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Abstract—Cyclone Global Navigation Satellite System
(CYGNSS) launched in recent years, provides a large amount
of spaceborne GNSS Reflectometry data with all-weather, global
coverage, high space-time resolution, and multiple signal sources,
which provides new opportunities for the machine learning (ML)
study of sea surface height (SSH) inversion. This article proposes
for the first time two different CYGNSS SSH inversion models
based on two widely used ML methods, back propagation (BP)
neural network and convolutional neural network (CNN). The
SSH calculated by using Danmarks Tekniske Universitet (DTU) 18
ocean wide mean SSH (MSSH) model (DTU18) with DTU global
ocean tide model is used for verification. According to the strategy
of independent analysis of data from different signal sources,
the mean absolute error (MAE) of the BP and CNN models’
inversion specular points’ results during 7 days is 1.04 m and
0.63 m, respectively. The CLS 2015 product and Jason-3 data were
also used for further validation. In addition, the generalization
ability of the model, for 6 days and 13 days training sets, was also
evaluated. For 6 days training set, the prediction results’ MAE
of the BP model is 11.59 m and 5.90 m for PRN2 and PRN4, and
the MAE of the CNN model is 1.37 m and 0.97 m for PRN2 and
PRN4, respectively. The results show that BP and CNN inversions
are in high agreement with each product, and the CNN model has
relatively higher accuracy and better generalization ability.

Index Terms—Back propagation (BP), convolution neural
network (CNN), cyclone global navigation satellite system
(CYGNSS), global navigation satellite system reflectometry
(GNSS-R), sea surface height (SSH).

I. INTRODUCTION

MOST of the earth’s surface is covered by the ocean, the
height of the sea surface and its changes are not only
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important for studies such as oceanography but also greatly
related to the survival and development of human beings. Com-
pared with ship measurements and satellite altimeter retrieval,
spaceborne Global Navigation Satellite System Reflectometry
(GNSS-R) technology has the advantages of multiple signal
sources, space-time diversity, and low cost. Spaceborne GNSS-
R technology is an emerging remote sensing technology that uses
a satellite platform to receive GNSS satellite signals reflected
from the earth surface to analyze and invert the physical infor-
mation of the reflected surface. Martin-Neira [1] proposed using
GPS reflection signals for sea surface height (SSH) retrieval,
which was an earlier attempt of GNSS-R for ocean altimetry.
This was followed by new applications in tidal [2], [3], soil
moisture [4], [5], sea ice detection [6], [7], [8], and wind speed
retrieval [9], [10]. Previous GNSS-R experiments have mainly
focused on receiver experiments on land and the coast. In recent
years, with the launch of satellites such as Techdemosat-1 (TDS-
1) of Surrey Satellite Technology Limited, Cyclone Global Nav-
igation Satellite System (CYGNSS) of National Aeronautics and
Space Administration (NASA), and other satellites, the research
opportunities for spaceborne GNSS-R altimetry have become
more and more abundant [11], [12].

At present, the research on spaceborne GNSS-R SSH inver-
sion is mainly based on the principle of spaceborne GNSS-R
geometric relationship to build a physical model. This method
uses the delay-Doppler map (DDM) to estimate the position
of the retracking point and, thus, calculate the SSH. In 2016,
Clarizia et al. [13] performed the first spaceborne SSH inversion
using TDS-1 satellite data. Using Danmarks Tekniske Univer-
sitet (DTU) 10 ocean wide mean SSH (MSSH) model (DTU10)
as a validation comparison model, the root-mean-square error
(RMSE) of 8.1 m and 7.4 m was obtained using six months
of TDS-1 satellite data to invert the SSH of the South Atlantic
and the North Pacific, respectively. In 2020, Qiu and Jin [14]
used CYGNSS data to inverse perform global sea level height
by observing the relationship between waveform features in
DDM and delay waveform data. The mean absolute error (MAE)
compared with the cnes_cls2015 and DTU10 models was 1.33 m
and 2.63 m, respectively, and the RMSE was 2.26 m and 3.56 m,
with correlation coefficients of 0.97 and 0.95. In the same
year, Zhang et al. [15] optimized the error correction model
of spaceborne GPS-R using TDS-1 data with the DDM SSH
inversion technique. The MAE of the optimized inversion model
compared with the DTU15 model was 6.05 m, with a relative
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improvement in accuracy of about 29%. The DDM-based SSH
inversion technique complements the analysis of increasingly
rich error models. Its inversion results mainly use the MSSH
model as validation, and the accuracy can reach the meter
level. However, many disturbances and errors in the spaceborne
observations are difficult to entirely correct, and the subject of
improving the accuracy of SSH inversion by traditional methods
is becoming more and more complicated and tricky.

In recent years, machine learning (ML) algorithms have been
gradually integrated into the GNSS-R field with their powerful
nonlinear fitting ability and ease of construction. For GNSS-R
wind speed inversion, Reynolds et al. [16] presented an artificial
neural network (ANN) inversion algorithm for wind speed inver-
sion based on CYGNSS satellite data. Zhang et al. [17] combined
principal component analysis (PCA), support vector regression
(SVR), PCA combined SVR (PCA-SVR) method, and the con-
volutional neural network (CNN) method, respectively, thus
constructing a sea surface high wind speed inversion model.
Zhang et al. [18] analyzed CYGNSS data and used the support
vector machine (SVM) method for sea surface wind direction
inversion. For soil moisture inversion, Senyurek et al. [19] used
three widely used ML methods, ANN, random forest (RF), and
SVM, for comparative analysis of soil moisture inversion. All
these suggest that ML has been successfully applied to some
GNSS-R studies.

In the SSH inversion study, Wang et al. [20] used airborne
waveform data from the Baltic Sea to construct a new ML fusion
model for SSH retrieval in 2021. Pearson correlation coefficient
and PCA in combination with multiple ML models were used.
Compared with the DTU15 model, the RMSE was about 0.23 m
and the correlation coefficient was about 0.75. In the same year,
Zhang et al. [21] analyzed TDS-1 data distributed over a vast
sea area. They proposed two spaceborne SSH inversion models,
PCA-SVR and CNN, and the inversion results of the models had
an average MAE below 1 m compared to DTU15. These studies
highlight the potential of ML algorithms in the field of GNSS-R
SSH inversion research.

Since there are no SSH inversion ML model studies using
CYGNSS data, this article proposes for the first time ML models
for SSH inversion using CYGNSS data, which focuses on the
CYGNSS data input for the ML models, structure of the ML
models, the comparison of the ML models’ performance, and
the generalization ability of the ML models. Two different
types of networks are considered for modeling SSH inversion
for comparative analysis: the classical BP neural network, and
the CNN. CNN includes convolutional computation and has a
deep structure, which is one of the representative algorithms
of deep learning. In contrast to airborne or ground-borne SSH
inversion analysis, which lacks space-time diversity, this arti-
cle utilizes the high-resolution spaceborne GNSS-R data pro-
vided by CYGNSS, to analyze a wide range of sea areas.
Compared with TDS-1 data [21], CYGNSS has 8 GNSS-R
receiving satellites and a larger number of valid samples, so
CYGNSS is expected to have better accuracy, especially bet-
ter generalization performance, which will be discussed as
follows.

Fig. 1. Density distribution of CYGNSS specular reflection points from Au-
gust 1–7, 2020.

II. DATASETS

A. CYGNSS Data

CYGNSS was launched on December 15, 2016, and was
jointly developed by NASA, the University of Michigan, and
the Southwest Research Institute. CYGNSS consists of eight
identical low-orbiting microsatellites, each of which has four
channels that can work simultaneously, thus offering the advan-
tage of higher spatial and temporal resolution. The satellites of
CYGNSS have an orbital inclination of 35° and an altitude of
510 km. They are equipped with only one payload, the Space
GPS Receiver Remote Sensing Instrument, dedicated to the
GNSS reflectometry mission. Zenith GNSS antennas are mainly
used to receive direct signals from GNSS satellites, and nadir
antennas are high-gain reflector antennas used to receive signals
from rough ocean surfaces. In this article, L1-level data from
CYGNSS for the consecutive week of August 1–7, 2020, were
randomly selected for analysis. Besides, DDM is the key to the
traditional SSH inversion technique, and it represents the surface
power received at each observed specular point for a specific
time delay and Doppler frequency range [24]. The inversion of
the CYGNSS forward scattering model allows for obtaining the
bistatic radar cross section (BRCS) and the effective scattering
area. In the L1 data, the BRCS is an 11 × 17 DDM array and
provides some features associated with the waveform. CYGNSS
L1 data are available on NASA’s Physical Oceanography Dis-
tributed Activity Archive Center website, with data stored as
one NC file per satellite per day. Each satellite has four chan-
nels working in parallel and can collect about 700 000 data a
day. Thus, CYGNSS can accumulate about 39.2 million data a
week. In addition, to ensure the reliability and accuracy of data
analysis, this article filters the data using the following rules: 1)
CYGNSS data quality control flag bits; 2) incidence angle less
than 30°; 3) signal-to-noise ratio (SNR) greater than 5 dB. The
quality flag bits filtration standards include data values of null,
abnormal parameters in data observation, inability to calculate
satellite state, DDM calibration error, and BRCS peak point
location is significantly OFF-center and within 25 km of land.

The filtered data is more than 6.7 million items from August
1–7, 2020. Fig. 1 shows the density distribution of the specular
reflection points of the dataset. The color in the figure represents
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Fig. 2. Amount of data number per GPS satellite.

Fig. 3. Amount of data number per CYGNSS satellite.

Fig. 4. Example of a DDM.

the revisit times in a one-degree grid. Fig. 2 counts the data
distribution of the subdataset divided by different GPS satellites.
In total, 32 GPS satellites are involved, but the distribution
is uneven, with the most significant amount of data being
620 000 and the smallest being just over 20 000. Fig. 3 shows
the data distribution of the subdata according to the different
CYGNSS satellites. The data are evenly distributed among the
eight CYGNSS satellites, except for satellite No. 4, which is
more than 600 000, and the remaining seven are above 800 000.

B. Feature Selection

CYGNSS L1 data directly provides the locations of the BRCS
DDM specular reflection point delay rows and peak delay rows,
which can be used as references for calculating path delay,
therefore, they can be directly used as input parameters for the
ML models.

Fig. 4 shows a typical CYGNSS L1 DDM. The energy is
affected by the delay effect and the Doppler effect, which is
caused by the relative high-speed movement between the re-
ceiver and the transmitter, the dynamically changing direction,
and the considerable satellite altitude and spacing. The integral
Doppler reflects the magnitude and direction of the change in

TABLE I
SELECTED PARAMETERS AND DESCRIPTION

geometric distance [21]. CYGNSS L1 data directly provides the
location of the BRCS DDM specular reflection point Doppler
column and the peak Doppler column, as well as the vector
velocities of the transmitter and receiver satellites. Therefore,
these primitive features, which are essential in the spaceborne
GNSS-R observations, are also considered input parameters for
the model.

In addition, the space-time span of spaceborne GNSS-R ob-
servation is relatively large, and the GNSS signal itself is more
susceptible to interference. Factors such as unknown sea state
and sea surface roughness can affect the reflected signal’s DDM
power waveform. The DDM SNR and receiver antenna gain are
also considered important essential parameters in this article. All
the parameters considered in the summary are shown in Table I.

C. DTU Ocean Wide MSSH Model

DTU18 is a global MSSH model developed by DTU and
calculated from 17 years of data from several satellites with
altimetry missions such as Jason-1, ERS-1, and ICESat. This
article uses a combination of the static DTU18 MSSH and the
DTU global ocean tide model to build a DTU SSH model to
calculate the approximate SSH. Specifically, for the gridded
product DTU18, a bilinear interpolation method was used to
interpolate and match the MSSH (HMSSH) based on longitude
and latitude. Similarly, the DTU global ocean tide model is
a gridded product, but the product itself provides an interpo-
lation algorithm. The corresponding ocean tide height (Htide)
is obtained by directly inputting the latitude, longitude, and
time information of the specular reflection point. Therefore, the
sea surface height (SSHDTU) calculated by the model can be
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expressed as

SSHDTU = HMSSH +HTide. (1)

D. MSS CLS 2015

MSS CLS 2015 is a mean sea surface model calculated using
20 years of altimetry data from 1993 to 2012, which is mainly
derived from the geodetic missions of Jason-1 and CryoSat-2,
with SSH estimation errors of the order of centimeters. CLS
2015 data is available in a web-based common data form format
on the aviso website. CLS 2015 is a gridded MSSH model, while
the inversion results are specular reflection point data. Therefore,
it is necessary to first interpolate and match the longitude and
latitude positions of the specular reflection points, then obtain
the MSSH corresponding to the data from the CLS 2015 model.

E. Jason-3 Data

The Jason-3 satellite was launched on January 17, 2016.
It was developed in collaboration with four agencies: NASA,
National Oceanic and Atmospheric Administration, European
Organization for the Exploitation of Meteorological Satellites,
and Centre National d’Etudes Spatiales. The Jason-3 satellite
orbit is a nonsun-synchronous circular orbit with an orbital
altitude of 1336 km, an orbital inclination of 66.038°, and an
orbital return period of 9.9 days. Jason-3 carries the Poseidon-3B
altimeter, a dual-frequency, subsatellite-pointing radar altimeter
that is the critical payload for the Jason-3 satellite mission.
The mission goal of Jason-3 is to follow in the footsteps of
TOPEX/POSEIDON, Jason-1, and Jason-2, and continue to
provide continuous ocean topographic data with uniform ac-
curacy and coverage for the study of ocean circulation and SSH.
Besides, support the prediction of extreme weather conditions,
oceanography, and climate variability. Although Jason-3 is used
for SSH missions requiring accuracy of 3.4 cm or better, it
has a lower time resolution (Jason-3 revisit period is 10 days,
and CYGNSS is about 3–7 h) and costs more to measure. The
geophysical data provided by Jason-3 is available on the aviso
website.

Jason-3 cannot provide MSSH data directly. The distance
from the satellite to the earth’s surface can be calculated by the
altimeter and its associated error correction data from Jason-3
data. Jason-3 also provides the distance of the satellite altimeter
above the reference ellipsoid directly, and the SSH (Hj3ssh) can
be calculated as the difference between the two values. The
corresponding tidal height (Hj3tide) is then calculated again
using the DTU global ocean tide model based on the latitude,
longitude, and time of the Jason-3 data points. Finally, the MSSH
(Hj3mssh) based on Jason-3 data can be calculated by

Hj3mssh = Hj3ssh −Hj3tide = (Altitude− Range)−Hj3tide

(2)
where Altitude means the distance of the satellite altimeter
above the reference ellipsoid, Range means the distance from
the satellite to the earth’s surface.

Fig. 5. Sea surface height inversion process based on ML.

III. METHODOLOGY

Fig. 5 illustrates the SSH inversion process using CYGNSS
data. Suitable relevant feature data are extracted from CYGNSS
to build feature datasets, and the DTU SSH model is used to
do data matching as the label of feature datasets. To validate
the inversion performance of the proposed model on CYGNSS
data from multiple perspectives, two approaches of data anal-
ysis were compared: 1) subdataset analysis according to the
different GPS satellite PRN, 2) subdataset analysis according
to the different CYGNSS satellite number. The advantage of
both schemes is that the physical laws of the signal are fully
considered, distinguishing between the source of signal emission
and the source of data acquisition. To evaluate the generalization
ability of the model, time-independent data were also tested. The
whole week’s data are split into a training set and a test set in
date order, and the data for the first six days are used to train the
model to predict the SSH for the seventh day.

In terms of methodology, two types of neural networks, BP
and CNN, are used to build SSH inversion models separately
for comparative analysis. In the application of neural networks,
overfitting is a common potential problem. This problem occurs
when a neural network has been trained to predict the output of
a training dataset accurately but performs poorly on a new test
dataset [16]. The dataset is randomly divided into a 20% training
set and an 80% test set. The training set is further randomly
divided into two subsets, each consisting of 50% of the training
set. One subset is used for the error back-propagation process
to train the neural network, and the other subset is used for
independent validation of the network in each training iteration
to observe whether the trend of error decline as the number of
training iterations increases is like that of the training set, thus
detecting overfitting or other problems [16]. It also facilitates
a quick and efficient way to determine the optimal network
structure by counting the preliminary effects of model inversions
with multiple sets of different hyperparameters.

In the evaluation, not only the MAE, RMSE, but also coeffi-
cient of determination (R2) between the model-inverted SSH and
the DTU SSH model were used. R2 reflects the degree of model
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Fig. 6. Network structure model of BP.

fit, the closer to 1 means the better the model fit, the closer to 0
means the worse the model fit. In addition, the model-inverted
SSH with tidal effects removed was evaluated for the MSSH
at one-degree spatial resolution using the data products of CLS
2015 and Jason-3, respectively.

A. BP Model

BP is a multilayer feedforward neural network trained based
on backpropagation learning rules. As shown in Fig. 6, the
network structure of BP generally consists of three parts, includ-
ing an input layer that feeds feature data, an output layer that
serves as a prediction target, and a hidden layer that contains
several computational units. The input layer corresponds to the
13 feature parameters selected from CYGNSS data, and the
output layer is the SSH. The hidden layers can be composed
of multiple layers, each layer contains several neurons, and
the neurons between layers are connected according to specific
weights. The first stage of the BP learning process is the forward
propagation of data from the input layer to the output layer.
Each neuron transforms the output in the previous layer by the
activation function and then uses it as input to the neuron in
the next layer. In this article, the nonlinear sigmoid function,
where both the function itself and its derivatives are continuous,
is chosen as the activation function. In the forward process, the
network calculates the predicted SSH based on the input feature
data with the current weights in the network. The second stage
is the backpropagation of the mean square error (MSE), which
is calculated using the predicted SSH (SSHpred) and the desired
SSH (SSHDTU) according to (3), and then the derivative of the
loss function for the weights and biases is found. Finally, the
Weights and biases between the layers are adjusted sequentially
to minimize the MSE between the output and target values

MSE =
1

n

∑
n
i=1(SSHpred − SSHDTU)

2. (3)

B. CNN Model

CNN is also a feedforward neural network that uses the
backpropagation algorithm and can easily update the data model.
CNN is suitable for training large amounts of data and can solve

Fig. 7. Network structure model of CNN.

complex nonlinear problems. As shown in Fig. 7, the structure
of CNN generally consists of an optional set of convolutional
layers containing a specific number and size of convolutional
kernels, a pooling layer for downsampling compressed data, and
a fully connected layer and an output layer [22]. The convolution
kernel is a kind of affine transform unit that can calculate
feature information from data. The convolution operation of a
complex convolution kernel with input data can obtain in-depth
data information. The convolutional output is further processed
by an activation function with nonlinear capabilities to obtain
new feature data. After that, the pooling layer can be chosen
to compress the data and eliminate data redundancy by down-
sampling. Finally, the neural network with a fully connected
layer is used to combine all the features learned earlier to
transform the data from high to low dimensions and output
classification or regression results. In this article, pooling layers
are not used in order to avoid the loss of data information as
much as possible. Convolutional layers can be multiple, and after
that, a fully connected layer is used to combine the previously
learned features. This is also the most significant difference from
BP neural networks. In terms of the number of layers in the
network, CNN is deeper due to the introduction of convolutional
layers.

IV. RESULTS AND ANALYSIS

A. SSH Performance of the ML Models With DTU Data

Based on experience, this article searches for the best network
structure among BP networks with 1-2 hidden layer structures.
Finally, it determines that a structure with 2 hidden layers and
50 nodes per layer is more suitable for the feature dataset of this
article.

Fig. 8(a) shows the statistical results and the degree of fit
of the BP model for the SSH inversion on each GPS satellite
subdataset. BP model fits well, with MAE at about 1 m and
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Fig. 8. Results of BP model on: (a) GPS satellite subdataset; (b) CYGNSS
satellite subdataset.

RMSE at about 2 m. Among them, satellites 1, 10, 24, 25, 26,
and 27 performed relatively poorly. Fig. 8(b) shows the statistical
performance of the BP model on each CYGNSS subdataset.
The BP models also fit well, with MAE around 1.5 m and
RMSE around 2.5 m, and each CYGNSS satellite has similar
accuracy. The amount of data is an important cause of differences
and similarities in performance, and the more considerable the
amount of data, the more likely it is that a better model can be
obtained. Normally, the strategy of dividing the data according
to the GPS satellite PRN is better than dividing them according
to the CYGNSS satellite number.

Empirically, this article utilized similar combinations of hy-
perparameter permutations for the CYGNSS feature dataset to
search for the best hyperparameter combinations for the CNN
model. Finally, the convolutional kernel size of 7×1 and the
number of 64 convolutional layers are considered the best-
performing structure.

Fig. 9(a) shows the statistical results and the degree of fit of
the CNN model for the inversion of SSH on each GPS satellite
subdataset. CNN model fits well, with MAE below 1 m and
RMSE below 2 m for most of the subdatasets. Comparing the
amount of data, the model did not perform poorly on the dataset
with less data. Even with a small amount of data, CNN can mine
more information about the data. Fig. 9(b) shows the statistical
performance of the CNN model on each CYGNSS subdataset.
The models also fit well, with MAE around 1 m and RMSE
around 2 m, and each CYGNSS satellite has similar accuracy.
Normally, the strategy of dividing the data according to the

Fig. 9. Results of CNN model on: (a) GPS satellite sub-dataset; (b) CYGNSS
satellite sub-dataset.

TABLE II
AVERAGE ACCURACY OF INVERSION SSH RESULTS WITH DTU DATA

GPS satellite PRN is better than dividing them according to
the CYGNSS satellite number.

Table II summarizes the average performance of the two
models. According to the division strategy of the GPS satellite
PRN, the MAE of the BP model is 1.04 m, and the RMSE is
1.76 m. The MAE of the CNN model is 0.63 m, and the RMSE is
1.10 m. According to the division strategy of CYGNSS satellite
number, the MAE of the BP model is 1.77 m, and the RMSE
is 2.57 m. The MAE of the CNN model is 1.38 m, and the
RMSE is 2.04 m. The strategy of dividing the dataset by GPS
satellite PRN for independent analysis is more suitable for the
ML model to perform SSH inversion of CYGNSS data, so in
the subsequent analysis, only the strategy of dividing the dataset
by GPS satellite PRN will be used. The inversion errors of both
models for SSH are within the expected range, and the accuracy
of CNN is always better than that of the BP model. This not only
confirms the effectiveness of SSH inversion of CYGNSS data
using ML methods but also shows the advantages of the CNN
method of deep learning in this article.
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Fig. 10. Compared with the CLS 2015, the average MSSH error of the BP model (a) and the CNN model (b).

Fig. 11. Jason-3 calculated MSSH results distribution.

B. Average Grid MSSH Comparison With MSS CLS 2015 and
Jason-3 Data

The inversion results of CYGNSS data by the ML model
are statistically separated according to the one-degree spatial
distribution of the earth’s latitude and longitude after removing
the influence of ocean tides uniformly using the DTU global
ocean tide model. Then the one-degree grid average MSSH value
and the difference from the CLS 2015 model are calculated.

Fig. 10 shows the distribution of the inversion error of the BP
model and the CNN model, respectively. The maximum absolute
value of the error does not exceed 10 m, and the error in most
areas is close to 0 m. The MAE of the BP model is 0.61 m, and
that of the CNN model is 0.5 m, indicating that the performance
of the CNN model is better than the BP model with CLS 2015
data.

In this article, Jason-3 data for the same period as CYGNSS,
August 1–7, 2020, totaling about 740 000, were downloaded.
After data filtering for outliers, a total of over 730 000 data
were retained, and Jason-3 MSSH was calculated. Fig. 11 shows
the specifics of the calculated Jason-3 MSSH results from (2)
distribution, which are spread across the global seas.

After that, there are two steps. First, according to the DTU
global ocean tide model, remove the tide height from the in-
version SSH from CYGNSS data using two ML models, to
obtain the MSSH. Second, calculate the one-degree grid average
CYGNSS MSSH results and the one-degree grid average Jason-
3 MSSH results. Fig. 12 shows the distribution of the inversion
error of the BP model and the CNN model, respectively. The

TABLE III
AMOUNT OF GENERALIZATION DATA SETS (6 DAYS)

maximum absolute value of the error is about 10 m, and the
error in most areas is close to 0 m. The MAE of the BP model
is 0.84 m, and that of the CNN model is 0.78 m, indicating that
the performance of the CNN model is also better than BP model
with the Jason-3 data.

As shown in Figs. 10 and 12, there are significant deviations
for both ML models in some areas. First, some regions such as
near Indonesia, have a lower density of revisit points and less
data compared to other areas, which is detrimental to ML. Fig. 13
shows the lower density of revisit points around Indonesia (red
box). Second, many poorly performing areas are close to the
coast, especially in Indonesian waters, which makes the data
subject to more complex external environmental factors, such
as tides [2]. Third, although most of the bad data are filtered
out, there are still some poor-quality DDMs that are difficult to
find by quality flags. Fig. 14 shows some DDMs in these areas
with bad delay waveforms, probably influenced by wind waves.
In addition, ML is a data-driven algorithm, and the amount of
anomalies is relatively small and thus cannot be handled by ML
algorithm. Therefore, the poor performance of ML methods on
outliers is really unavoidable.

C. Generalization Ability of the ML Models

In order to evaluate the generalization ability of the ML
models, two training sets are used to predict a new day’s SSH
(August 7, 2020). One is from August 1–6, 2020 for a total
of 6 days and the other is from July 25–August 6, 2020, for a
total of 13 days. For 6 days set (August 1–6, 2020), the training
set is further randomly divided into two subsets, training data,
and validation data. The PRN2 and PRN4 satellites, which have
more data volume and more uniform time distribution, are taken
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Fig. 12. Compared with the Jason-3, the average MSSH errors of the BP model (a) and the CNN model (b).

Fig. 13. Density distribution of specular points in the training set around
Indonesia.

TABLE IV
ACCURACY OF PREDICTED SSH RESULTS ON PRN2 AND PRN4 (6 DAYS

TRAINING SET)

as examples. Table III shows the generalization data set number
of 6 days.

For the 6 days training set, Figs. 15 and 16 show the CYGNSS
satellite flight track and corresponding forecast SSH error of BP
and CNN model on PRN2 and PRN4, where the error is the
difference between the predicted result and the DTU SSH model.
Fig. 17 shows the error of the BP and CNN model on PRN2 and
PRN4. These three figures contain all the tracks predicted for
the day of August 7, 2020. The sequence of the samples is based
on the sequence of the tracks. And the sequence of the tracks is
ordered by CYGNSS satellite number. The prediction results’
MAE of the BP model is 11.59 m and 5.90 m for PRN2 and
PRN4, and the MAE of the CNN model is 1.37 m and 0.97 m for
PRN2 and PRN4, respectively. Table IV shows the prediction
accuracy of the two models built with 6 days training set on
PRN2 and PRN4.

The accuracy of the BP model is relatively poor and unstable.
In contrast, the CNN model has no steep drop in accuracy and

Fig. 14. Some of the poor-performing DDMs with bad delay waveforms.

performs relatively more stable in the generalization study. This
also illustrates the more robust generalization performance of
the CNN model on CYGNSS data, which further highlights the
advantage of the deep learning capability of the CNN approach.
Compared with the traditional methods, the BP model is less
generalizable, while the CNN model has a higher prediction
potential for future data. This may be caused by the difference
in the degree of data information mined by the models.

To explore the performance of the model built with more
data, a new training set from July 25–August 6, 2020, for a
total of 13 days was selected. Table V shows the amount of the
new generalization data set. For the 13 days training set, the
prediction results’ MAE of the BP model is 11.72 m and 9.80 m
for PRN2 and PRN4, and the MAE of the CNN model is 1.43 m
and 0.98 m for PRN2 and PRN4, respectively. Table VI shows
the prediction accuracy of the two models built with 13 days
training set on PRN2 and 4.
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Fig. 15. CYGNSS satellite flight track and corresponding forecast SSH error
of the BP model (August 7, 2020): (a) PRN2; (b) PRN4.

Fig. 16. CYGNSS satellite flight track and corresponding forecast SSH error
of the CNN model (August 7, 2020): (a) PRN2; (b) PRN4.

TABLE V
AMOUNT OF NEW GENERALIZATION DATA SETS (13 DAYS)

Fig. 17. Forecast SSH errors relative to DTU data of the BP and CNN model:
(a) PRN2; (b) PRN4.

Fig. 18. Data distribution of the PRN2 training set: (a) 6 days; (b) 13 days.
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Fig. 19. Data distribution of the PRN4 training set: (a) 6 days; (b) 13 days.

TABLE VI
ACCURACY OF PREDICTED SSH RESULTS ON PRN2 AND PRN4 (13 DAYS

TRAINING SET)

As shown in Tables IV and VI, increasing the data volume
does not improve the inversion accuracy, it may be mainly
for the following reasons: First, the current hyperparameters
are based on 6 days training set, so the hyperparameters need
to be further optimized and adjusted for 13 days training set.
Second, as shown in Figs. 18 and 19, the amount and proportion
differences between each SSH interval of the 13 days training
set are significantly larger than that of the 6 days training set.

Compared with TDS-1 data, CYGNSS data has the advantage
of having a larger number of valid samples. One problem of
ML methods is the relatively poor generalization ability. By
using appropriate and valid data as well as adding DDM-related
features, CYGNSS data has a better generalization performance
compared to TDS-1 data in SSH inversion [21].

V. CONCLUSION

In the field of ocean altimetry, ML is less applied due to
the many factors affecting SSH. This article proposed for the
first time ML models for SSH inversion using CYGNSS data,

and demonstrated the availability and generalization ability of
the ML approach to CYGNSS DDM inversion of SSH. It is a
preliminary attempt of ML in monitoring the availability of sea
level dynamic changes.

CYGNSS data were selected as the input and some ocean-
related data products were selected to validate the output SSH.
The article aims to mine the mapping relationship between SSH
and CYGNSS data from the data itself, two ML methods, BP and
CNN were selected and compared. Based on various ocean data
products, SSH and MSSH validation models were developed for
evaluation.

First, to investigate the fitting ability of the ML models,
CYGNSS data from 7 days data (August 1–7, 2020) were
selected for the experimental analysis, and as much valid data
information related to SSH as possible were selected. The 7 days
data were randomly divided into a training set with 20% data
to train the ML SSH inversion models and a testing set with
80% data to evaluate the ML models’ performance. The results
of multiple data partitioning strategies and evaluation strategies
are also discussed. The strategy of dividing the data according
to the GPS satellite PRN numbers is better than dividing them
according to the CYGNSS satellite numbers: both the BP and
CNN models exhibit good inversion performance, the MAE of
1.04 m for the BP model and 0.63 m for the CNN model are
achieved. For average grid MSSH validation models, the ML
models are still performing well. Compared with the CLS 2015
data, the MAE of the BP model is 0.61 m, and that of the CNN
model is 0.5 m. Compared with the Jason-3 data, the MAE of
the BP model is 0.84 m, and that of the CNN model is 0.78 m.

Second, to investigate the generalization ability of the ML
models, two training sets are used for building ML SSH inversion
models, and the SSH of a new day was predicted by the built
models. One training set consists of 6 days data (August 1–6,
2020), and the other consists of 13 days data (July 25–August
6, 2020). On the 6 days training set, the MAE of 11.59 m and
5.90 m for the BP model, 1.37 m and 0.97 m for the CNN model
are obtained on PRN2 and PRN4, respectively. On the 13 days
training set, the MAE of 11.72 m and 9.81 m for the BP model,
1.43 m and 0.98 m for the CNN model are obtained on PRN2
and PRN4, respectively. Though the performance of the BP and
CNN models is weakened in the generalization ability, CNN
methods in the field of deep learning still have some advantages
and potential in terms of accuracy.

Though the ML SSH inversion models built in this article,
especially CNN models, meet the expected accuracy, there are
still related elements that need to be studied. Compared with
the traditional SSH inversion methods, the ML methods have
the advantages of not having to consider building error models
and being able to adequately construct mapping relationships
between original physical parameters and SSH. However, get-
ting feature parameters is manual and somehow subjective.
In the future, by adding external environmental features, and
using more advanced ML methods, the ML models may have
better performance in the study of mesoscale phenomena of the
sea surface (such as eddies). Although space-borne GNSS-R
observations have higher temporal resolution and wider spatial
distribution, the topic of how to use the data collected by TDS-1,
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CYGNSS, and other satellites to predict unknown future SSH
on a large spatial and temporal scale is still a challenge.
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