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Abstract—Passive microwave data is an important data source
for the continuous monitoring of Arctic-wide sea ice concentra-
tion (SIC). However, its coarse spatial resolution leads to blurring
effects at the ice-water divides, resulting in the great challenges
of fine-scale and accurate SIC estimation, especially for regions
with low SIC. Besides, the SIC derived by operational algorithms
using high-frequency passive microwave observations has great
uncertainties in open water or marginal ice zones due to atmo-
spheric effects. In this article, a novel framework is proposed
to achieve accurately SIC estimation with improved spatial de-
tails from original low-resolution Advanced Microwave Scanning
Radiometer 2 (AMSR2) images, with joint the super-resolution
(SR) and SIC estimation network. Based on the SR network, the
spatial resolution of original AMSR2 images can be improved by
four times, benefiting to construct AMSR2 SR features with more
high-frequency information for SIC estimation. The SIC network
with an encoder–decoder structure and atrous convolution, is em-
ployed to accurately perform the SIC retrieval by considering the
characteristics of passive microwave images in the Arctic sea ice
region. Experimental results show that the proposed SR-Aided SIC
estimation approach can generate accurate SIC with more detailed
sea ice textures and much sharper sea ice edges. With respect to
MODIS SIC products distributed in Arctic scale, the proposed
model achieves a root-mean-square error (RMSE) of 5.94% and
mean absolute error (MAE) of 3.04%, whereas the Arctic Radiation
and Turbulence Interaction Study (ARTIST) Sea Ice (ASI) SIC
results have three and two times greater values of RMSE and MAE.

Index Terms—Arctic sea ice concentration, convolutional neural
networks, passive microwave image, super resolution.

I. INTRODUCTION

POLAR sea ice is one of critical parameters of cryosphere
and polar environment changes. Over the past several

decades, numerous studies show that Arctic sea ice has been

Manuscript received 3 September 2022; revised 19 October 2022; accepted
14 December 2022. Date of publication 27 December 2022; date of current
version 9 January 2023. This work was supported in part by the National Key
Research and Development Program of China under Grant 2017YFA0603100
and Grant 2021YFB3900105 and in part by the National Science Foundation
of China under Grant 41801335 and Grant 41941006. (Corresponding author:
Xiaomin Liu.)

The authors are with the Center for Spatial Information Science and
Sustainable Development Applications, College of Surveying and Geo-
Informatics, Tongji University, Shanghai 200092, China (e-mail: feng-
tiantian@tongji.edu.cn; 1811039@tongji.edu.cn; ronli_282@hotmail.com).

Digital Object Identifier 10.1109/JSTARS.2022.3232533

undergoing major rapid changes, such as smaller in area and
thinner in thickness [1], [2], which is altering global weather
conditions and climate. As one of the important physical pa-
rameters of sea ice, sea ice concentration (SIC) describes the
percentage of sea ice per unit ocean area, intuitively reflecting
the amount of sea ice, and can be used for the estimation of other
important sea ice parameters (e.g., sea ice area) as well as some
representative sea ice features (e.g., polynyas and leads) [3].

The on-site observation of SIC is limited by the harsh geo-
graphical environment of the polar regions, while SIC derived
from remote sensing observations, especially the passive mi-
crowave data, has the potential to achieve Arctic-wide dynamic
monitoring of Arctic sea ice [4]. Since the 1970s, satellite pas-
sive microwave sensors have been making near-complete daily
observations of Arctic sea ice, with the advantages of all-weather
operation, wide coverage and high temporal resolution, served
as an important data source for Arctic sea ice research and ship
navigation [5].

Among representative passive microwave data, the Advanced
Microwave Scanning Radiometer 2 (AMSR2) data at the 89-
GHz channels have the densest sampling interval, 5 × 5 km,
with approximately 3 × 5 km in the footprint size [6]. However,
compared with optical and synthetic aperture radar (SAR) im-
ages, the relatively coarse spatial resolution results in blurred
SIC products, especially at the ice-water divides, leading to
great challenges in identifying detailed sea ice features based
on SIC maps. For example, it shows that the high-resolution
(HR) AMSR2 SIC products with a grid resolution of 3.125 km
can provide more details of lead structures than AMSR2 SIC
data at lower spatial resolution with a grid resolution of 12.5 km
during the February 2013 Fracture Event in the Beaufort Sea [7].
But there are still some narrow leads that cannot be identified by
3.125-km resolution AMSR2 SIC products with limited spatial
details, compared with 250-m resolution moderate resolution
imaging spectroradiometer (MODIS) images. Moreover, there
is a model study of the atmosphere-ocean heat exchange caused
by the opening of leads, showing that a 1% of the lead area
fraction can change the near-surface air temperature by ap-
proximately 3.5 K [8]. Besides, coarse SIC can significantly
affect or even endanger human activities, such as the safety
of the Arctic ship navigation [9]. Therefore, improving the
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TABLE I
FOOTPRINT SIZES AND SAMPLING INTERVALS OF AMSR2 DATA AT DIFFERENT FREQUENCIES

spatial resolution of passive microwave images is essential for
SIC estimation with improved spatial details, and can benefit
to researches on the evolution of Arctic sea ice and fine-scale
applications.

Image super-resolution (SR) is a technique widely used in var-
ious fields, including passive microwave remote sensing, which
reconstructs a HR image with improved spatial resolution from a
low-resolution (LR) image or a LR image sequence, making the
blurry images more clear and sharper [10]. SR methods proposed
for applications in passive microwave images can be divided
into two categories: analytical SR methods and deep learning
(DL) based SR methods. Analytical SR methods including the
Backus–Gilbert (BG) method [11] and reconstruction method
[12], are developed using overlapping redundant observations
of brightness temperature (TB) based on the antenna pattern
of the passive microwave radiometer. They have managed to
improve the spatial resolution of passive microwave images
by two to four times, but their performance is limited by the
reasonableness of the radiometer antenna pattern assumptions.
In contrast, DL-based SR methods can adaptively learn the
degradation relationship between HR image and LR image pairs
in an end-to-end way without any prior knowledge or assump-
tions. For example, Hu et al. [13] proposed a single-image SR
model based on image degradation and residual network to
enhance the spatial resolution with one passive microwave image
as input. To make full use of the complementary information
between multitemporal LR images, Liu et al. [14] developed a
multi-image super-resolution (MISR) network to improve the
spatial resolution of sea ice passive microwave images, which
is designed according to the characteristics of both passive
microwave images and Arctic sea ice scenes. Take SIC esti-
mation as an example, it is shown that finer texture features
and sharper sea ice edges are provided on the super-resolved
passive microwave images, which is beneficial for fine-scale
SIC estimation. However, it remains to be explored whether to
further perform supersolved SIC estimation from original LR
passive microwave images with a joint SR and SIC estimation
network.

According to the different microwave emissivity between sea
ice and sea water at different frequencies and different polariza-
tion modes, many SIC estimation algorithms based on passive
microwave dada have been developed. For example, for the
widely used and representative AMSR2 data, the Bootstrap (BT)
[15], [16] and the Arctic Radiation and Turbulence Interaction
Study Sea Ice (ASI) algorithms [17] are developed as operational
SIC estimation algorithms by the Japan Aerospace Exploration
Agency (JAXA) and University of Bremen, respectively. The
BT algorithm uses low-frequency TB of AMSR2 at 19-GHz and

37-GHz to estimate SIC, providing available SIC products with
the spatial resolution of 10 km or 25 km. And the ASI algorithm
performs SIC estimation from the high-frequency AMSR2 data
at 89-GHz, and can provide available SIC products with the
highest spatial resolution at present, 3.125 km or 6.25 km, thanks
to using the smaller footprint and denser sampling intervals of
89-GHz channels than other channels (as shown in Table I)
as input. Despite great advantages in resolution, the accuracy
of ASI algorithm is reduced due to the atmospheric effects at
89 GHz, such as water vapor and liquid water path, especially
for regions with low SIC [17]. There are some weather filters
based on the gradient ratio of lower frequencies data, which may
filter out not only spurious ice in the open water area but also low
concentration sea ice near the ice edge by the given threshold
[18]. Therefore, the ASI algorithm has some limitations in the
marginal ice zones where thin ice tends to be underestimated,
and in open water area where spurious ice may not be removed
completely, which are exactly focus areas for operational ice
mapping and shipping navigation.

On the other hand, machine learning techniques including
DL are widely used in the progress of SIC estimation models
from various remote sensing data, and most achieve better
performance than above traditional algorithms, such as the BT
and ASI algorithms. For example, Chi et al. [19] proposed a
multilayer perceptron (MLP) based model to retrieve Arctic SIC,
using AMSR2 TB product at a 10 km spatial resolution as input
and down sampled MODIS-derived SIC product as label. The
MLP-based model can well describe regions of low-SIC and
melting ice in summer. Han et al. [20] developed a random
forest (RF) regression model to estimate summer SIC of the
Pacific Arctic Ocean, with both AMSR2 TB product with a
grid spacing of 10 km and European Reanalysis Agency-5
reanalysis fields as input. And it can accurately estimate SIC
under various atmospheric and ice surface melting conditions.
The performance of the above MLP-based model and RF model
for SIC estimate generally outperform that of both BT and
ASI algorithms. Karvonen [21] adopted MLP model for SIC
estimation of the Baltic Sea in winter using the combination of
Sentinel-1 SAR and AMSR2 features as input, showing better
performance than ASI algorithm.

As the most common DL architecture used in remote sens-
ing, convolutional neural network (CNN) can capture complex
nonlinear relationships and achieve very good performances for
many cryosphere tasks including SIC estimation, by considering
the spatial dependencies between adjacent cells. For example,
Wang et al. [22] applied a simple CNN with two pairs of
convolution layers and pooling layers with one fully connected
layer, to estimate SIC from RADARSAT-2 dual-polarimetric
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SAR during the ice melting season. And DenseNet is utilized
to predict SIC from RADARSAT-2 SAR image by Cooke and
Scott [23], suggesting that CNN is accurate and robust to be
used for operational SIC tasks. Limited by the network struc-
ture using CNN with fully connected layers at the output, the
abovementioned two methods are sensitive to patch size and
cannot achieve end-to-end SIC estimate at the pixel level. With
an improvement over the previous work, the U-net [24] archi-
tecture lacking fully connected layers is a fully convolutional
network (FCN) with the encoder–decoder structure, which is
applied in many newly published works for SIC estimation
from SAR images [5], [6], [25]. Considering the advantages
of SAR images with high spatial resolution and AMSR2 data
with the independent of the wind conditions, a CNN architecture
with atrous spatial pyramid pooling (ASPP) is designed for
fusing Sentinel-1 SAR imagery and AMSR2 data with large
resolution differences [26], inspired by the more advanced FCN
architectures named Deeplab [27]. Combining SAR and passive
microwave data that they have short time lag, the spatial resolu-
tion of SIC can be higher than that of using passive microwave
data alone, but limited by the availability of SAR data as well
as additional data uncertainties from different sources. Besides,
SAR images have difficulty in achieving Arctic-wide dynamic
monitoring due to its low temporal resolution, whereas passive
microwave data have the potential to provide high spatial-
temporal observations for Arctic sea ice, with the advantage
of its high temporal resolution as well as the possibility of
improved spatial resolution by SR technology. Therefore, CNN-
based methods for SIC estimation from passive microwave data
should be further explored to obtain more accurate Arctic SIC
products.

In this article, we propose a novel framework with joint SR
and SIC estimation network to achieve accurate SIC estimation
with improved spatial details from original LR AMSR2 passive
microwave images, where the SR network can successfully
improve the spatial resolution of original Arctic sea ice passive
microwave images and the following SIC estimation network
can accurately perform the retrieval of Arctic SIC. The proposed
framework can reduce the uncertainties of SIC estimation, re-
sulting from the coarse spatial resolution of original AMSR2
images and inaccuracy estimation due to limitations of the
traditional retrieval algorithms, especially for low SIC regions.
In addition, to illustrate the performance and effectiveness of the
proposed framework, some quantitative comparisons and visual
comparisons between SIC estimated by ASI algorithm and that
of proposed method are achieved.

The main contributions of this article can be summarized as
follows.

1) A novel framework with joint SR and SIC estimation
network is proposed to accurately perform fine-scale SIC
estimation from original LR AMSR2 passive microwave
images. The proposed method is present to outperform
other state-of-the-art SIC estimation algorithm (i.e., ASI
algorithm).

2) To reduce the blurring effects at the ice-water divide and
the errors of SIC estimation caused by coarse spatial res-
olution, the advanced SR network (PMDRnet) is applied

to improve the spatial resolution of original LR AMSR2
images.

3) To accurately estimate SIC and consider the character-
istics of passive microwave images in the Arctic sea ice
region, the efficient CNN-based network with an encoder–
decoder structure and atrous convolution is adopted as the
SIC network, showing good robustness in different regions
at different times of the Arctic.

The rest of this article is organized as follows. Data used
in this article are briefly described in Section II and Method
is presented in Section III. Section IV shows the experimental
results and discussions. Finally, Section V concludes this article.

II. DATA

A. AMSR2 Data

AMSR2 is equipped on the Global Change Observation
Mission 1st - Water “SHIZUKU” (GCOM-W1) satellite [28].
It enables the global estimation of a variety of geophysical
parameters with a higher spatial resolution, such as SIC and
sea surface temperatures. AMSR2 takes measurements at seven
frequencies and two polarizations (horizontal (H) and vertical
(V) polarization), whose footprint sizes and sampling intervals
are shown in Table I.

In this article, AMSR2 level 1B TB swath data at 89-GHz
dual-polarized channels, provided by JAXA, are employed be-
cause of the highest spatial resolution and available sea ice in-
formation. For better data preprocessing and feature extraction,
all the AMSR2 swath data for each day are gridded into polar
stereographic grids of the National Snow and Ice Data Center
(NSIDC) [29] using nearest Gaussian weighting,1 respectively.
And the grid resolution of 6.25 km is chosen, which is a tradeoff
between generating embedded HR images and reducing errors
during the gridding process [14]. Both gridded AMSR2 images
with H and V polarization are 16-bit gray images, whose values
are the original TB multiplied by the scale factor of 100. Nan
values are in the gridded AMSR2 images are replaced with
30 000. The extent of the gridded daily AMSR2 image is drawn
in Fig. 1, including the entire Arctic, with a size of 760×890
pixels. Each image is clipped into small patches of size 128×128
pixels in an overlapping manner. The image acquisition time
range is from 2020 to 2021, and images with missing or incorrect
information or no corresponding label image are discarded.

B. MODIS SIC Products

MODIS SIC products, released by the University of Bremen
are used as labels when training the SIC network and refer-
ence data for evaluation of the proposed framework. The data
are provided daily since 2017 and are only available between
October 1st and May 31st. The thermal infrared spectrum data
of MODIS onboard NASA’s Aqua satellites are employed to
derive the MODIS SIC products, which have a higher spatial
resolution of 1 km and are available over the entire Arctic
region in cloud-free conditions. In addition, The Aqua satellite

1[Online]. Available: https://pyresample.readthedocs.io/en/latest/swath.html

https://pyresample.readthedocs.io/en/latest/swath.html
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Fig. 1. Areas of AMSR2 data used in the study. The gray area is land mask
and missing data; the blue area is sea water; and the light blue area is sea ice
where SIC is above 15% on February 1, 2020, downloaded from the University
of Bremen at https://seaice.uni-bremen.de. The red rectangular regions 1, 2, 3,
and 4 are selected for visual comparisons.

has similar orbit characteristics to GCOM-W1 and flies 4 min
behind GCOM-W1, resulting in the short time lag (normally
between 3 and 8 min) between MODIS Aqua and AMSR2 [19].
The MODIS SIC products are determined based on the local
temperature anomaly using the algorithm presented in Ludwig
et al. [3].

The temporal and spatial coverage of MODIS SIC products
used in this article are consistent with AMSR2 images. The data
are resampled to the NSIDC grid with grid spacing of 1.5625 km
(4 times the AMSR2 images) by using bicubic interpolation
for comparison with the estimated SIC of the network, with
a size of 3040×3560 pixels. Multiple smaller patches from
each image are created by cropping in the same manner as
AMSR2, 512×512 pixels in size, with the same spatial extent
as the corresponding AMSR2 samples, but with 4 times the grid
resolution.

C. Dataset Distribution

The training and the test datasets are randomly selected among
the 11968 image/label sample pairs at a ratio of approximately
9 to 1, of which 10 772 for training and 1196 for test. The
samples are spatially well distributed over the sea ice covered
areas of the Arctic, with about the same number of samples
per month. The frequency distribution of the training and test
datasets is shown in Fig. 2, which is divided into 10 statistical
intervals according to the SIC distribution characteristics. The
frequency distributions of training and test datasets are similar
in each interval, but they both have the problem of unbalanced
distribution, i.e., the number of pixels in the medium SIC values
are very small compared with that of high SIC values, especially
for SIC intervals between 10% and 70%, which is presented as
the zoomed-in view in the middle of the Fig. 2. It is worth noting

Fig. 2. SIC distribution of the training and test datasets. Zoomed-in view in
the middle of the graph shows the SIC intervals between 10% and 70%.

that unbalanced distribution of training dataset will push the
model to pay more attention to represented SIC values and less to
the underrepresented SIC values, resulting in poor performance
of model.

III. METHODS

The pipeline of the proposed framework is present in Fig. 3,
which consists of two main components, SR network and SIC
network. In order to obtain fine SIC results, the AMSR2 LR
image sequence {ILR

t−2, I
LR
t−1, I

LR
t , ILR

t+1, I
LR
t+2} is first input into

the pretrained SR network, and then AMSR2 SR features in-
cluding the super-resolved AMSR2 images ISR

t and constructed
multichannel features of sea ice P SR

t with the improved spatial
resolution are as the input of the SIC network together with the
corresponding labels for model training, which will output the
estimated SIC during test phase.

A. SR Network

In the SR component of the framework, we adopt a MISR
network called PMDRnet, which is designed to improve the
spatial resolution of sea ice passive microwave images [14].
Similar to other general DL-MISR algorithms, PMDRnet in-
cludes four processes: feature extraction, feature alignment,
adaptive fusion, and SR reconstruction, as shown at the top
of Fig. 3. With the novel progressive alignment strategy and
multiscale deformable convolution alignment unit in the feature
alignment module, the PMDRnet can handle complex and large
Arctic sea ice motions even with large geometric changes to
achieve good alignment performance. And it can adaptively
fuse the effective spatiotemporal information across sequence
for remaining unaligned features and occlusion problems by the
temporal attention mechanism in the adaptive fusion module.
Besides, the sea ice related loss function is designed based on
the polarization difference of the TB at multichannel AMSR2
images, so as to improve SR performance and achieve better esti-
mation results of Arctic SIC. With the pretrained PMDRnet, the

https://seaice.uni-bremen.de
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Fig. 3. Pipeline of the proposed framework, where the top is SR network and the bottom is SIC network. For SR network, the input is AMSR2 LR images
sequence consisting of five neighborhood images {ILR

t−2, I
LR
t−1, I

LR
t , ILR

t+1, I
LR
t+2}, and the middle image ILR

t is the target image to be super-resolved. The input and
output of the network are dual-channel data, including the H polarization images (images with red borders) and V polarization images (images with blue borders)
at 89-GHz channels. The output SR image ISR

t and the polarization difference P SR
t (image with green border) are served as the inputs of following SIC network.

MODIS SIC products is utilized as the label in the training phase. In the test phase, the output estimation is denoted as the solid gray arrow. The “Conv,” “AConv,”
and “Concat” in the figure denote the convolution, atrous convolution, and concatenation operation, respectively.

spatial resolution of original Arctic sea ice passive microwave
images can be successfully improved by four times, from 6.25 to
1.5625 km, and it is proved that the SR performance of PMDRnet
is very good. For instance, based on simulated AMSR2 data, PM-
DRnet significantly outperforms current state-of-the-art MISR
methods, where performance is evaluated quantitatively via the
peak signal-to-noise ratio and the structural similarity index.
In addition, for the application of actual AMSR2 data, SIC
oriented from SR results generated by PMDRnet is calculated
using ASI algorithm [17] and compared to SIC oriented from
MODIS images, which achieves a good performance in terms of
qualitative and quantitative comparisons. Therefore, PMDRnet
is a very suitable approach to ensure the acquisition of reliable
sea ice AMSR2 SR features served as input of following SIC
network.

B. SIC Network

When designing or applying the network for SIC estimation, it
is necessary to consider the characteristics of passive microwave

images in the Arctic sea ice region. First, the spatial resolu-
tion of passive microwave images is much lower compared to
natural images (RGB images), resulting in the lack of sufficient
high-frequency information, which makes extraction of sea ice
features more difficult. Second, there are sea ice features at dif-
ferent scales in the Arctic, including ice floes, openings in the sea
ice, and sea ice edges at different sizes. Third, sea ice features are
difficult to be inversed from single-channel passive microwave
images due to the insufficient sea ice information, which requires
the combination of multichannel passive microwave images as
input data.

The CNN model chosen for the SIC estimation is inspired
by Deeplabv3+ [30], which achieves a new state-of-art per-
formance on the PASCAL VOC 2012 semantic segmentation
benchmark. As shown at the bottom of Fig. 3, the encoder–
decoder structure is employed in the SIC network, where the
encoder module gradually reduces the feature maps to captures
higher semantic information and the decoder module gradually
recovers the spatial information to obtain sharper boundaries of
sea ice. The modified Xception module in [30] is used as network
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backbone for the feature extraction, which is deeper and uses
depthwise separable convolution with striding to replace the max
pooling operations, achieving better performances with faster
computation. Following the output features of backbone that
are 16 times smaller than input resolution by ×2 downsampling
four times, ASPP module consisting of several parallel atrous
convolution with different rates, is used to increase the field-of-
view of filters to capture rich multiscale information. The output
features from ASPP module as well as the added image-level
features are integrated together as the encoder output features
via the concatenation operation and a 1× 1 convolution layer,
which contains 256 channels and rich semantic information.
For the decoder part, 256 high-level features generated by the
encoder are directly upsampled by 4 times and concatenated
with the 48 low-level features from the network backbone by
1× 1 convolution, where they have the same spatial resolution.
Finally, a 3× 3 convolution and upsampling operation by four
time are performed to obtain pixel-level estimated SIC.

There are some modifications made to Deeplabv3+ model
when applying to this article. First, the network input is AMSR2
SR images and constructed multichannel features instead of
RGB images, including AMSR2 SR images at 89-GHz dual-
polarized channels ISR

t as well as their polarization difference
P SR
t by subtracting from V polarization to H polarization, where

constructing multichannel features of sea ice is beneficial to en-
hance the sea ice information in the network. The SIC estimation
can be formulated as a regression problem for directly estimating
SIC, or a classification problem for predicting discrete catego-
rized SIC [26]. In this article, the SIC estimation is modeled
as a regression problem. However, the original Deeplabv3+
is designed for image semantic segmentation or classification,
and needs to be modified for SIC regression. The final softmax
classification layer in Deeplabv3+ is removed, replaced with
a nonlinear activation function sigmoid. And the output of SIC
network in the range [0, 1] is directly as an SIC estimation, where
1 indicates pure ice and 0 open water.

C. Weighted Loss Function

In terms of training the SIC network to estimate SIC value, one
of the most widely used loss functions in regression problems,
the L2 loss functions, is used. It is used to minimize the errors
calculated by averaging the square of the difference between the
reference SIC and the output SIC estimated by the model. Con-
sidering unbalanced frequency distribution of training dataset
mentioned in Section II, the weighted L2 loss function is used
to increase the modeling capability of the network for the SIC
values with a small number of pixels. The weight is defined as
(1), which is negatively correlated with the frequency of the ith
SIC category

Wi =

∑n
i=1 log10Ni

n ∗ log10Ni
(1)

where n is the total number of SIC categories with the value
of 10, which is consistent with the statistical intervals of SIC
shown in Fig. 2. Wi is the SIC weight of pixels belonging to the
ith SIC category, and Ni is the total number of pixels of ith SIC

category. Based on the data distribution of training dataset, the
weights of all the SIC intervals are as follows:

W12,··· ,10 = [0.8833, 1.2355, 1.1722, 1.1304, 1.0866, 1.0493,

1.00035, 0.9509, 0.8863, 0.7868]

In addition, the weights of masked pixels are defined as 0,
including land or no data pixels, which will be ignored in training
phase. The weighted L2 loss function for across all the pixels in
a batch is defined as

loss =

∑Npixels

j=1 Wi∗(yj − ỹj)
2

Npixels
. (2)

For the jth pixel belonging to the ith SIC category, yj is the
true SIC provided to the network, and ỹj is the estimated SIC of
the network. Npixels is the number of all pixels in a batch.

IV. RESULTS AND DISCUSSIONS

In this section, for the experimental evaluation of the per-
formance of the proposed framework including SR network
and SIC network, the SIC estimations are compared with the
MODIC SIC products, denoted as MODIS SIC, in terms of
quantitative comparison and visual comparison. In addition, an
ablation study is performed to verify the effectiveness of SR
network and SIC network, and SIC estimation from original LR
AMSR2 images using ASI algorithm (LR-ASI SIC) is selected
as the baseline, which is compared with that of SR-ASI method
(the SIC estimation method in [14]) by using the SR AMSR2
images instead of LR AMSR2 images used in LR-ASI method.
And SR-DL model further replaces ASI method with the SIC
network to perform SIC estimation (SR-DL SIC) based on
SR-ASI method.

A. Parameter Settings

The hyper-parameters of SR network are the same as PMDR-
net [14]. As for SIC network, the Xception module employs
20 residual blocks for feature extraction, consisting of three
3×3 depthwise separable convolutional layers, each followed
by a batch normalization and the rectified linear unit activation
function. For the first three residual blocks, the number of filters
in each layer is, respectively, 128, 256, 728, and the stride of
each layer of each residual block is 1 except the last layer is 2.
Following by 16 residual blocks, the number of filters in each
layer is 728, and the stride is set as 1 for each layer. The last
block consists of a layer with 728 filters and stride = 1, one
with 1024 filters and stride = 1, and one with 1024 filters and
stride = 2. The dilation rates of the atrous convolutional layer
in the ASPP module are set with the value of 2, 4, 8, where the
model has the best performance for AMSR2 passive microwave
data and sea ice scenes during the experiments. The AMSR2
input data of the network need to be normalized in the range of
[−1, 1] using min-max normalization method with the minimum
value is 10 000 and maximum value 30 000, for which improves
the convergence speed when training model. The SIC value in
percentage is divided by 100 to make its data range [0, 1], which
is consistent with the range of function sigmoid. The input data
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of network include 512×512×3 AMSR2 image features, and
512×512×1 MODIS SIC labels.

The proposed network is implemented on the Tensorflow
framework (version 1.15) in a Python (version 3.7) environment
and trained using 2 NVIDIA GTX2080Ti GPUs. The parameters
of the network are optimized using the momentum optimizer
with β = 0.9, and the learning rate is set to 5 × 10−4.

B. Training/Test Procedure

The optimal parameters of SR network are from the final
pretrained PMDRnet model with the best performance, which
are trained utilizing a large external AMSR2 HR/LR image pairs
dataset. Because the distribution of data samples in this article
is the same as that of PMDRnet, with few differences in time
and space distributions, the previous parameters are used with-
out retraining the SR network. The corresponding relationship
between degrading LR images and HR images in the training
dataset is expressed in the whole model parameters, including
extracting representative sea ice features from the input LR
images, accurately aligning neighborhood images to the target
image to be super-resolved, providing effective information for
the target image during fusion, and finally reconstructing the SR
image with high frequency information. To obtain SR image out-
put served as the input of SIC network, each LR patch sequence
{ILR

t−2, I
LR
t−1, I

LR
t , ILR

t+1, I
LR
t+2} with the grid resolution of 6.25 km

is input into the pretrained SR network to obtain the correspond-
ing SR patch ISR

t with the grid resolution of 1.5625 km, all of
which are AMSR2 data at 89-GHz dual-polarized channels, as
shown in Fig. 3.

In contrast, the parameters of the layers except for the last
layer in SIC network are initialized with the Deeplabv3+ model
parameters pretrained with the ImageNet data and PASCAL
augmented training set [30], and then the learned parameters are
transferred to the domain of AMSR2 passive microwave images.
For the last layer, the initial parameters are randomly initial-
ized within the range of [0, 1]. The super-resolved 1.5625-km
AMSR2 data at 89-GHz dual-polarized channels ISR

t and their
polarization difference P SR

t are used as input for the training,
while the downsampled 1.5625-km MODIS SIC products are
used as the labels. Random scale data enhancement is used in the
training process. When trained to be optimal, the parameters of
the final network are perfectly fine-tuned to SIC regressive task
using AMSR2 passive microwave images. In the testing phase,
the AMSR2 SR data over the target region to be estimated for
SIC is taken as input, and the estimated SIC is obtained through
the inference process of the trained SIC network.

C. Evaluation Criterion

For the evaluation of model performances, four difference
criterions are employed to make the measurements, including
root-mean-square error (RMSE), mean absolute error (MAE),
mean bias (MBIAS), and standard deviation of bias (STD),
which is defined as

RMSE =

√∑M
k=1 e

2
k

M
(3)

TABLE II
RESULTS OF EXPERIMENTAL EVALUATION AND ABLATION STUDY. RMSE,

MAE, MBIAS, AND STD FOR THE TEST DATASET BETWEEN MODIS SIC AND

SIC ESTIMATIONS FROM LR-ASI, SR-ASI, AND SR-DL, RESPECTIVELY

MAE =

∑M
k=1 |ek|
M

(4)

MBIAS =

∑M
k=1 ek
M

(5)

STD =

√∑M
k=1 (ek − MBIAS)2

M
(6)

where M is the number of pixels over the whole area to be
estimated, ek is bias between the estimated SIC ỹk, and the true
SIC yk for the k th pixel.

D. SIC Estimation

1) Quantitative Comparison: For all pixels in the test set, dis-
tributed in different regions of the Arctic, RMSE, MAE, MBIAS,
and STD between MODIS SIC and LR-ASI SIC, SR-ASI SIC,
and SR-DL SIC are calculated, as shown in Table II, respectively.
By comparing the results of LR-ASI SIC and SR-ASI SIC, which
are all calculated using ASI algorithm, it is evident that the
error of the SIC estimation from the super-resolved AMSR2
images generated by SR network can be significantly reduced
compared with AMSR2 LR images input, especially RMSE
decreased by 4.32% and MAE decreased by 1.91%. This shows
that the uncertainty of SIC estimation caused by coarse spatial
resolution of AMSR2 images can be reduced to some extent with
SR network. The comparison results indicate that the MBIAS of
SR-ASI is slightly greater in magnitude than that of LR-ASI, but
with a smaller STD. In addition, the accuracy of SIC estimation
based on SIC network is further improved. Compared with the
evaluation results of SR-ASI, RMSE of SR-DL decreases from
12.42% to 5.94%, MAE from 5.36% to 3.04%, MBIAS from
2.12% to -0.05% with the 6.30% decrease of STD. As a result,
the results show SR-DL has a significant advantage over LR-ASI
in accuracy, and demonstrates the effectiveness of SR network
and SIC network.

In order to explore the estimation accuracies of different con-
centrations at low, medium, and high levels, the SIC is divided
into ten categories according to 10% interval, and the average
SIC of all pixels for each SIC category is calculated, respectively.
The comparisons between the average MODIS SIC and LR-ASI
SIC, SR-ASI SIC, or SR-DL SIC in each SIC category are shown
in Fig. 4. Compared with LR-ASI SIC, SR-ASI SIC, and SR-DL
SIC are more similar to MODIS SIC, with a bias close to the unit
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Fig. 4. Comparison for each SIC category between (a) LR-ASI SIC, (b) SR-ASI SIC, (c) SR-DL SIC, and MODIS SIC, respectively. Red dots indicate the
comparison between the average MODIS SIC and LR-ASI, SR-ASI, or SR-DL in each ice concentration category. Bars indicate the positive standard deviation,
and negative is not shown. The black dotted line represents the unit line.

TABLE III
RMSE, MAE, MBIAS, AND STD FOR DIFFERENT ICE CONCENTRATION CATEGORIES BETWEEN MODIS SIC AND SIC ESTIMATIONS FROM LR-ASI,

SR-ASI, OR SR-DL

line. For the statistical R2 coefficient measuring the similarity
between two sets of SIC values, SR-DL SIC has the highest
R2-score, with the value of 0.97, showing good consistency
with MODIS SIC in different SIC categories. For example, it
is quite clear that SR-DL has significantly smaller bias than
LR-ASI and SR-ASI for the 20–30% SIC category. Additionally,
it can be seen that there is a larger negative bias associated
with the LR-ASI in 10–20%, 30–40%, 40–50%, 60–70%, and
70–80% SIC category, which will compensate for the positive
bias for other ice concentration categories. On the other hand,
SR-ASI has positive and small bias for each category, which
can explain why the MBIAS of SR-ASI is larger than that of
LR-ASI in terms of overall evaluation in Table II. And the biases
of SR-DL are similar to that of SR-ASI in 0–90% SIC category,
with slightly positive, but it is slightly negative in 90–100%
SIC category that nearly 80% of the samples fall into (see
Fig. 2), resulting in the slightly negative MBIAS of SR-DL in
Table II.

For the pixels belong to low SIC area with open water and
very open drift ice, i.e., 0–10% SIC category, both LR-ASI
and SR-ASI seem to moderately overestimate SIC values, and
SR-ASI has a slightly larger RMSE, MAE, MBIAS, and STD
than LR-ASI (see Fig. 4 and Table III), which may be due to the
generation of noise accompanied by high frequency information
in the SR process. The bias is greatly reduced for SR-DL by using
SIC networks, with the smallest MBIAS and STD. Meanwhile,
compared with LR-ASI and SR-ASI, RMSE of SR-DL in the
low SIC area (i.e., 0–10% SIC category) is reduced by more than
20%, MAE by ∼11%, MBIAS by ∼11%, and STD by ∼21%.
These results indicate that ASI algorithm has the problem of mis-
estimating in open water area, while SIC network shows good
performance for SIC estimation and strong robustness dealing
with the noise problem in the SR process. For all three methods,
the overall accuracy is higher in the high SIC area (i.e., 80–100%
SIC category) compared to other SIC categories, with SR-DL
being the best, SR-ASI the second, and LR-ASI the worst in
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Fig. 5. Comparison for different SIC maps of Region 1, 2, and 3 in Fig. 1, including MODIS SIC, LR-ASI SIC, SR-ASI SIC, and SR-DL SIC (From the left,
columns 1 through 4). The dates are March 11, 2020, February 1, 2020 and May 12, 2020 (From top to bottom, rows 1 through 3). The gray area is land mask and
the white area is no data on MODIS SIC map.

terms of RMSE, MAE, and STD. And the MBIAS of SR-DL and
SR-ASI are slightly larger than LR-ASI in magnitude, especially
SR-DL in 90–100% SIC category, due to the tendency of more
small errors with consistent signs given the smaller absolute
errors. In contrast, the errors are larger in the medium SIC area
(i.e., 10–80% SIC category) compared with low and high SIC
areas, where it is difficult to perform accuracy SIC estimation
using ASI algorithm with limited ability in marginal areas and
SIC network with inadequate medium SIC samples and difficult
learning tasks. Compared with LR-ASI, RMSE, MAE, and STD
of SR-ASI are significantly reduced for 10–80% SIC category,
and those of SR-DL are further reduced, which benefit from
the powerful capabilities of SR network and SIC network. In
addition, the SR-ASI has smaller MBIAS than LR-ASI, except
that 20–30% and 50–60% SIC categories overestimate more.
And SR-DL has smallest MBIAS in 10–50% SIC category, while
largest MBIAS in 50–60% SIC category and moderate MBIAS
in 60–80% SIC categories. It indicates that there may be a more
systematic bias in a smaller magnitude according to the fact
of a larger MBIAS but a smaller MAE, such as SR-DL SIC
in 50–80% SIC categories and SR-ASI in 20–30% and 50–60%
SIC category, in contrast to LR-ASI, which has more pronounced
random bias in a larger magnitude.

In general, the accuracy of SR-DL is better than that of SR-
ASI, and LR-ASI is the worst. Second, for the low, medium,
and high SIC areas, the error of the three methods is the smallest
in the high SIC area, and largest in the medium SIC area. It
is concluded that SIC estimation of SIC network outperforms
that of ASI algorithm, using SR image better than that using LR
image.

2) Quantitative Comparison: To further demonstrate
whether the HR sea ice features and patterns on the SIC maps
of different methods are reasonable, four regions are selected
for visual comparison, whose positions are shown in the red
box in Fig. 1. In addition to being limited by the availability of
MODIS images, the principles of region selection take different
SIC distributions into account, such as low, medium and high
SIC regions, and focus on a variety of sea ice characteristics
on the SIC maps, such as floating ices and openings in the ice
cover in the active sea ice regions, and the boundary between
sea ice and land located in relatedly stationary scenes.

MODIS SIC, used as reference, and SIC estimation results
from different algorithms in regions 1 to 3 are shown in Fig. 5,
mainly low and high SIC areas, which are distributed in East
Siberian Sea (see Fig. 1, region 1), Fram Strait (see Fig. 1, region
2), and Kara Sea (see Fig. 1, region 3). For the scene of region
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Fig. 6. Comparison for different temporal SIC maps of Region 4 in Fig. 1, including MODIS SIC, LR-ASI SIC, SR-ASI SIC, and SR-DL SIC (From left to
right, columns 1 through 4). The dates are January 14, 2020, February 15, 2020, March 19, 2020 and October 29, 2020 (From top to bottom, rows 1 through 4).
The gray area is land mask and the white area is no data on MODIS SIC map. Where white, black, blue, and red arrows indicate texture details of sea ice, floating
ices, fast ice regions, and marginal ice regions, respectively.

1 with the boundary between sea ice and land in Fig. 5, SR-
DL method successfully recover a formed opening in the ice
cover and obtained the correct shape and texture details, while
LR-ASI and SR-ASI methods fail to resolve the HR features
of sea ice due to the limitations of spatial resolution and ASI
algorithm. There are few differences between SR-ASI and LR-
ASI in general, but SR-ASI has more details. The comparisons
in region 2 show that the SR-DL method performs markedly
better than LR-ASI and SR-ASI methods, and can capture more
high-frequency information of sea ice, whose SIC value is most
similar to the MODIS SIC compared to LR-ASI and SR-ASI
methods. It is important to note that the LR-ASI and SR-ASI

methods misidentify what is clearly sea ice in the MODIS SIC
map as sea water, which is correctly estimated in the SR-DL SIC
map. The white mask area next to the underestimated region in
ASI algorithm is due to the lack of data in MODIS by cloud
occlusion, which is actually open water area, where the ice in
the marginal ice area tends to be eliminated using the weather
filters. Similarly, from the SIC results obtained on the very open
water scene of region 3 in Fig. 5, LR-ASI and SR-ASI methods
identify open water as sea ice, i.e., spurious ice, which may
not be removed cleanly by weather filters. And it is consistent
with the previous conclusion in quantitative comparison that ASI
methods have a larger error in low SIC areas.
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Fig. 6 shows the SIC results of region 4 on Greenland Sea at
different times in 2020, belonging to an active sea ice region
with lots of floating ices and openings in the ice cover as
well as boundaries between sea ice and open water. On the
whole, compared with MODIS SIC, SR-ASI SIC has more
sea ice features than LR-ASI SIC in all times, providing much
sharper sea ice edges and finer texture details, which is important
to achieve fine-scale sea ice dynamic monitoring and better
navigation guidance. On the other hand, SR-ASI method has
some misestimates and the limited ability to perform HR features
extraction using ASI algorithm, which cannot be solved by the
aid of SR network but needs to depend on the strong regression
ability of SIC network. For example, it can be found that there
are many medium SIC pixels in the middle of the four temporal
MODIS SIC maps with high SIC in Fig. 6, forming many texture
details marked by white arrows in the second and fourth row,
whose patterns are clearly visible in SR-DL, but not in LR-ASI
and SR-ASI SIC maps. In addition, there are many large floating
ices in the middle of region 4 on the MODIS SIC map in the
second to third row of Fig. 6, shown by black arrows, whose
shapes and positions can be basically extracted from the SR-DL
SIC map but cannot be identified from the LR-ASI and SR-ASI
SIC maps. In the fast ice region of the first to third row indicated
by blue arrows, MODIS and SR-DL SIC maps are 90–100%
SIC, but LR-ASI and SR-ASI SIC maps 60–80% SIC. And in
the third row of Fig. 6, the pixels of marginal ice regions are
estimated correctly as 10%–70% SIC by SR-DL method, while
the LR-ASI and SR-ASI methods estimate as sea water, which
are marked with red arrows. Although the SR-DL method can
correctly extract most of sea ice features and patterns, there are
still some limitations, such as the overestimation of medium
SIC pixels, associated with reduced modeling ability of SR-DL
method for the underrepresented SIC values due to insufficient
samples. Overall, SR-Aided SIC estimation framework has a
good performance at the different region at different times of
the Arctic, and can obtain accurate SIC with improved spatial
details.

V. CONCLUSION

In this article, we develop a novel framework to achieve
fine-scale SIC estimation from AMSR2 passive microwave im-
ages, including SR network designed for Arctic sea ice and SIC
network inspired by the advanced CNN architecture. On the one
hand, the SR network in the framework can improve the spatial
resolution of original AMSR2 images to reduce the blurring
effects from 6.25 to 1.5625 km, providing much sharper sea ice
edges and finer texture details, and further reducing the errors
of SIC estimation compared with the original AMSR2 data. The
following SIC network with the strong regression ability shows
good performances for accurately SIC estimation, especially for
marginal ice area where thin ice tends to be underestimated
or open water area where spurious ice may not be removed
cleanly in the ASI algorithm. Experimental results show that
the proposed approach is very robust in different regions at
different times of the Arctic, and can estimate SIC with rich

high-frequency information. Compared with MODIS SIC prod-
ucts at Arctic scale, the proposed model with a RMSE of
5.94% and MAE of 3.04%, outperforms the ASI algorithm
using AMSR2 LR data (RMSE = 16.74% and MAE = 7.27%),
demonstrating the advantages brought by SR network and SIC
network. Future research can explore the potential of the ap-
proach in various applications of other sea ice physical param-
eters and for further improvements.
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