F. Assessment-CAD Versus Mesh

CAD system based solid modeling techniques, such as CSG,
B-Rep, and geometric primitives, have a vast background in
modeling complex surfaces, objects, and buildings [26], [39],
[40]. An earlier CSG-based reconstruction method [39] allows
the generation of a model of the complicated buildings with suf-
ficient details. However, the roof and wall textures in the images
are mapped to the sample model to make the building models
realistic, which increases the overall time consumption of re-
construction process. Another CSG B-Rep topological model
mentioned in [40] assigns CSG-location, CSG-orientation, and
CSG-subshape to a CSG-shape object such that Boolean op-
erations can be performed on CSG B-Rep model. Note that
this CSG B-Rep model offers a significantly lighter memory
footprint of 336 KB against an equivalent triangular mesh
model (3991 points and 7475 faces) with a memory footprint
of 1986 KB. However, CSG B-Rep might not be suitable to
represent real-world scenes having complex fagade details, such
as in European-style buildings. Considering the higher time
consumption, we believe a CAD system based solid modeling
approach might not be the best choice.

To better assess the representation of a CAD model in com-
parison to a mesh model, we take 3-D CAD models and their
equivalent triangular mesh models (see Fig. 9). These CAD
models have memory footprints of 14.4 and 2.94 MB in com-
parison to their equivalent triangular mesh models of 14.8 MB
(116 166 vertices and 162 058 faces) and 3.46 MB (24 287
vertices and 35 423 faces) size. We observe that CAD-based
representations are useful when model exhibits dominant planar
regions. However, in case of complex architectural details, a
triangular mesh model would be more suitable to better represent
the LODs.

Fig. 10 represents buildings and their simplified version as
triangular meshes and boundary representation. We observe that
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TABLE II
STATISTICS RELATED TO DIFFERENT 3-D REPRESENTATIONS

Data Structure | Topology | Geometry | Application
Polygonal Mesh vertices, edges and faces surfaces Continuous surfaces

Constructive Solid Geometry geometric primitives surfaces, curves and points CAD models

Boundary Representation vertices, edges and faces surfaces, curves and points CAD models

Stellar Decomposition vertices, edges and faces

surfaces Continuous surfaces

TABLE III
COMPARISON OF VARIOUS DATA STRUCTURES

3D Models | Data Structure | Models | # Vertices | #Faces | Storage (in MB)
Empire State Original 432,514 861,642 63.9
Polygonal Mesh (a) Simplified 72,695 141,903 192
Boundary Representation (b) Sci)r;flli%eg d %3(7)(7) iggg %Zg
Lans Original 25,994 51,426 13.48
Polygonal Mesh (c) Simplified 18,543 31,598 11.48
Boundary Representation (d) Sci)rgfllil;iil d g;ig %ggz :3)'241‘

(b) (d)

Fig. 10.  3-D models and their simplified version. (a) Empire state (triangular
mesh). (b) Empire state (B-Rep). (c) Lans (triangular mesh). (d) Lans (B-Rep).

structural geometry can be preserved in B-Rep. However, this
representation is not satisfactory to represent complex details,
such as fagade elements in comparison to triangular meshes.
Table 1II lists the statistics such as number of vertices, number
of faces, and total storage required for both original as well as
simplified 3-D models. From the given data, it can be concluded
that B-Rep offers lightweight modeling; however, such simpler
representation is not enough to obtain complex detail. On the
other hand, polygonal meshes consume more storage yet allows
representations of precise information due to more number of
faces.

G. Summary

To summarize, Table IIT presents a brief comparison on dif-
ferent potential data structures for lightweight reconstruction
of urban scenes. Polygonal mesh and stellar decomposition
can be classified into surface reconstruction where geometric
element is surface, while CSG and B-Rep can be classified into

solid modeling with geometric elements as surfaces, curves,
and points. From topological perspective, polygonal mesh, B-
Rep, and stellar decomposition rely on vertices, edges, and
faces. However, CSG-based representations do not store such
topological relation and, thus, only use collection of geometric
primitives to represent shapes. This implies that CAD-based
representations such as B-Rep and CSG are useful when model
exhibits dominant planar regions. However, in case of complex
architectural details, a triangular mesh model would be more
suitable to better represent the LOD.

III. ALGORITHMS FOR LIGHTWEIGHT RECONSTRUCTION

In this section, we review various state-of-the-art lightweight
reconstruction algorithms of geometric abstractions, procedural
encoding, LOD modeling, deep learning based algorithms, and
mesh decimation. A large volume of methods for urban scene
reconstruction has been proposed; however, in this section,
we mainly review the techniques relevant to lightweight
reconstruction.

A. Geometric Abstraction

In many 3-D urban modeling works, 3-D laser scanning
methods, such as LiDAR, are considered as the primary source
of information. The data obtained through these methods in-
clude high geometric detail with an overwhelming amount of
data which poses great challenges to visualization, therefore,
encourage the need of lightweight 3-D models for interactive
use. Due to the increasing complexity of geometric informa-
tion, meaningful and concise abstractions become helpful for
higher level interaction and modeling. More specifically, geo-
metric abstraction allows for the reconstruction of 3-D models
by using various primitives, which makes the resulting model
lightweight and low-polygonal. Man-made environments, for
instance, building-rich urban scenes are often dominated by
planar surfaces such as walls. In such case, primitives-based
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3-D geometric abstraction offers a decent representation with
reduced memory footprint. RANSAC [41] is a popular prepro-
cessing technique for geometric abstraction. It extracts shapes
from point cloud data by randomly drawing minimal sets (min-
imum points that define a geometric primitive) and constructs
respective primitive shapes [42]. Region growing is another pop-
ular technique for point cloud segmentation. It uses the normal
of points in accordance with user-specified key parameters to
categorize points that belong to the smooth surfaces. Hough
transform [60] refers to an accumulator array where each cell
of the array represents a set of parameters from discretized
parameter space. This technique increases counter of cells for
each point that belongs to a certain parameter space.

The 3DLite framework [3] (see Fig. 11) is proposed to
reconstruct indoor 3-D environments using RGB-D sensors.
This method computes a lightweight, low-polygonal primitive
abstraction of the scanned RGB-D video frames. For each frame,
3DLite computes the initial camera poses and a truncated signed
distance field representation of the scene to extract the initial
mesh. Primitives are detected using the generated meshes and
depth frames and the classified primitives are later used for
scene completion. This method produces high-resolution, sharp
surface textures through texture optimization technique that
maps the scene geometry with sharp colors from the RGB data. It
presents visually compelling 3-D reconstructed results. 3DLite
performs geometry completion and texture completion tasks
with a significant reduction in data size. It addresses the issues of
oversmoothing and low color quality and provides a production
ready solution for 3-D content creation community. However,
due to the plane-based abstraction approach, sometimes this
model does not perform efficiently with the nonplanar objects
such as chairs.

In another lightweight modeling work [45], the authors de-
scribed an algorithm that generates models and outperforms
existing approximation techniques by preserving the sharpness
of the raw data. This method proposes the modeling of buildings
based on crosssectional contours using extrusion and tapering
operations and further uses 2-D image processing techniques
to perform 3-D reconstruction of urban buildings directly from
point cloud data.

Texture Sharpenlng

,1.
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Overall framework of 3DLite [3] to reconstruct low-polygonal meshes from RGB-D frames through primitive abstraction.

Geometric primitives along with model contours substantially
contribute to lightweight reconstruction techniques. In [46],
the authors proposed a framework for curved building
reconstruction by assembling and deforming geometric
primitives. First, the input LiDAR-based point cloud gets
converted into contours that comprises the identification of
individual buildings. Based on the identification of geometric
primitives from the building contours, the initial models are
obtained for reconstructing the building curves. Further, a
warping field is used to refine the obtained models with respect
to the several highly curved buildings.

Another primitive-based method by Xie et al. [59] have
adopted primitive-based modeling and presented a method for
the efficient reconstruction of building models from photogram-
metric point clouds by combining rule-based and hypothesis-
based methods. Initially, the planar primitives and respective
boundaries extracted from the point cloud are regularized to
obtain abstracted building contours. Then, a two-stage recon-
struction method is applied to generate 3-D building models. In
the first stage, to recover the topological relationship between
different primitives, the regularity and adjacency of the building
contours are used to construct an initial reconstruction model. In
the next stage, an integer linear optimization problem is solved to
remove and reconstruct topologies related to ambiguous areas.
This method shows significant reduction in the number of faces
in the reconstructed model against the state-of-the-art methods,
hence it provides a concise 3-D representation to the urban
scenes.

Zhang et al. [44] presented an automatic reconstruction of 3-D
building facade models from photogrammetric mesh models.
First, the mesh model is divided into components based on
contour line. Local contour trees are exploited to find the seg-
mented contour graphs by analyzing the topological relationship
between the contours. Then, through an iterative process, whole
model is segmented into diverse components from bottom to
top. Next, the mesh model components are approximated via
minimum circumscribed cuboids in an iterative manner. Finally,
to ensure the accuracy of the reconstructed facade model, the
parameters of the cuboid model are adjusted by means of a least
square process.
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Fig. 12.
try in the urban facade structure thatis utilized to create procedural grammar [47].

Example of building facade from showing the regularity and symme-

B. Procedural Encoding of Urban Objects

Procedural modeling refers to the creation of 3-D models
from sets of rules. These rules are generated using the reg-
ularity and similarity in the urban structures. Fig. 12 shows
an example of an urban building which exhibits a number of
windows positioned in a regular manner. The most common
procedural modeling techniques are the Lindenmayer system
(L-system) and shape grammar which apply sets of rules for
producing objects as volumetric shapes. The resulting model
comprises a combination of volumetric shapes as a lightweight
representation. L-system is a parallel rewriting system that was
introduced by Lindenmayer [61] and was designed to generate
plants by computers using symbolic expressions. The two major
components of L-systems are the rewriting system and the
representing system. The rewriting system receives one axiom
along with one or more production rules as input, and it expands
the input iteratively. The representing system acts like turtle
graphics to draw vector graphics by following the expanded
commands from the rewriting system. The original system works
in two-dimensional space; however, Lindenmayer expanded the
system to three dimensions to generate more realistic plants.
Since then many works are based on improvised versions of
L-systems driven by their successful results.

An earlier work [47] proposed a procedural approach based on
L-systems to model cities. This model takes various image maps
as input such as land—water boundaries and population density
to generate a system of highway and streets that divide the land
into lots and creates the appropriate geometry for the buildings
on the respective allotments. Further, by applying another L-
system, the buildings are generated as a string representation
of Boolean operations on simple solid shapes. Finally, a parser
interprets all the results for the visualization software which
processes polygonal geometry and texture maps. The use of
shape grammar is also emphasized in this work which defines
rules directly on shapes. Here, shape grammars are used to
generate 2-D patterns and interactive design applications based
on 3-D designs generated with the help of grammars. However,
in this system, each style texture must be defined manually
by visually determining the regularities and measuring facade
element sizes. Once a shader is defined, the texture can scale to
any width or height.

In the context of grammar-based designing, L-systems have
shown impressive results in plant modeling [62], [63], [64].

However, buildings have stricter spatial constraints and their
structure usually does not reflect a growth process. Therefore,
L-systems cannot be easily adapted to the modeling of buildings.

Procedural modeling has been followed for several years as
an efficient strategy to generate three-dimensional models of
buildings. However, the key challenge of procedural technique
is achieving the desired user intent. Therefore, it is difficult to
obtain a procedural model that would generate a specific geom-
etry. A significant change of parameters can create uncalculated
changes during the repeated applications of the procedural rules
and can quickly bring large modifications to the generated
geometry. These changes might be difficult to understand and
can cause situations out of control. Therefore, since more than
20 years, the emphasis on another way to obtain a procedural
model is being given in many papers which is commonly known
as reverse engineering on an existing geometry or IPM.

A recent paper on IPM [65] learns L-system representations
of pixel images with branching structures. This method com-
prises a deep learning model to discover atomic structures such
as line segments or branches. The orientation and scaling of
these structures are determined and the detected structures are
formed into a tree. The repeating parts are encoded into a small
grammar by using greedy optimization where the output is an
L-system that represents the input image as a simple text and a
set of terminal symbols. This fully automatic model generates
a compact set of textual rewriting rules to describe the input.
However, authors have not provided any comparative study to
show the level of compactness of this method.

C. LOD Modeling

LOD modeling is the process of generating a lightweight yet
detailed representations of 3-D object models by preserving geo-
metric features such as boundaries. This reduces the computation
cost on the computer allowing algorithms to produce lightweight
models of urban scenes. For city-scale reconstruction, aerial
images captured at high altitudes are often used. Although the
images are of high resolution and quality, the output MVS
surface meshes still suffer from problems such as occlusion,
shadow, and weak/repetitive texture. Compared with LiDAR
point clouds, MVS meshes contain more noise. In addition, raw
MYVS surfaces usually contain many geometric and topological
defects, such as self-intersections, noise in consistency, nonman-
ifold edges, dynamic parts, and diffuse color.

Recent research works have been proposed to output re-
construction models of low complexity and strong regularity
in the form of semantic LODs. When working on city-scale
data, rendering such dense and large scenes can be challenging
due to its high memory requirement. The method presented
in [48] automatically reconstructs multiple coherent LODs from
surface meshes generated by MVS systems. The main steps
of the algorithm, including classification, abstraction, and re-
construction, are depicted in Fig. 13. The proposed method
partitions the scene into four classes by applying a geometric
feature preserving Markov random field (MRF). This method
aims to alleviate the scalability and robustness through a greedy
process of abstraction, filtering, and simplification. First, the
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Fig. 13.  Example of LOD generation from Urban Scenes from [48] showing
three major steps of LOD generation including classification, abstraction, and
reconstruction.

ALS Building Point Clouds

Primitive Clustering based
on an Enhanced Probability
Density Clustering

Extraction of Building Outer
and Inner Boundaries

Extraction of Primitive
Boundary

Extraction of Primitive
Boundary

2.5D Building Model
Reconstruction at Multiple
LoDs

Fig. 14.  Example of five LOD modeling. Topologically aware building rooftop
reconstruction includes three main steps: rooftop primitive clustering, represen-
tation of primitive boundary, and reconstruction of 2.5-D building models at
multiple LODs [49].

canonical geometric relationships are hierarchically organized
to regularize different planes. The simplified data involve char-
acteristic icons and planar proxies, which are used as input
to the reconstruction process to generate watertight models of
buildings. Reconstruction step involves a min-cut formulation
on a set of 3-D planar arrangements, which is applied to provide
robustness to input mesh defects.

Similarly, the method proposed in [48] offers a robust and
scalable solution for 3D urban reconstruction. However, it can-
not capture the geometries precisely. Chen et al. [49] present
a topologically aware 2.5-D building reconstruction methodol-
ogy from ALS point clouds. The proposed 3-D reconstruction
method generates building models at five levels of details using
primitive clustering and boundary representation, as shown in
Fig. 14. In primitive clustering, an enhanced probability density

Fig. 15.
from [50] describing various intermediate steps including semantic segmentation
[steps (b)—(c)] and building modeling [steps (d)—(h)].

Large urban scene modeling pipeline of input MVS mesh (step a)

clustering algorithm is proposed to cluster the rooftop primitives
considering the topological consistency among primitives. In
boundary representation, a novel Voronoi subgraph-based al-
gorithm is employed to seamlessly trace the primitive bound-
aries. The aim of the proposed approach in [49] is to maintain
the topological consistency to produce watertight and compact
2.5-D polyhedral rooftop models. Additionally, the proposed
approach generates hybrid key points from primitive boundaries
to reconstruct lightweight and regular geometric models while
reducing the crack defects among adjacent primitives.

One of the major challenges in the previous research is
the computation cost. To curb the computation burden, Zhu
et al. [50] cut the input mesh into multiple memory-manageable
blocks where each block is processed in parallel. This method
provides a solution for robustness by combining the geometric
and appearance cues. Taking MVS systems meshes of the large
urban scenes as input, the method outputs simplified models
at different levels of details while preserving semantics. As
shown in Fig. 15, the proposed approach consists of two major
steps: segmentation and building modeling. The scene is first
segmented into four classes with an MRF combining height and
image features. Segmentation involves grid sampling while con-
sidering geometry as well as appearance information from the
orthographs. Therefore, this method simplifies the 3-D modeling
into a 2-D shape labeling, which makes the modeling relatively
fast.

Hanetal. [51] explain amodeling framework for aerial images
and textured 3-D models based on large-scale urban scenes
that generate compact polygonal models with semantics at a
different LOD. As shown in Fig. 16, the method comprises
different stages such as scene segmentation, roof contour ex-
traction, and building modeling. First, a deep neural network
segments the scene into three classes, such as ground, vegetation,
and building. Then, the 2-D line segment-based roof contours
are detected that divide the ground into polygon cells. A roof
plane gets assigned to each polygon cell with the help of MRF
optimization technique. Finally, building models with different
LODs are obtained by extruding cells to different planes.

D. Deep Learning Based Algorithms

Over the past decade, the ample accessibility of large training
datasets has facilitated the researchers with the possibility of
working on data-driven techniques to produce large 3-D urban
models using data priors. These learning-based models are
capable of handling big datasets of urban scenes having lots
of different objects, such as buildings, roads, vegetation, and
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Semantic mesh ~ constraints

MVS images

Textured 3D mesh

Fig. 16.
building modeling [51].

parking area. Many deep learning based methods [52], [53],
[66], [67], [68] have address the urban reconstruction from
multiview images or satellite imagery, while point cloud-based
urban reconstruction [54], [55] and lightweight reconstruction
approaches are considered by fewer researchers. As follows, a
number of deep learning urban reconstruction approaches with
the aim of lightweight reconstruction are reviewed.

CNN model discussed in [66] examines the utility of
lightweight baseline architectures for scene and appearance
changes in satellite images due to different seasons. This article
studies the necessity of authentic selection of image pair in
multiview 3-D reconstruction. This method presents a compact
model requiring lesser number of network parameters due to
weights shared within concatenated layers which helps in the
training of the CNN model. Therefore, such lightweight CNNs
can be used for semantic segmentation for 3-D reconstruction.
Another multiview reconstruction network RED-Net introduced
in [52] achieves high efficiency and resolution in large-scale
reconstruction with lesser memory requirements. Similarly, a
very recent web-based interactive platform VGI3D [53] works
with VGI images to generate lightweight 3-D building models
using CNN. This platform realizes fast solutions with lower time
and labor costs. Furthermore, CNN helps in detecting building
facades of different and complex architectural style buildings.

Similar to CNNs, generative adversarial network (GAN) is
another deep learning approach that is gaining popularity in the
image-based 3-D reconstruction community. FrankenGAN [67]
uses a lightweight reconstruction process to obtain realistically
detailed mass models. In this work, the memory requirement
of GAN architecture is compensated by employing individual
texturing of windows and super-resolution GAN. In this method,
authors claim to provide a compact representation for large-scale
3-D city models. However, they have not provided any quantita-
tive analysis to show the model compactness. Furthermore, this
representation lacks sufficient detailing to guarantee seamless
textures at boundary areas. An improvement to FrankenGAN is
proposed in [68], which has replaced BicycleGAN with Star-
GAN architecture to generate higher quality textures.
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Urban scene LOD vectorized modeling of photogrammetry meshes including three major stages: scene segmentation, roof contour extraction, and

Point clouds carry 3-D spatial information for efficient 3-D
reconstruction of objects or scenes. In a recent deep learning
based framework [43], authors present a method to reconstruct
compact, watertight, polygonal 3-D building models from point
clouds with the help of a learnable implicit field using a deep
neural network. In this method, the implicit field extracts a
smooth surface model of the object by directly learning from the
point cloud and MRF extracts the compact surface of the building
through combinatorial optimization. Another neural network
proposed in [54] and [55] uses 2.5-D dual-contouring method
to produce lightweight 3-D models from ALS point clouds of
large residential areas. Both of these neural networks do not
require large training data for network parameter learning for
point cloud labeling, which results in the significant reduction in
the parameter tuning cost. Overall, both approaches are suitable
for 3-D reconstruction of irregular, complex roof components as
well as small structures. However, the deep reinforcement learn-
ing framework proposed in [54] sometimes struggles in learning
discriminative features from smaller point clouds. Furthermore,
the rectified linear unit neural network proposed in [55] is limited
by its high computation time.

Bauchet and Lafarge [69] reconstruct urban environments as
lightweight polyhedral meshes. While most of the buildings
can be reconstructed accurately, the proposed scheme needs
improvement in dealing with free-form shapes and small struc-
tures of buildings. In addition, this method processes large data
volumes in short time, and hence, this approach is sufficiently
fast and scalable. Moreover, the authors have not provided
any quantitative analysis to show the lightweight aspect of the
proposed work.

E. Mesh Decimation

Mesh decimation deals with the reduction in complexity of
mesh structures by reducing faces. Therefore, this technique
contributes in enhancing the memory efficiency of the urban
reconstruction method. One of an earlier work [56] proposes
a user-assisted mesh simplification method that converts CAD
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TABLE IV
LIGHTWEIGHT URBAN SCENE 3-D RECONSTRUCTION ALGORITHMS

SLNoAlgorithm Paper] Input Type Output Repre- Strengths Limitations
sentation
1 | Geometric [3] Image Mesh Sharp and high quality textures. Geometry and texture completion. Itis unable to generate e_nﬁlrgly incomplete geometry, sometimes fails 1o
Abstraction geometrically distinguish the small and non-planar objects.
2 | Deep [41] | Point Cloud Mesh Compact, watertight and h1gh-g?glliteyn{econstrucuon. Computationally It may fail in case of incomplete or errorneous primitives.
Learning .
based method
3 | Geometric [42] | Mesh Mesh Effective fagade reconstruction ;ﬁ;@:\i‘;‘)f occlusion, outliers, and other High processing power consumption in case of multiple-view images.
Abstraction o
4 | Geometric [43] | Point Cloud Procedural High resolution reconstruction and effective with occluded and noisy data. Larger computation time and ineffective at intersection of two structures.
Abstraction model
Accurate, computationally efficient, manifold, and watertight reconstruction. Limited to individual building reconstruction. Requirement of recovery of
5 | Mesh [37] | Mesh Mesh . . P Lo " . N
L Effective in defective meshes. building primitives and adjacency relationships.
Decimation
6 | Geometric 1441 | Point Cloud Primitive-based Accurate reconstruction of highly curved bulld‘l‘r_\gs. Enhanced storage data Full autonomous workflow is difficult in case of mixed types of objects,
- ; management and processing. curved, and polyhedrons.
Abstraction Polyhedral
Model
7 | Procedural [45] | Image Maps Polygon + Pro- High scene detailing and com'plcxn)_/ W}[h_ detailed textures. Suitable for Requirement of building ground-plan _and man!.lal inspection of facade
. : large variety of building types. elemental regularity and size.
Modeling cedural
8 | LOD Model- | [46] | Mesh Mesh Watertight, robust, s_cal_able, and meaningful LODs generation on complex Recunslrucuon.error du_e to limited _classes,» classification error for irregular
ing buildings and large-scale urban scenes. non-flat ground buildings, and insufficient for freeform structures.
2
. e Watertight and accurate building model with flexible rooftop modeling, Insufficient for low quality point clouds of complex rooftops. Trade-off
o I;gD Model- | [47] | Point Cloud Meshes capable of generating five LODs in real time. between algorithm flexibility and photorealism of models.
10| LOD Model- | [48] | Mesh Meshes Robust and Fast reconstruction of LOD models of largc urban scene from Slightly higher error for LOD2_ model for maintaining l_hc balance among
ing noisy and occluded MVS meshes. model complexity, accuracy, and regularity.
11| LOD Model- | [49] | Meshes Mesh Efﬁcnenl, robust, _zmd accura_le_ generation (.)[ LODO0-LOD2 vectorized Low detailing in reconstructed models.
ing building models without requiring global prior. Preserves sharp features.
2
12| Deep [50] | Tmages Point Cloud Generalizable, accurate, and complete, ]arge-scal§ acrial MVS reconstruction Model efficiency depends on high number of NN layers and parameters.
Learning with low GPU memory requirement.
based method
13| Deep [51] | Images Point Cloud Inleracglve platform. Su{tab‘le for rea! time ?ppllc?llons an_d comp‘lex seenes. User interaction is required to obtain various building elements in images.
. Efficient for low quality images with limited views. Fast reconstruction.
Learning and User
based method Sketching
14| Deep [52] | Point Cloud Point Set Improvef:l “generlallzam‘)r]. ngh af]:curavc);.) Slv"tabl_e _fm: I<]:ovmp1‘ex rgofs from Unable to sustain the semantic information.
Learning incomplete/noisy point clouds. Preserves small structures.
based method
15| Deep [53] | Point Cloud Point Cloud Efficient reconstrucnoql ﬁ_’om "Olfsy an E ?cc'lﬁdgd ‘?a“" ‘Sunable for complex Loss of semantic information. Low computing efficiency for regular roof.
Learning building roofs with small structures.
based method
16| Mesh [54] | Mesh Mesh Slmpl:.ﬁEd al:d_.ac‘:lll.r;l? {neshesvvwnlh (Iijffgenl' kODS m,‘d no hf)les/, _Capable User assistance required and memory depends on the model complexity.
Decimation of model simplification to single LOD with boundary preservation.
17| Mesh [55] | Mesh Mesh Fast computation while preserving the spectral properties of input surface. Complex cost evaluation criteria and;{ige flips result in missing the whole
Decimation part.
18| Mesh [56] | Mesh Mesh LODI-LOD3 reconstruction while maintaining the topological consistency. Limited efficiency for large-scale city scenes and manual assignment of
S parameter a is required.
Decimation
19| Geometric [57] | Point Cloud Primitive-based Compact reconstruction with ability to handle noisy point clouds. Incorrect reconstruction in case of ;p;l::' point clouds, severe occlusion and
Abstraction model .
Compact and generalized reconstruction. Suitable for both planar and High computational complexity for large free-form surfaces. No guarantee
19| Mesh [17] | Mesh Mesh . . . .
Decimation non-planar regions. for perfect alignment of refined vertices with abstracted planes.

models to triangle meshes and performs the simplification of
each subobject independently at different LODs. In this way, the
user can desire a total number of triangles in the simplified model
while some parts of the model are maintained or simplified to
a definite percentage of simplification. Furthermore, different
levels of detail for different subobjects avoid the appearance of
holes and preserve the boundaries between the subobjects.

In one of the recent work [37], authors propose a novel
approach for the polygonization of MVS meshes of buildings
that results in compact and topologically valid models. For poly-
gonization, the planar components of the input mesh along with
their topology in the 3-D space get detected using region growing
technique. Further, an initial set of candidate’s faces is generated
to approximate the meshes. The optimization process constructs
the simplified surface models considering sharp features through
abuilding scaffold and faces through 2-D arrangements. Another
mesh simplification method proposed in [17] reduces the com-
plexity and storage size of the urban models while preserving
the sharp contours of building models. This method comprises
filtering and simplification of 3-D building mesh models to
preserve piecewise planar structures.

Lescoat et al. [57] propose a method to simplify a mesh using
edge collapses while targeting to preserve the input eigenvectors

—| Geometric Abstraction | . . . E

Zhang et al. 2021

——| Procedural Encoding | .-

Muller et al. 2001

Hl%W\OY

Zhu et al. 2018

LOD Modeling
Methods

Chen et al. 2017

—| Mesh Decimation | - L\

Wang et al. 2021 Bouzas et al. 2020

Deep Learning based
Algorithms

| Lightweight Urban Modeling Methods |

Kelly et al. 2018 Chen et al. 2021

Fig. 17.
scenes.

Summary of lightweight algorithms for reconstruction of 3-D urban

and eigenvalues through functional maps (a linear mapping
between function spaces). This method supports the preservation
of spectral properties and offers the similar storage size of
simplified methods based on [36] but with a higher quality
Laplacian. In [58], a topology-preserving mesh simplification
method is proposed for 3-D building models. First, the method
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classifies building into different segments such that each seg-
ment represents different components. Then, the vertices of the
model get divided into different categories such as boundary
vertices, hole vertices, and other regular vertices. Later, the cost
related to edges is determined. For instance, for a boundary edge,
the angle between the edge and component (E-C angle) is intro-
duced to estimate an error metric to skip the edge collapses at
adjacent areas of building components. An improved quadratic
error metric is explained further to address the unexpected error
in the case of hole vertices.

Existing lightweight 3-D reconstruction systems (as shown
in Fig. 17) have been designed under independent conditions
with different prominence; therefore, it is not feasible to com-
pare them straight. However, Table IV lists these urban scene
lightweight reconstruction algorithms discussed in this section
and their strengths and limitations along with the corresponding
input and output representation.

F. Summary and Remarks

We summarize our review on various lightweight recon-
struction algorithms based on their applicability, advantages,
and disadvantages in the context of urban scene reconstruction
including man-made environments.

Geometric abstraction-based methods are reliable for under-
standing and analyzing urban scene layouts as well as indoor 3-D
environments. Major part of an urban scene comprises buildings
with dominant planar regions; therefore, primitive-based meth-
ods appear suitable for the reconstruction of 3-D urban models.
Geometric abstraction-based techniques have been employed in
multiple tasks such as facade parsing and segmentation of ALS
point clouds into various urban object categories, such as build-
ings, ground-objects, and vegetation. Later, these segmented
point clouds can be substituted with CAD-based primitives in
order to address lightweight aspect. However, these methods are
limited to simpler approximations with primitive types, such as
plane, cylinder, and cone. Therefore, they cannot be applied to
complex objects/scenes in real-world examples.

Many existing 3-D modeling works have shown the efficacy
of procedural modeling for 3-D reconstruction of urban scene
which comprises buildings, vegetation, and roads. These meth-
ods can produce high visual quality and low-cost models by
using production rules iteratively. Therefore, procedural encod-
ings can be applied to entertainment-related applications, such as
3-D gaming, 3-D movies/animations, and VR/AR applications.
Procedural modeling uses a set of rules to define the geometry
of the shape, and hence, they can be useful in encoding large
city scenes which comprise a large number of urban objects.
However, procedural rule defining is a labor-intensive task.
On the other hand, IPM automatically derives meaningful split
grammars from the sample layouts and uses them to generate
3-D models. However, generation of user-desired 3-D models is
still a difficult task and it requires huge expertise. Furthermore,
real-world examples, such as European-style buildings, com-
prise complex architectural variations, which requires a large
number of procedural rules. Therefore, procedural encoding-
based methods do not appear to be a good choice for representing
man-made physical city scenes.

LOD modeling methods have shown prominent results for
generating lightweight yet detailed representations. These meth-
ods have been used in various works that take aerial images
or/and textured 3-D models as input to generate compact polyg-
onal models. To automatically reconstruct city scenes with
different LODs, the method pipeline with subtasks such as
scene segmentation and feature extraction appears appropriate
for efficient representation. Scene segmentation helps in catego-
rizing the urban objects into buildings, vegetation, and ground
while feature exaction helps in obtaining rooftop contours. Fur-
ther, some methods incorporate mesh simplification to reduce
polygon count in order to create lightweight models. However,
similar to procedural modeling, these methods also require user
assistance, and hence, they do not favor the reconstruction of the
large-scale city scenes.

Recently, deep learning-based methods for 3-D urban recon-
struction have been introduced with the availability of large
training datasets of different urban objects, such as buildings,
roads, and vegetation. Due to the unorganized nature of point
clouds, training a neural network directly from the point cloud
is not an easy task. In a recent work [43], a deep learning frame-
work is presented for reconstructing compact and watertight
polygonal building models from point clouds in which learnable
implicit fields are used to characterize 3-D surface extracted
through MRF. Although this method generates valid models
with accurate structural geometry, missing LOD makes such
models unsuitable for an interactive urban scene application.
However, neural networks can be optimized to learn faster and
better, not only to approximate 3-D shapes but also to render
complex details from the point clouds.

There are many existing works on mesh decimation for
reconstructing urban scenes as polygonal meshes from dense
LiDAR point clouds, which offers detailed topological infor-
mation of the 3-D shape. Although point clouds comprise noise,
outliers, and other defects, techniques such as mesh filtering and
denoising can help in smoothing the noise and uneven shape
density produced due to approximation of meshes. By reducing
the face count, complexity of mesh structures can be reduced,
thereby, making meshes as one of the prominent candidates for
lightweight reconstruction. Various models based on mesh sim-
plification and polygonization offer lightweight representation
of the geometry; however, these models lack the required LOD
due to their compact nature. For instance, facade level details
and complex architectural patterns are often omitted or ignored
in various methods. Furthermore, various works often discuss
about the detailed simplified mesh models by incorporating
various schemes, such as use of local correspondents, custom
edge collapse operations with feature, and local geometric error
metrics. However, in the context of reconstructing detailed urban
scene, these techniques are not adequate, and hence, they require
further processing to improve the detailing in the reconstructed
3-D model.

IV. FUTURE DIRECTIONS

The research on lightweight 3-D urban reconstruction is
still in infancy due to insufficient work targeting on the mem-
ory and rendering requirement of the reconstructed models.
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Deep learning method is another promising approach in the con-
text of lightweight urban reconstruction. Advances in deep learn-
ing methods for image processing and point cloud processing
have shown outstanding results in the development of large-scale
3-D models. Neural network based modeling can easily leverage
the high dimensionality in the data for enhancing the quality of
the reconstruction. However, large-scale neural network based
reconstructions are still restricted due to demand for large GPU
memory for gradient-based optimization in backpropagation.
Further, sparsity in the input dataset also acts as a bottleneck
in using deep learning models for large-scale reconstruction.
Therefore, some of the future directions can be listed as follows
in Sections IV-A-IV-E.

A. Semantic Guided Mesh Decimation

Use of mesh modeling algorithms for 3-D reconstruction is
very common in many applications. However, polygonal meshes
contain geometric defects such as nonuniform density and noise
along with thousands to millions of faces which enhance the
storage memory and create complexity for visualization and
data-transfer of real-world applications. Therefore, filtering and
simplifying 3-D building mesh models by reducing the number
of faces while preserving the original structure with meaningful
levels of detail is recommended as a future work. The method
proposed in [17] is a good example of a mesh filtering tech-
nique which yields piecewise planar regions and extracts crease
contours to process single buildings in the scene one by one
to preserve planar structures and sharp features. Filtering is
further followed by a hierarchical mesh decimation through a
series of edge collapse operations to reduce the face count.
Another way to approach mesh decimation technique is the
semantic-guided decimation. In this method, first each individ-
ual building is sementically segmented into various primitives
(plane, free-form patches, and other analytical primitives), and
then, different levels of mesh decimation are implemented for
different primitives, such as loose decimation for complex sur-
face and heavy decimation for regular shapes formed by some
planes or analytical primitives. This method helps in avoiding
the simplification using a fixed parameter to maintain the geo-
metric accuracy and adds the semantic information for models.
Thus, mesh decimation is an evolving research area that can
be beneficial for lightweight reconstruction of mesh-based 3-D
models.

B. Reconstruction of Freeform Architectures

With the rising interest in the architectural research, the
study of architectural ornaments has attracted a lot of attention
over the past decade. Different architectural ages have different
ornamentations, such as geometric and plant-based ornaments
in roman age, calligraphic or vegetal decorations in Islamic
age, and cylindrical columns with semicircular arches in re-
naissance age. Fine details and design patterns along with the
curved surfaces play an important role in these architectures.
The 3-D reconstruction of these ornate buildings can aid in
the study of the evolution of these architectural ornaments
from antiquity to the contemporary. However, very few existing

works have addressed the urban reconstruction of buildings
with curved elements, which is very common in the architec-
turally rich building structures. Furthermore, fine detailing re-
quires more storage space for the reconstructed models. Hence,
large-scale reconstruction of urban scenes with these types of
buildings requires more research in context of model storage
capacity.

C. NeRF-Based Synthesis

Scene synthesis using neural radiance fields is an emerging
area that can address urban reconstruction even from the sparse
input dataset. Neural radiance field [70] is a neural-based tech-
nique to reproduce a single input scene. It is a fully connected
network which maps 5-D input of a scene, i.e., spatial loca-
tion (x,y,z) and viewing direction (6, ¢) to 4-D output (view-
dependent RGB color and volume density). Classical volume
rendering technique is used to differentially render new 2-D
image views. The error minimization through gradient descent
results in the prediction of a coherent model of the scene using
assignment of high volume densities and accurate colors to
the true scene-content locations. Although this method uses
volumetric representations to define complex geometry and
appearance, it overcomes the high storage cost constraint of
discretized voxel grids through hierarchical volume sampling.
Therefore, it requires lesser storage memory in comparison to the
inputimage. Block NeRF [71] has used neural radiance fields for
reconstruction of a large neighborhood area from 2.8 M images.
It requires memory to store only network parameters to define
large building models. This method is flexible and scalable
to large-scale modeling. However, for large scenes, rendering
time is significantly high and network requires more than one
computation devices. Furthermore, retraining is required in case
of expansion or modification of the environment. Thus, further
research on the reduction of rendering time or exploiting the
building similarities to reduce the retraining of the network
can yield the opportunity of utilizing the NeRF technique for
efficient lightweight 3-D urban reconstruction.

D. Integration of Traditional Methods With Deep Learning

One way to deal with the high storage requirements of ML-
based 3-D reconstruction methods could be the use of primitive
extraction technique for mesh or point cloud segmentation.
Geometric primitives can be efficient in determining various
urban objects or even different building elements with low
storage cost; however, such reconstructed models are coarser in
nature. On the other hand, regularity and similarity in the urban
building layouts is advantageous for enhancing the memory ef-
ficiency in large-scale urban models. These features are utilized
by grammar-based reconstruction methods, such as procedural
and IPM. Such techniques require smaller memory to store the
grammars of the buildings due to the repetitive nature in the
layout of various urban objects of the large-scale scenes. There-
fore, the integration of traditional technique, such as procedural
modeling [72] or IPM, with the deep learning could be another
promising direction for lightweight urban reconstruction.
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E. Lightweight Reconstruction With Details

One of the major limitations of existing lightweight recon-
struction techniques is the lack of details in the reconstructed
models. On the other hand, fine details in the 3-D urban models
are vital part of applications, such as city planning and sim-
ulation of different environmental conditions, study of urban
heat island effect, and rising pollutant concentrations. These
applications require digital twin of the cities having thousands of
urban objects with detailed structural elements of the buildings.
Therefore, another future direction is the preservation of details
in the lightweight models to enhance the overall quality of the
reconstructed model along with the memory efficiency. The
3-D template matching and assembly [73] has shown impres-
sive results in detail enhancement in the reconstructed urban
model. Therefore, one possible solution to this problem could
be through matching of 3-D templates available in the input
template library using GANs, which can help in synthesizing
more variants of representative urban elements created using a
user interface.

V. CONCLUSION

With the global emergence of 5G network, there is a strong
need of real-time 3-D reconstruction techniques for next-
generation applications, such as augmented virtuality or live
gaming. For maintaining quality of experience, 3-D recon-
struction scheme should be suitable and manageable with 5G
infrastructure. The 3-D reconstruction is popular for spatial
analysis in the complex urban areas, and it still has enormous
development potential. However, generating 3-D models of ur-
ban scenes involves high computational cost and storage for
efficient processing the geometric details of objects. Therefore,
adoption of lightweight techniques for 3-D urban reconstruction
is a necessity, especially for the applications such as smart cities,
urban planning and surveillance, virtual tourism, and e-sports.
This article provides a state-of-the-art review of data structures
and algorithms to lightweight reconstruction of urban scenes
along with some potential future directions for the generation of
economical models with decent level of geometric structure and
facade element detail.
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