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Pansharpening Based on Adaptive High-Frequency
Fusion and Injection Coefficients Optimization
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and Weiguo Wan

Abstract—The purpose of pansharpening is to fuse a multispec-
tral (MS) image with a panchromatic (PAN) image to generate a
high spatial-resolution multispectral (HRMS) image. However, the
traditional pansharpening methods do not adequately take consid-
eration of the information of MS images, resulting in inaccurate de-
tail injection and spectral distortion in the pansharpened results. To
solve this problem, a new pansharpening approach based on adap-
tive high-frequency fusion and injection coefficients optimization
is proposed, which can obtain an accurate injected high-frequency
component (HFC) and injection coefficients. First, we propose a
multi-level sharpening model to enhance the spatial information
of the MS image, and then extract the HFCs from the sharpened
MS image and PAN image. Next, an adaptive fusion strategy is
designed to obtain the accurate injected HFC by calculating the
similarity and difference of the extracted HFCs. Regarding the
injection coefficients, we propose injection coefficients optimization
scheme based on the spatial and spectral relationship between the
MS image and PAN image. Finally, the HRMS image is obtained
through injecting the fused HFC into the upsampled MS image
with the injection coefficients. Experiments with simulated and
real data are performed on IKONOS and Pléiades datasets. Both
subjective and objective results indicate that our method has better
performance than state-of-the-art pansharpening approaches.

Index Terms—High-frequency fusion, injection coefficients,
multilevel sharpening, pansharpening.

I. INTRODUCTION

NOWADAYS, the demand for high-precision satellite im-
ages is increasing in the applications of environmental
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monitoring [1], spectral unmixing [2], water quality assess-
ment [3], etc. Nevertheless, limited by the sensor, the high
spatial-resolution multispectral (HRMS) image is hard to obtain
through a single sensor. This problem can be solved by fusing
a high spatial-resolution panchromatic (PAN) image and a high
spectral-resolution multispectral (MS) image to obtain a HRMS
image. This process is also called pansharpening.

During the last few years, many pansharpening methods have
been developed, which can be roughly divided into two cate-
gories: tradition methods and deep learning-based methods. The
tradition methods include component substitution (CS) based
methods, multiresolution analysis (MRA) based methods, and
variational optimization (VO) based methods.

In the CS-based method, the MS image is first projected into
another space. Then, the PAN image is adopted to replace the
spatial information of the transformed components. Finally, the
HRMS image is achieved by using the inverse transformation.
The representative CS-based methods consist of the intensity-
hue-saturation [4], [5], the principal component analysis [6], [7],
and the Gram–Schmidt adaptive approach [8]. The advantages
of these methods are that they are excellent in terms of spatial
information and have low computational complexity. However,
the disadvantage is that they are prone to spectral distortion [9].

MRA-based methods decompose the source images into low-
frequency components (LFCs) and high-frequency components
(HFCs) at different scales, and then these components are fused
by some certain fusion rules. Finally, the fused components are
inversely transformed to obtain the HRMS image. Common
MRA-based methods include the Laplace transform [10], [11],
à trous wavelet transform (ATWT) [12], [13], and smoothing
filter based-intensity modulation [14]. This kind of method can
preserve the spectral information well; however, there are still
some defects in the enhancement of spatial information [15].

The pansharpening method based on VO includes two steps:
the design of the energy function and its optimization solution
[16]. The energy function is constructed using the methods
such as the observation model and sparse representation, and
then the optimization algorithm is used to tackle this problem
to achieve a pansharpened image. Common VO-based methods
include P+XS [17], regularized solutions of inverse problems
[18], [19], coupled nonnegative matrix factorization [20],
and sparse representation [21]. Although the results of the
VO-based methods have high accuracy, the computational costs
are relatively high [22].
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Recently, deep learning has impressive success in the field
of remote sensing image processing. The deep learning-based
methods solve the pansharpening problem by learning the fea-
tures of the remote sensing images. In 2016, Masi et al. [23]
developed a pansharpening approach based on the convolu-
tional neural network. Since then, more deep learning-based
pansharpening approaches have been developed, including the
deep residual network [24], multiscale and multidepth convo-
lutional neural network [25], and deep convolutional neural
networks [26]. This type of method is good at learning complex
features from images and obtain good fusion results. However,
the disadvantages are that a large amount of training samples
and an immense amount of training time are required, and the
optimal parameters are difficult to adjust [27].

Based on above analysis, the article proposes a pansharpening
method based on adaptive high-frequency fusion and injection
coefficients optimization to obtain high spatial-resolution MS
images, namely, HRMS images. First, the MS image is sharp-
ened by a multilevel sharpening model, and the HFCs of the
sharpened image (SI) and the PAN image are obtained by ATWT
and the guided filter, respectively. Next, an adaptive fusion
strategy is designed according to the difference and similarity
between the high-frequencies of the PAN image and those of
the sharpened MS image. Then, the adaptive injection coeffi-
cients based on the spatial and spectral information of source
images are proposed. Finally, the HRMS image is achieved
by injecting the fused HFC into the upsampled MS (UPMS)
image with the designed injection coefficients. Experiments
on IKONOS and Pléiades datasets show that compared with
existing advanced pansharpening methods, the performance of
our method is superior, both subjectively and objectively, which
proves the performance of our method. The main contributions
of this article are as follows.

1) An effective pansharpening approach based on adaptive
high-frequency fusion and injection coefficients optimiza-
tion is presented, which can effectively preserve the spatial
and spectral information in the pansharpened image.

2) A multilevel sharpening scheme for MS images is de-
signed, which can enhance the spatial information of MS
images well.

3) An adaptive fusion strategy is proposed according to the
difference and similarity between the HFCs of the PAN
and sharpened MS images. This strategy can better re-
tain the high-frequency information of the MS and PAN
images.

4) Adaptive injection coefficients are defined based on the
spectral and spatial information of the source images,
which can effectively control the injection of the fused
HFC to obtain the final HRMS image.

II. RELATED WORKS

With the advancement of pansharpening research, injection
models are widely used in the traditional pansharpening ap-
proaches. Furthermore, the methods based on the injection
model have gradually replaced the traditional pansharpening
methods. In this section, we present the notations used in the

article and concisely discuss the detail injection models of CS
and MRA.

A. Notation

Take M̃ ∈ RM ∗N ∗K as the UPMS image of the same size as
the PAN image, where M and N denote the row and column of the
matrix, respectively, and K denotes the number of spectral bands.
M̂ ∈ RM∗N∗K denotes the HRMS image after pansharpening.
I ∈ RM∗N denotes the intensity component, which is obtained
by a linear transformation from M̃ . P ∈ RM∗N is calculated by
matching the histogram of the PAN image with I.

B. CS-based Detail Injection Model

The traditional CS-based pansharpening method is imple-
mented by substituting the spatial component of the MS image
with the PAN image. However, Tu et al. [28] found that this
method can be realized in another way, which obtains the spatial
detail of the PAN image by calculating the difference between
the PAN image and the intensity component of the MS image.
Thus, the HRMS image is obtained by injecting the extracted
spatial details into the UPMS image with the injection coeffi-
cients. The CS-based detail injection model can be implemented
without spatial transformation and is advocated in [7], [29]; it is
defined as follows:

M̂k = M̃k + gk (P − I) , k = 1, 2, 3 . . . K (1)

where gk denotes the injection coefficients of the kth band. I is
obtained by a linear combination of MS images [30], which is
obtained by

I =
n∑

k=1

αkM̃k (2)

where αk denotes the weight coefficients of the kth band.

C. MRA-based Detail Injection Model

Unlike the CS-based detail injection model, the MRA-based
detail injection model obtains the HFC through the difference
between the PAN image and its LFC. The formula of the MRA-
based detail injection model is defined as follows:

M̂k = M̃k + gk (P − PL) , k = 1, 2, 3 . . .n (3)

where PL denotes the LFC of P. Choi et al. [31] found that the
injected HFC does not completely depend on the PAN image.
Moreover, the HFC of an MS image is also related to the HFC
of an HRMS image, which is difficult to obtain from the PAN
image. However, the HFC of an MS image is important for
subsequent results. Therefore, the new definition of HRMS is
defined as follows:

M̂k = LF(M̂k) + HF(M̂k)

≈ M̃k + gkHF(P, I) (4)

where LF(•) represents the LFC, and HF(•) represents the HFC.
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Fig. 1. Framework of the proposed method.

III. PROPOSED METHOD

The traditional MRA-based injection model generally fuses
the high-frequency details of the source images, and then directly
injects them into the UPMS image. Moreover, unlike other
pansharpening approaches, the MRA-based approach not only
preserves the spatial and spectral information well, but also has
relatively low computational complexity. However, as the spatial
information in the MS image is poor and blurry, the direct fusion
of the decomposed HFCs causes artifacts and blurring in the final
result. Therefore, how to effectively extract and fuse the HFCs
of source images requires careful consideration. In addition,
the injection coefficients also need to be carefully considered.
This article proposes a new pansharpening method to solve the
above problems, and the framework of our method is displayed
in Fig. 1, whose process is described as follows.

1) The MS image and its upsampling version are prepro-
cessed to obtain the linear combination components (LI
and I), respectively, and the P component is achieved by
using histogram matching on the PAN image and the I
component.

2) A multilevel sharpening method is proposed to sharpen
the LI component to obtain a SI.

3) The HFCs (HSI and HP) are extracted from SI and P
through ATWT and the guided filter, respectively.

4) A high-frequency fusion rule is designed based on the
similarity and difference between the high-frequency of
SI (HSI) and HP to obtain the fused high-frequency (HF),
denoted as SD fusion.

5) The injection coefficients are defined based on the spatial
and spectral relationship between the MS image and PAN
image, which is called SS injection.

6) The fused high-frequency (HF) is injected into the UPMS
image by using the obtained injection coefficients to
achieve the final HRMS image.

A. Multilevel Sharpening

MS images contain poor spatial information, and the HFC
directly decomposed from the MS image is rough. Therefore,
the fusion and injection of the HFC cause blur and artifacts in the
final result. A feasible way to address the problem is to enhance
the spatial information of MS images. Thus, to reduce the arti-
facts and enhance the spatial information while preserving the
original spatial information, we propose a multilevel sharpening
method to enhance the spatial information of the MS image.

Before the multilevel sharpening operation, the MS image
is preprocessed to obtain the I and LI components. First, the
MS image is upsampled to obtain M̃ . Then, the I component
is obtained by the linear combination of M̃ . Similarly, LI is
obtained by the linear combination of MS images. Finally, SI is
obtained by multi-level sharpening of LI.

To sharpen the MS image, the spatial structure of the MS
image is extracted by a convolution operator, and then the SI
is obtained by adding the extracted spatial structure with the
original image. A 3×3 operator kernel W is designed to sharpen
the center information according to the surrounding information
of the image. Because the size of the PAN image is four times
that of the MS image, and it is difficult to obtain the satisfied
sharpening results by directly upsampling the MS image with
a factor of 4. Inspired by the image pyramid, we divide an
upscale factor of 4 into two upscale factors of 2. Therefore,
we propose a multi-level sharpening method. The specific steps
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Fig. 2. HFCs of different sharpening methods. (a) LI. (b) Unsharpened HFCs. (c) Sharpened HFCs by direct upsampling four times. (d) Sharpened HFCs by the
proposed multilevel sharpening model.

Algorithm 1: Multilevel Sharpening Method.
Input: LI, convolution kernel W, λ = 2.
Stage I:

1) Sharpen the image
CLI is obtained by the convolution:

CLI = LI ∗W
Fuse the images before and after convolution:

FIL = α · LI + β · CLI

where α and β denote weight parameters.
2) Up-sample the fused image with an upscale factor

of λ

ULI = UP (FLI , λ)
Stage II:

3) Progressive sharpening and upsampling
LI=ULI, and repeat Stage I to obtain the ULI.

Stage III:
4) Denoising and sharpening
GLI is obtained by performing Gaussian filtering on ULI;
LI=GLI, and repeat 1) to obtain the sharpened image FIL;
SI is obtained by performing guided filtering on FIL.

Output: The sharpened image SI.

of multilevel sharpening are shown in Algorithm 1. Through the
algorithm, the SI is obtained by sharpening the LI image step by
step, which improves the spatial information of the MS image
in SI.

Furthermore, to illustrate the effectiveness of the multi-level
sharpening model, our method is compared to the method
without the sharpening process and the method with direct
upsampling four times. Fig. 2 shows the comparison results of
the unsharpening and sharpening methods on three MS images.
Fig. 2(a) shows the component LI of each MS image. Fig. 2(b)–
(d) shows the HFCs of the results of each method. It can be
seen that the details of the sharpened HFC are clearer, while the
details of the unsharpened HFC are blurred and rough. Moreover,
the effect of the multi-level sharpening model is better than that
of using direct upsampling four times, which indicates that our
sharpening method has superiority performance in enhancing
the spatial information.

B. High-frequency Fusion Based on Similarity and Difference

Before fusing the HFCs, the HFCs of the source images
need to be extracted separately. This article employs ATWT
[12] and guided filtering [32] to filter the MS image and PAN
image, respectively, to obtain the corresponding HFCs. ATWT
is obtained by improving the discrete wavelet transform, which
has many advantages, including non-orthogonality, shift invari-
ance, non-decimation, and redundancy [13]. Therefore, to better
extract the HFC from the MS image, we use ATWT to obtain
the HFC (HSI). Guided filtering is similar to bilateral filtering in
that it is also an edge-preserving filtering algorithm. In addition,
it can constrain the input image according to the changing trend
of the guided map, which can solve the problem of gradient
inversion [32]. In order to make the extracted HFC similar to the
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MS image, we use I as the guided map and filter the image (P)
to obtain the HFC (HP).

Most pansharpening methods focus on the spatial structures
of the PAN image but ignore some important spatial structures
in the MS image, causing the final result to be different from the
reference image. This problem can be solved by fusing the high-
frequency of the source images to enhance the similarity between
the injected high-frequency and MS image [15]. Actually, the
source images are captured in the same scene but have a different
emphasis on storing information. Therefore, the spatial informa-
tion of the source images has high similarity, but at the same time,
there are certain differences between them. Their HFCs also have
the same characteristics; that is, the overall structure of the HFCs
is similar, and there are some differences in local details. Based
on this analysis, to retain the PAN image information well while
supplementing the missing information of MS images, a fusion
weight based on the similarity and difference of the HFCs is
proposed. Structural similarity (SSIM) is an index to measure
the similarity of the two images, which consists of mean value,
standard deviation, and covariance, representing brightness,
contrast, and SSIM, respectively [33]. The root-mean-square
error (RMSE) can well express the difference between the two
images [34]. Therefore, we use SSIM to measure the similarity of
HFCs and use RMSE to evaluate the difference between HFCs.
Before calculation, the pixel value is normalized between 0 and
1 so that the values calculated by SSIM and RMSE are between
0 and 1. Therefore, the proposed fusion weight is defined as
follows:

θ =
1

2
(SSIMN + RMSEN )

=
1

2
∗ (2μPμSI + C1)(2σPSI + C2)

(μ2
P + μ2

SI + C1) + (σ2
P + σ2

SI + C2)

+
1

2

√
1

mn

∑m

i=1

∑n

j=1
(P (i, j)− SI(i, j))2 (5)

where SSIMN and RMSEN denote the normalized SSIM and
RMSE, respectively. μP and μSI represent the mean values of
P and SI, respectively. σP and σSI represent the variance of P
and SI, respectively. σPSI represents the covariance of P and
SI. C1 = (k1L)2 and C2 = (k2L)2 represent the constants used to
keep stability, and L represents the dynamic range of pixel values
[33]. Equation (5) can be divided into two parts: the first half and
the second half, which represent the similarity and difference
between the HFCs, respectively. To enable the fused HFC to
better retain the information of HFCs (HSI) and HP, we set θ
as the weight of HSI and (1-θ) as the weight of HP. Therefore,
with the proposed fusion weight, the fusion strategy is defined
as

HF = θ ∗HSI + (1− θ) ∗HP (6)

where HF is the fused HFC.

C. Injection Coefficients Based on the Spatial and Spectral
Relationship

In the injection model, the injection coefficients play a key role
in the process of injecting the fused HFC into the UPMS image.
The good injection coefficients can improve the accuracy of
the information injection. If the injection coefficients are too
large or too small, spatial or spectral distortion occurs in the
final pansharpened result. Therefore, it is important to find
the suitable injection coefficients. The adaptive IHS (AIHS)
[35] obtains the injection coefficients by calculating the edge
information of the source image, which can be represented as
follows:

gEk =
M̃k

1
K

∑K
k=1 M̃k

(
βkWM̃k

+ (1− βk)WP

)
(7)

where βk denotes the kth tradeoff coefficient of the MS im-
age. WM̃k

and WP denote the edge detection matrices of MS
and PAN images, respectively. gE k denotes the kth injection
coefficients calculated by the AIHS method. Unfortunately,
although this method is based on spatial information, it ignores
the relationship between the spectra of the MS image. Therefore,
the injection of spatial information may cause a change in the
original ratio between the spectra of the MS image. A practical
way to deal with this problem is to utilize spectral information
to constrain the injection coefficients. Hence, in the article,
we propose to combine the spatial and spectral information to
design better injection coefficients. Based on AIHS, a spectral
information constraint is presented to optimize the injection
coefficients by considering the relationship between the PAN
image and the various spectral bands of the MS image. Thus,
the SSIM of the PAN image and each spectral band of the MS
image is multiplied by the ratio of the standard deviation of the
PAN image and each spectral band of the MS image, which is
designed as

W os
k = SSIM

(
M̃k, P

)
∗
⎛
⎝ std

(
M̃k

)
std (P )

⎞
⎠ (8)

where W os
k denotes the spectral relationship of the kth spectral

band, SSIM(•) denotes the SSIM between images, and std(•)
means the standard deviation function. Subsequently, the spec-
tral relationship Wos k is used to constrain gE k to obtain the
spectral constrained coefficients. The gE k and spectral con-
straint coefficients are then combined to obtain the final injection
coefficient gk

gk =
1

2

⎛
⎝gEk +

⎛
⎝ W os

k∑K
i=1 W

os
i

∗
K∑
j=1

gEj

⎞
⎠
⎞
⎠ . (9)

Finally, the fusion high-frequency (HF) is injected into
M̃kthrough the injection coefficients gk, and thus the pansharp-
ened result (M̂k) is obtained by

M̂k = M̃k + gk ∗HF . (10)
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets

This article is tested and verified on two widely used datasets,
including IKONOS and Pléiades. The IKONOS satellite is a
commercial satellite, and the dataset used in this experiment
includes urban and farmland areas. The Pléiades consists of
Pléiades-1 and Pléiades-2 satellites, and the dataset used in
this experiment covers the area of Shenzhen in China. In this
experiment, the two datasets each contain 60 sets of MS images
and PAN images. MS images of four bands (red, green, blue,
and near-infrared) were used in this experiment, and its sizes
is 256×256×4. The sizes of PAN images are 1024×1024×1.
To objectively verify the effectiveness of our method, the test
experiments include simulated data evaluation and real data
evaluation. The simulated data assessment is to downsample
the original data according to Wald’s protocol [36], and use the
original data as ground truth (GT). The simulated MS images are
obtained through the MTF [10] operation and the downsampling
operation with a sampling factor of 4, and they are used as
input images. The real data assessment uses the original data
to perform experiments as the input images to the experiment.

B. Benchmark and Quality Indexes

Some advanced pansharpening methods are used as bench-
marks: the Gram–Schmidt adaptive (GSA) method [8]; the
partial replacement adaptive CS (PRACS) method [31]; the
bilateral filtering-based luminance proportional (BFLP) method
[37]; the context-based decision (CBD) method [10]; the matting
model and multiscale transform (MMMT) based method [38];
the full scale regression-based injection coefficients (FSRIC)
method [39]; the robust band-dependent spatial-detail (BDSD-
PC) method [40], the pansharpening neural network (PNN)
[23]; and the fusion with deep convolutional neural networks
(Fusion-Net) [26]. Among them, GSA, PRACS, and BDSD-PC
are based on CS; BFLP, CBD, MMMT, and FSRIC are based on
MRA; PNN and Fusion-Net are deep-learning-based methods.
All of the methods used in this article are derived from publicly
sourced codes provided by the corresponding authors. In the
experiment, all the methods are tested in the environment of
MATLAB2019B, and the hardware device is a computer with a
3.2GHz CPU and 16GB RAM.

For the simulated dataset and the real dataset, we use two
different sets of indexes for the objective assessment. The simu-
lated data assessment indexes include the correlation coefficient
(CC), hypercomplex quality assessment Q2n (Q4 for four bands)
[41], spectral angle mapper (SAM) [42], erreur relative global
adimensionnelle de synthèse (ERGAS) [43], and peak signal-
to-noise ratio (PSNR) [44]. For the real data assessment, the
hybrid quality with no reference (HQNR) index [45] is used for
the objective assessment. It includes the spectral distortion index
(DK

λ ) [46] and the spatial distortion index (DS) [47].

C. Simulated Datasets Assessment

In this section, we introduce in detail the assessment of pan-
sharpened results on simulated dataset. All of the pansharpened

TABLE I
QUANTITATIVE ASSESSMENT OF RESULTS IN FIG. 3

results of the contrast methods as well as the proposed method
are analyzed and evaluated subjectively and objectively. Fig. 3
displays the simulated experiment results on Pléiades dataset.
Fig. 3(a) shows the GT, and Fig. 3(b) shows the simulated
MS image. Fig. 3(c)–(l) shows the pansharpened results of the
comparison methods. It can be observed clearly that the results of
BFLP and Fusion-Net have spectral distortion, but it is difficult
to find obvious differences for other methods. In order to make
observation more convenient, we subtract the pansharpened
results from the GT to obtain the residual images, and the results
are displayed in Fig. 4. Fig. 4(a) is an ideal residual image, and
Fig. 4(b)–(l) show the residual images of other methods. It is
obvious that the residual result of BFLP has some large residual
blocks, and the residual results of GSA, FSRIC, and BDSD-PC
have many residues, which indicates that spatial information of
the four methods is different from that of GT. The residual im-
ages of MMMT, FS, and PNN contain color information, which
indicates that the results of these methods have large differences
in spectra compared to GT. Observing the residual images, we
can find that our result is closest to the ideal residual image,
which indicates that the proposed method performs the best in
the subjective assessment. Table I gives the objective evaluation
results of Fig. 3. In the table, the best value is bolded and the
second-best value is underlined. We can see that our method ob-
tains the best values in all the quality assessment metrics except
SAM.

Fig. 5 displays the pansharpened images of the degraded ex-
periments on IKONOS. Fig. 5(a)–(b) shows GT and the degraded
MS image, respectively. Fig. 5(c)–(l) shows the pansharpened
results of each comparison method. The results of BFLP and
PNN exhibit some spectral distortion. There are some colored
noises in the result of the Fusion-Net. In order to show the
differences of the compared methods more conveniently, we
display the residual images in Fig. 6. Fig. 6(a) shows the ideal
residual image, and Fig. 6(b)–(l) shows the residual results of
other methods. From Fig. 6, it can be observed that the results
of the BFLP and MMMT methods have obvious color patches,
which indicates that the two methods have spectral differences
compared with the ideal residual image. Also, there are many
residues and color information in the residual results of PNN
and Fusion-Net, which indicates that the results of these two
methods are different from GT, both in space and spectrum.
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Fig. 3. Fusion results of Pléiades simulated dataset. (a) Ground truth. (b) Upsampled MS. (c) Gram–Schmidt adaptive. (d) Partial replacement adaptive CS. (e)
Bilateral filtering-based luminance proportional. (f) Context-based decision. (g) Matting model and multiscale transform. (h) Full scale regression-based injection
coefficient. (i) Band-dependent spatial-detail. (j) Pansharpening neural network. (k) Fusion-Net. (l) Proposed.

Fig. 4. Residual images estimated by the difference between GT and the pansharpened image of each algorithm in Fig. 3. (a) Ideal image. (b) Upsampled MS. (c)
Gram–Schmidt adaptive. (d) Partial replacement adaptive CS. (e) Bilateral filtering-based luminance proportional. (f) Context-based decision. (g) Matting model
and multiscale transform. (h) Full scale regression-based injection coefficient. (i) Band-dependent spatial-detail. (j) Pansharpening neural network. (k) Fusion-Net.
(l) Proposed.

Fig. 5. Fusion results of IKONOS simulated dataset. (a) Ground truth. (b) Upsampled MS. (c) Gram–Schmidt adaptive. (d) Partial replacement adaptive CS. (e)
Bilateral filtering-based luminance proportional. (f) Context-based decision. (g) Matting model and multiscale transform. (h) Full scale regression-based injection
coefficient. (i) Band-dependent spatial-detail. (j) Pansharpening neural network. (k) Fusion-Net. (l) Proposed.
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Fig. 6. Residual images estimated by the difference between GT and the pansharpened image of each algorithm in Fig. 5. (a) Ideal image. (b) Upsampled MS. (c)
Gram–Schmidt adaptive. (d) Partial replacement adaptive CS. (e) Bilateral filtering-based luminance proportional. (f) Context-based decision. (g) Matting model
and multiscale transform. (h) Full scale regression-based injection coefficient. (i) Band-dependent spatial-detail. (j) Pansharpening neural network. (k) Fusion-Net.
(l) Proposed.

TABLE II
QUANTITATIVE ASSESSMENT OF RESULTS IN FIG. 5

Compared with the residual results of other methods, it can be
observed that the result of the proposed method has the least
residues, which indicates that our approach can obtain the best
result both spatially and spectrally. Furthermore, Table II gives
the objective evaluation results of Fig. 5, and it shows that our
method achieves the best values among all the quality assessment
indexes except SAM.

To further demonstrate the validation of our method, we
perform quantitative evaluations on Pléiades and IKONOS. The
average quantitative results of the two datasets (each includes 60
sets of images) are given in Table III. From the table, it can be
seen that for these two simulated datasets, all of the assessment
indexes of our method are the best. Therefore, through the
objective results presented here, the effectiveness of our method
is verified.

D. Real Dataset Assessment

This section presents and analyzes the pansharpened results
on the real data of the IKONOS and Pléiades. Fig. 7 shows
the fusion results of IKONOS dataset. Fig. 7(a)–(b) shows the
original source images. Fig. 7(c)–(l) displays the pansharpened
results of the comparison methods. As can be seen from Fig. 7,
the results of PNN and Fusion-Net exhibit spectral distortion,

as indicated by the arrow area. To better differentiate the fusion
results by different methods, we enlarge a part of the area (blue
boxes) in Fig. 7, and the closeups are displayed in Fig. 8. From
the red and green marked boxes in Fig. 8, we can observe that
there are obvious color deviations in GSA, MMMT, FSRIC, and
BDSD-PC. In the red area of Fig. 8(j), the color of the object is
purple, which is different from the source PAN image showing
that the result of PNN has spectral distortion. In Fig. 8(k), there
is a large amount of colored noise, signifying that Fusion-Net is
weak in retaining spectral information. Furthermore, Table IV
gives the objective evaluation results of Fig. 7. The assessment
result of our method is the best on the HQNR and DS metrics.

In addition, the average objective evaluation results on the
two real datasets are given in Table V. From the table, we can
see that the comprehensive index HQNR of our method is the
best, while DS and DK

λ are either the best or the second-best
on these two datasets, which indicates the performance of our
method.

E. Research on Multi-Level Sharpening Parameters

As introduced in Section III-A, to improve the spatial qual-
ity of the HFC extracted from the MS image, we propose a
multilevel sharpening operation by superimposing the extracted
high-frequency on the MS image. The choice of kernels W and
parameters α and β are discussed through experiments. Four
kernels and the corresponding α and β values are set, as given
in Table VI, and the HFCs of the sharpening results performed
by them are shown in Fig. 9. Fig. 9(a) shows the HFC extracted
from the result without the sharpening method, and Fig. 9(b)– (i)
shows the HFCs extracted from the sharpening results using
eight kinds of parameters corresponding to A1-A8. It can be
seen that the results using the parameters of A4, A6, and A8
are oversharpened. The result using the parameters of A2 has
the best sharpening effect, and has better texture details than
those of other methods. Moreover, to better illustrate the effects
of different methods, we objectively evaluate the final pansharp-
ened results. The experiment is conducted on a simulated dataset
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Fig. 7. Fusion results of the full resolution IKONOS dataset. (a) Multispectral. (b) Panchromatic. (c) Gram–Schmidt adaptive. (d) Partial replacement adaptive
CS. (e) Bilateral filtering-based luminance proportiona. (f) Context-based decision. (g) Matting model and multiscale transform. (h) Full scale regression-based
injection coefficient. (i) Band-dependent spatial-detail. (j) Pansharpening neural network. (k) Fusion-Net. (l) Proposed.

Fig. 8. Closeups of the fusion results in Fig. 7. (a) Multispectral. (b) Panchromatic. (c) Gram–Schmidt adaptive. (d) Partial replacement adaptive CS. (e) Bilateral
filtering-based luminance proportional. (f) Context-based decision. (g) Matting model and multiscale transform. (h) Full scale regression-based injection coefficient.
(i) Band-dependent spatial-detail. (j) Pansharpening neural network. (k) Fusion-Net. (l) Proposed.

Fig. 9. HFCs of the SI. (a) Multispectral. (b) A1. (c) A2. (d) A3. (e) A4. (f) A5. (g) A6. (h) A7. (i) A8.
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TABLE III
AVERAGE QUANTITATIVE RESULTS ON THE DEGRADED DATASETS

TABLE IV
QUANTITATIVE ASSESSMENT OF RESULTS IN FIG. 7

TABLE V
AVERAGE QUANTITATIVE RESULTS ON THE REAL DATASETS

composed of IKONOS and Pléiades, containing 35 sets of
images. The results are evaluated by the assessment objective
indexes, which are given in Table VII. From the table, the result
using the parameters of A2 is the best in all of the indexes. There-
fore, these parameters are selected to sharpen the MS image.

F. Ablation Study

To further illustrate the effectiveness of each component
in our method as illustrated in Section III–C, we conduct an
ablation experiment. As given in Table VIII, the ablation exper-
iment includes three comparison methods: the method without

multilevel sharpening (O1), the method without similarity and
dissimilarity fusion (O2), and the method without spatial and
spectral injection (O3). The experiment is conducted on the same
simulated dataset as Section III-E. The results are evaluated by
the assessment metrics, which are shown in Fig. 10. From the
figure, it can be observed that our method performs the best in
all of the indexes, which further verifies the effectiveness of the
proposed method.

G. Comparison of Time Consumption

To compare the computational cost of each approach, Table IX
gives the average running time required for the computation of
different methods. The Fusion-Net method is running on the
GPU, while other methods are running on the CPU. Therefore,
the Fusion-Net method does not participate in the comparison.
Table IX gives the average time consumption of the comparison
methods on the simulated and real datasets. Among the methods,
GSA, PRACS, and BDSD-PC are the methods based on CS,
which generally have less calculation time. The BFLP and
MMMT methods take more time than the proposed methods.
Although the proposed method consumes more time than some
traditional methods, the gap is small. The computational cost
of the proposed method is mainly spent on multi-level sharp-
ening of MS images and obtaining HFCs. On the whole, our
method can obtain better pansharpened results with relatively
high efficiency.

V. DISCUSSION

In order to keep the final pansharpened result with accurate
high-frequency information, the high-frequency information of
the MS image is usually added into the injected HFC. However,
it ignores the fact that the spatial information of the MS image
is blurry and rough. When the high-frequency information of
the MS image is fused with the high-frequency information
of the PAN image, the final pansharpened result is blurry and
has artifacts. These problems are caused by the introduction
of coarse spatial information in the HFCs of MS images. To
improve the precision of HFC injection, a feasible approach
is to improve the spatial information of the MS image. There-
fore, we propose a multilevel sharpening operation to improve
the spatial information of the MS image without introducing
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TABLE VI
SHARPENING PARAMETERS

Fig. 10. Various indicators of the pansharpened results with different methods in Table VIII. (a) Correlation coefficient. (b) Q2n. (c) Spectral angle mapper. (d)
Erreur relative global adimensionnelle de synthèse. (e) Peak signal-to-noise ratio.

TABLE VII
AVERAGE QUANTITATIVE RESULTS OF DIFFERENT PARAMETERS

other irrelevant information. Through multi-level sharpening,
the high-frequency of the sharpened MS and PAN images are
extracted.

Moreover, the PAN image and the MS image are the shots of
the same scene, but the main information in the two images is
different. For their HFCs, their overall structure is similar, but
their local details are different. In response to this phenomenon,
we propose an adaptive fusion strategy based on the similarity
and dissimilarity of the HFCs. The fusion is performed by
calculating the similarity and difference between the HFCs of

TABLE VIII
COMPARISON METHODS FOR ABLATION STUDY

TABLE IX
AVERAGE CONSUMING TIME (SECOND) OF THE COMPARISON METHODS
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the SI and that of PAN image. Then, the fused HFC is injected
into the UPMS image. To optimize the injection coefficients, we
design the injection coefficients based on the spatial and spectral
relation between PAN and MS images. The injection coefficients
based on spatial information are first obtained by calculating the
edge matrices of the source images. Then, the SSIM between
the various bands of the MS image and the PAN image are
calculated, and they are normalized as the spectrum constraints
to correct the obtained injection coefficients. To further enhance
the spatial information and maintain the original spectral ratio
between the bands, we combine the injection coefficients based
on spatial information with the injection coefficients corrected
by the spectral information to achieve the final injection coef-
ficients. At the end, the HFC is injected into the UPMS image
with the proposed injection coefficients, and the pansharpened
result is obtained. The comparison with many of the latest
pansharpening methods proves the effectiveness of our method.

Although the proposed method is better than many popular
methods, it still has room for improvement. In the practical
application of remote sensing, there are certain requirements
for time consumption. Although the proposed method has a rel-
atively fast calculation speed, it still does not meet the real-time
requirements.

VI. CONCLUSION

A novel pansharpening approach based on adaptive high-
frequency fusion and injection coefficients optimization has
been proposed to improve the quality of pansharpened images.
To preserve more spatial information from the MS image in the
pansharpened result, we have proposed a multilevel sharpening
method to sharpen the MS image step by step. The HFC is
obtained by fusing the HFCs of the sharpened MS and PAN
images according to their similarity and dissimilarity. Finally,
the injection coefficients are designed based on the spatial and
spectral relationship between the PAN image and MS image.
The fused HFC is injected into the UPMS image with the
designed injection coefficients to obtain the pansharpened re-
sult. Experimental results illustrate that our method has better
performance in subjective and objective assessments compared
to some advanced pansharpening approaches.
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