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Abstract—The automatic vectorization of building shape from
very high resolution remote sensing imagery is fundamental in
many fields, such as urban management and geodatabase updating.
Recently, deep convolutional neural networks (DCNNs) have been
successfully used for building edge detection, but the results are
raster images rather than vectorized maps and do not meet the
requirements of many applications. Although there are some algo-
rithms for converting raster images into vector maps, such vector
maps often have too many vector points and irregular shapes. This
article proposed a building shape vectorization hierarchy, which
combined DCNNs-based building edge detection and a corner
extraction algorithm based on principle component analysis for
rapidly extracting building corners from the building edges. Ex-
periments on the Jiangbei New Area Buildings and Massachusetts
Buildings datasets showed that compared with the state-of-the-art
corner detectors, the building vector corners extracted using our
proposed algorithm had fewer breakpoints and isolated points, and
our building vector boundaries were more complete and regular. In
addition, the building shapes extracted using our hierarchy were
7.94% higher than the nonmaximum suppression method in terms
of relaxed overall accuracy on the Massachusetts dataset. Overall,
our proposed hierarchy is effective for building shape vectorization.
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I. INTRODUCTION

S THE most important feature in urban environment, ob-
A taining accurate building vector shapes is of great signifi-
cance in many fields, such as cartography and urban planning [1].
However, the vast variations in building appearances indicate
that building extraction still relies heavily on manual work [2].
To improve the efficiency of building extraction, it is necessary
to study the automatization of building vector shape extraction
from very high resolution (VHR) remote sensing images.

Commonly, the building boundaries are extracted to generate
a building vector map, so the building edge detection is the
premise of building vector shape extraction. Among the building
edge detection methods, deep convolutional neural networks
(DCNNGs)-based edge detection networks, such as HED [3], RCF
[4], CED [5], BDCN [6], Dexined [7], and DRC [8] have the
most development potential, and have achieved the state-of-the-
art performances on the BSDS500 [9] dataset. We conducted
relevant experiments, and proved that the DCNNs-based edge
detection networks are feasible for building edge extraction
from VHR remote sensing images. ME-Net [10] achieved the
highest accuracy in detecting the clearest and crispest building
edges. The detection results of the building edges are shown
in columns 3—7 of Fig. 1. Although the DCNNs-based edge
detection networks showed intuitive building edge results on
the large-area Massachusetts Buildings dataset in Fig. 1, we can
clearly see that the results of building edge probability maps
are not perfect as the building edges are thick and they cannot
be vectorized directly. Hence, we aimed to vectorize crisper
building edges and delineate more accurate building boundaries
based on these building edge probability maps.

Considering the problem that the building edge extracted by
DCNNGs is too thick, the nonmaximum suppression (NMS) is
the most common method to sharpen and vectorize the building
edge probability map. Although this method can reduce the
width of the edge to one pixel, the final building shape is
irregular and there are many noise points. Ming et al. [11]
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Label

ME-Net

Fig. 1. Sample of the Massachusetts Buildings dataset: The first column shows
the original image, the second column shows the building edges label, and
columns 3—7 show the building edge probability maps of HED, DRC, RCF,
BDCN, and ME-Net, respectively.

described a geomorphological concept for extracting accurate
building edge points, and generating building edges based on the
edge point map for refining the edge probability map. However,
some broken and incomplete building edges remain after their
algorithm processing, and further article is necessary to optimize
building vector shape extraction.

Generally, the building vector shape extraction belongs to
the field of image vector extraction in computer vision. The
image vectorization methods can be roughly divided into four
categories: Hough-transformation-based method [12], thinning-
based method [13], contour-based method [14], and corner-
based method [15], [16]. In this article, the geometric features
of buildings are more obvious in VHR remote sensing imagery.
Among all the building geometric features, the corner feature
is one of the most direct evidence of buildings because it can
effectively describe the shape and structure of buildings with
the least amount of data. In recent years, there have been some
successful corner detectors, such as Moravec [17], Harris [18],
SUSAN [19], FAST [20], [21], CPDA [22], and CSS [23].
These methods extract corners by calculating the changes of the
gradient amplitude, the gradient direction in the nearby area, and
the curvature of contour. However, we found that these corner
extraction operators are not accurate enough to extract building
corners. To extract the precise building corners and produce
the building shapes, Xia et al. [24] used the anisotropic-scale
junctions detector [25] and proposed a geometric building index
for detecting both the exact position and accurate building shape.
In addition, Li et al. [26] designed an end-to-end learnable deep-
learning architecture, PolyMapper, which extracts keypoints
and edge evidence of building footprints, and combines each
building in each tile for producing the building vector map. As
an extension, a bottom-up instance segmentation method was
proposed [27] that extracts building corners by detecting all
peaks from the predicted heatmap of building boundaries, and
then groups the corners into building boundaries in a simple
geometric way. However, this method relies heavily on the
extraction results of DCNNs and cannot correct the irregular
predictions of building boundaries, so the building shape results
need to be further regularized.

The main purpose of this article is to design a complete
hierarchy, which contains several continuous and standardized
steps for automatically extracting the building vector shape from
VHR remote sensing imagery. In our hierarchy, motivated by the
idea of corner extraction methods above, we proposed a principle
component analysis (PCA)-based corner extraction algorithm
for extracting building corners from the thick building edges
predicted using DCNNs, and grouped these building corners
into more regular and accurate building vector boundaries. In
summary, the primary contributions of this article are as follows:

Very High Resolution Imagery Building Edge Detection

Step 3 Step 4

y

<

Connect Corners and Output

PCA-based Rough
Corner Extraction

Extract Accurate Corners

Fig.2. Main flow chart of our proposed building shape vectorization hierarchy.

1) We constructed a hierarchy for extracting building vector
shapes, involving five steps: the first involved the build-
ing edge detection, the second involved splitting each
independent building, the third involved searching the
building rough corners using PCA-based rough corner
extraction, the fourth involved extracting accurate corners
by mean-shift clustering algorithm, and the last involved
connecting corners and vectorizing them. This hierarchy
can automatically produce the high-precision building
vector map from the VHR remote sensing imagery, and
the main flow chart of hierarchy is illustrated in Fig. 2.

2) This article proposed a PCA-based corner extraction al-
gorithm for extracting building corners from the building
edge image of DCNNs-based edge detection network. In
a broad sense, this algorithm consists of the second to fifth
steps of our hierarchy, and it can quickly search and extract
the building corners based on the principal component
direction of building edges.

3) We compared the building corner results of our hierarchy
with the state-of-the-art corner detectors. Meanwhile, we
also compared the building vector shape results with the
NMS method on the Jiangbei New Area Buildings and
Massachusetts Buildings datasets, and both the results
demonstrated the universality of our proposed hierarchy
for extracting building vector shapes.

The rest of this article is organized as follows. In Section II,
the overall architecture of our proposed hierarchy is introduced
in detail. Section III illustrates the experiments and comparison
results of building vector shapes among different extraction
methods. Discussion and conclusions regarding this article are
presented in Sections IV and V, respectively.

II. METHODOLOGY

This article presents a hierarchy for the building shape vec-
torization from VHR remote sensing imagery. This hierarchy
applies two core modules: the first is the edge detection network
for automatically detecting building edges, and we selected the
ME-Net as the practical network due to its relatively crisp and
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accurate building edge result (input: VHR remote sensing image
and output: building edge image). The other module is our
proposed PCA-based corner extraction algorithm for automatic
extraction and connection of building corners based on the
building edges (input: building edge image and output: building
vector map).

A. Overall Hierarchy

In this article, our proposed hierarchy can be divided into the
following five consecutive steps in detail:

1) For the remote sensing imagery, the building edges are
automatically detected using the state-of-the-art DCNN's-
based edge detection network, ME-Net.

2) Each independent building is divided from the building
edge result of ME-Net according to the minimum circum-
scribed rectangle.

3) The rough corners of each building are searched according
to the first principle component direction of the building
edges and three supplementary angles.

4) The accurate corners are extracted by finding the center of
rough corners using the mean-shift clustering algorithm.

5) The building corners are connected in turn when they have
complementary angles in the stored directions in the third
step, then the result is vectorized as the final building
vector map.

Our proposed building shape vectorization hierarchy was
implemented using Anaconda 4.8.2 and Python 3.6.10, and
the pseudocode of the hierarchy is described in Algorithm 1.
In addition, the experimental details of the first four steps are
described in Sections II-B-E.

B. ME-Net

The first step in our proposed hierarchy is the application of
DCNNs-based edge detection network for the building edges.
The network selection is very significant because the crisper
building edges will directly improve the performance of the
building corner extraction and shape vectorization in later steps.
We noticed that ME-Net [10] produced relatively crisp and
accurate building edges. In Section IV-A, we have demonstrated
that ME-Net is more suitable in our hierarchy than the other
state-of-the-art edge detection networks.

The ME-Net is a multiscale DCNN for extracting building
edges from VHR remote sensing images. This network consists
of five side layers, and each side layer has the same important
modules: the convolution module, the max pooling module,
the scale enhancement module, the upsampling block, and the
erosion module (EM). This network follows the transmission
of bidirectional cascade structure [6] for supervising the edge
feature information of five side layers with different specific
scales, and the transmission is shown in the red dotted line in
Fig. 3. The EM is significant as it refines the building edges of
the feature map in each scale and improves the performance of
the network.

We implemented the ME-Net using PyTorch1.4.0 and Py-
torchvision(.5.0, and set the training parameters of the initial
learning rate to le-6, momentum to 0.9, and batch size to 1,

Algorithm 1: Our Building Shape Vectorization Hierarchy.

Input: VHR remote sensing imagery /.
Output: building corner map O1, building boundary map
Os.

//xx Step 1: building edge detection *x//

1. Initialize all the parameters of the DCNNs-based edge
detection network, ME-Net, and feed / into the
network.

2. Compute P + building edge probability map
generated by one forward pass of the ME-Net.

3. Set the classification threshold to 0.5 for all the pixels
in P, and store the edge pixels in B.

4: return B < building edge binary map.

//xx Step 2: split each independent building *x//

5. Initialize Ly, L,, L, with empty lists.

6. Compute Cy < the list of contours of all the buildings
by using skimage.measure.find_contours (B, 0.1).

7. for all the contours of each building Co» € C; do

s. for all each contour pixel p € Cs do

9. X, ¥ <— coordinates of p.

10: Ly.add(int(x+0.5)).

11: Ly.add(int(y+0.5)).

12: end for

13: L1.add([max(L;), min(L;), max(L,), min(L,)]).

14. end for

15. return L; < the list of minimum circumscribed

rectangular for each independent building in B.
//+x Step 3: PCA-based rough corner extraction xx//
16: Compute 6, < four search directions of rough
corners in Ly by using
math.atan((C,.pca.components[1])/ (Cs.pca.
components[0])) and +90°, +180°, +270°.

17. for all each pixel p € L, do

18: for all theta € 0., do

19: N1 < the number of non-edge pixels along theta in B.

20: lfN1 < 2 then

21. T.add(p, theta).

29: end if

23: end for

24. No < the number of search direction theta for p in B.

o5. if Ny < 2 then

26. T.remove(p, theta).

27: end if

28: end for

29: return 7T <— the rough corner pixels with the search

direction.

//xx Step 4: extract accurate corners xx//

30: Set MS < a clustering function by using

sklearn.cluster.

MeanShift(bandwidth = 4, bin_seeding = True).

31. for all each rough corner pixel p € T'do

32: MS fix(p).

33. O1.add(MS.cluster_centers).

34: end for

35: return O; <— building corner map.

//+x Step 5: connect corners xx//
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36: for all each accurate corner pixel p, g € O; do

37. D1 < distance between p and ¢ in B.

38. Dy < distance between p and ¢ in O;.

39: Dinetq < difference in search directions of p and q.
40: if D2 <Dy and |Dthsta — 180' < 20 then

41: pi < the points from p to q.

42: Oz.add(p;).

43. end if

44 end for

45. return Oy < building boundary map.

which are same as the parameters of the published study [10].
Since the ME-Net produced the building edge probability map
with values between 0 and 1, we set a threshold [28], [29],
[30] for classifying both the edge and nonedge pixels, and the
threshold is generally 0.5 [31]. In this article, based on the edge
pixels, we can extract the building corners and in later steps of
our hierarchy vectorize the building shapes.

C. Splitting Each Independent Building

To extract the building corners rapidly, the second step of
our proposed hierarchy is designed to split each independent
building by distinguishing the minimum bounding rectangle of
all the buildings. We first applied a find-contours function [32]
in Python-Skimage, which can detect the isovalued contours in
a two-dimensional array for a given level value, and produce
the (x, y) coordinates along the contour. Then, we extract the
edge contour of each building in the building edge binary map
using the find-contours function, and effectively distinguish all
the buildings in turn. In this article, we set the level value of
finding contours to 0.1. Fig. 4(b) shows the result of the edge
contour map, and the edge contour of each building is marked
using different colors.

Furthermore, we counted the coordinate values of each build-
ing in the edge contour map, and defined the minimum coordi-
nate value as the top left vertex of the minimum circumscribed
rectangle; the maximum coordinate value as the lower right
vertex of the minimum circumscribed rectangle and the range
of minimum circumscribed rectangle of each building is shown
in Fig. 4(c). After performing this step, we only need to search
for building corners within each green rectangle, this boosts the
efficiency of the whole hierarchy.

D. PCA-Based Rough Corner Extraction

The number of building corners is very small in the original
image, thus, to extract all the corners without omission, the third
step of our proposed hierarchy is designed to search for building
rough corners using our PCA-based corner extraction algorithm.

Depending on the range of the minimum circumscribed rect-
angle of each building after the second step in Section II-C,
our corner extraction algorithm mainly extracts corners from
the building edges along four directions (the first principle
component direction and its three supplementary angles derived
by rotating 90°, 180°, and 270° horizontally), the reason for this
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Fig.4. Details of the second step of our proposed hierarchy. (a) Building edge
binary map of ME-Net. (b) Edge contour map with the (x, y) coordinates after
using the find-contours function. (c) Minimum circumscribed rectangle result
for each building.

©

Fig. 5. Example of the third step of our proposed hierarchy: (a) search
directions of our PCA-based corner extraction algorithm; (b) search details for
one pixel in the building edges; and (c) result of building rough corners.

is that we find that the first principle component direction of
building edges (called 6,) is approximately equal to the actual
direction of building. Fig. 5(a) shows the search directions of our
algorithm for a point P, considering that there is a small error
between 0, and the actual building direction, we add the angles
less than A (set to 10°) in the range of the yellow sector to 6.
In order to obtain these directions effectively, we added a
function of PCA [33] in Python-Sklearn, which uses full singular
value decomposition (SVD) or a randomized truncated SVD
[34] to obtain the principle component directions of the edge
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k

(a) (b) (©

Fig. 6. Example of the fourth step of our proposed hierarchy: (a) building
rough corner map; (b) details of clustering the rough corners with the bandwidth
of 4; and (c) result of the building corner map.

pixels of each building. The full SVD and randomized truncated
SVD are given as follows:

A = y vt (H
mxn  mxl Ixl nxl

A~ B C (2)
mxn mxk kxn

where A, U, V, B, and C are the real matrices, and X is a rectan-
gular, diagonal matrix composed of nonnegative and diagonal
elements arranged in descending order. The inner dimension k
is the specified dimension of the decomposition matrices of B
and C, and (2) is often used to express a low-rank factorization
of the given matrix A.

Then, our PCA-based corner extraction algorithm searched
for rough corners, pixel by pixel, within the range of each
building. As shown in Fig. 5(b), when we judge whether the
yellow pixel is a building corner pixel, first, we take this point as
the starting point and search the building edge pixel (white pixel)
along four directions (61, 61+90°, 61 +180°, and 6, 4270°), and
allow less than two nonedge pixels (black pixel) in one direction.
The four search directions can replace searching all directions of
360°, and greatly improve the execution speed of our algorithm.
Then, as shown in the two extended red lines, because there are
no nonedge pixels along the search directions of 72° and 162°,
the two directions are stored as the final directions of the yellow
pixel. Eventually, if the yellow pixel has the vertical angles in
the stored directions, we mark it as the building rough corner
pixel and vectorize it as the rough corner point, and the result of
all the building rough corners is shown in Fig. 5(c).

E. Extracting Accurate Corners by Mean-Shift Clustering

Although the third step prevents missing of the building
corners, as shown in Fig. 6(a), the building rough corner map
has a problem that the corners are gathered in a certain range.
Therefore, the fourth step of our proposed hierarchy is designed
to extract accurate corners from the building rough corner map.

The details of extracting accurate corners are shown in
Fig. 6(b), we set the bandwidth to 4 to cluster all the rough
corners within the range of 4 pixels (white circles), and use the
mean-shift [35] to train the coordinates of the rough corners.
This clustering algorithm is used to find the centroid within
these dense building rough corners, and to update the centroid
candidate to the average coordinate value of the corner samples.
Notably, the center points (red pixels) after clustering the rough

(b)

Fig. 7. Large example with a size of 1280 x 1280 pixels on the Jiangbei
New Area Buildings dataset: (a) original image; (b) building regions label; and
(c) building edges label.

(@) C ©

Fig. 8. Massachusetts Buildings dataset sample: (a) original image; (b) origi-
nal building regions label; and (c) building edges label.

corners not only have the exact point positions, but also have
more accurate search angles than the repeated and redundant
search angles of rough corners. These center points are vector-
ized as they provide more accurate corners in the building corner
map in Fig. 6(c).

III. EXPERIMENTS AND RESULTS

In this section, we describe the testing of extraction results of
the building corners, building boundaries, and building regions
of our proposed hierarchy on the Jiangbei New Area Buildings
and Massachusetts Buildings datasets, and systematically com-
pare the evaluation metrics and visualization results with other
state-of-the-art methods.

A. Datasets

1) Jiangbei New Area: The Jiangbei New Area Buildings
dataset presented by Wen et al. [10] covers 53.67 km? of the
Jiangbei New Area, Nanjing City, Jiangsu Province, China.
As shown in Fig. 7, this dataset includes aerial images from
unmanned aerial vehicles with ground resolution of 0.3 m.

As suggested by Wen et al. [10], to avoid the issue of overfit-
ting the convolution neural networks, the images and label maps
were clipped and augmented through rotation. The augmentation
of training set is used to extract more complex and diverse
buildings. Then, the training, validation, and test sets consist
of 8000, 100, and 106 patches with a size of 256 x 256 pixels.

2) Massachusetts: The Massachusetts Buildings dataset [36]
is an aerial image building dataset of the Boston Area, and
this dataset covers 364.5 km? in 151 images with a size of
1500 x 1500 pixels each. To meet the requirements of building
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edge detection, as is shown in Fig. 8(c), Wen et al. [10] and Lu
etal. [11] supplied the building edges label maps of this dataset.

Similar to the Jiangbei New Area Buildings dataset, the
Massachusetts Buildings dataset is split into a training set
(10 500 patches), a validation set (100 patches), and a test set
(250 patches) with no overlapping areas. Each patch has a size
of 256 x 256 pixels and a ground resolution of 1 m.

B. Evaluation Metrics

In order to assess the ability to extract building shapes, we
used five conventional metrics in this article: overall accuracy
(OA), precision, recall, Fl-score (F1), and intersection over
union (IoU)

TP + TN
A —
o TP + FP + TN + FN )
Precisi TP @)
recision = ———
! TP + FP
TP
Recall = ———. 5
T TP EN )
2 x Precision * Recall
P = — (6)
Precision + Recall
ToU P (7
oU= ———
TP + FP + FN

where TP, FP, TN, and FN represent the true positive, false pos-
itive, true negative, and false negative predictions, respectively.

The ground truth of manual marked building label will in-
evitably produce errors, thus, we used relaxed precision [36]
and relaxed recall for achieving a fairer evaluation result. The
relaxed precision is defined as the fraction of predicted building
pixels that are within p pixels of a true building pixel, whereas
relaxed recall is defined as the fraction of true building pixels
within the p pixels of a predicted building pixel [37]. In this
article, the parameter p is set to 3 [38] for all the quantitative
experiments.

C. Building Corner Comparison Results With Corner
Extraction Methods

Our proposed hierarchy for building shape vectorization is
based on the corner extraction method. To prove the effec-
tiveness of our hierarchy, we compared our building corner
results with several well-known corner detectors: Harris [18],
SUSAN [19], FAST [20], [21], and CPDA [22]. In addition, we
also made a comprehensive comparison with the state-of-the-art
corner detection model ECFRNet [39] based on deep learning.
The visual comparison results for the public Massachusetts
Buildings dataset are shown in Fig. 9. It is evident that the
corner detectors of Harris [18], SUSAN [19], and FAST [20],
[21] produced incorrect building corner maps. In addition, the
deep-learning model of ECFRNet [39] and the multiscale corner
detector of CPDA [22] were superior and had clearer building
corners, but still missed the corners of some small buildings on
the dataset.

For the buildings with different shapes and sizes in the first
five rows of Fig. 9, the ground truth of building corners in the
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Some building samples of the Massachusetts Buildings dataset and
the building corner extraction results of different corner detectors: (a) origi-
nal image; (b) ground truth; the building corners of (c) Harris; (d) SUSAN;
(e) FAST; (f) CPDA; (g) ECFRNet; and (h) ours.

Massachusetts Buildings dataset have large deviation and these
errors will greatly affect the accuracy of building corners be-
cause there are few true corner samples. However, our proposed
hierarchy still extracted the most complete and accurate building
corners. For the adjacent buildings in the sixth to eighth row: the
Harris, SUSAN, and FAST corner detectors misclassified many
points on the building ridge, whereas our proposed hierarchy
distinguished the corners of each building effectively. In the
9th to 10th row, under some extreme conditions, such as haze
and thin cloud, the corner detection ability of our method for the
fuzzy images was not affected, while the other methods detected
fewer corners because the contrast of pixels was reduced. Fur-
thermore, our hierarchy showed outstanding performance in the
vectorization of building boundary and building region based on
the extracted corners, and the performance of our hierarchy is
compared with the NMS method in Section III-D.

D. Building Shape Comparison Results With the NMS Method

Normally, the NMS method is used to refine the building
edge results of DCNNs and to produce the building vector
shape. In this article, we proposed the PCA-based corner ex-
traction algorithm instead of NMS method, in our building
shape vectorization hierarchy. To evaluate the advantages of our
proposed algorithm, we compared our building shape results
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Img I(NMS)

Img1(Ours)

Img2(NMS)

Img2(Ours)

Img3(NMS)

Img3(Ours)

Image Corner map

Fig. 10.

Boundary map

Region map Evaluation image

Three examples of the Jiangbei New Area Buildings test set. Columns 1-5 are original images, building extraction results of corner maps, boundary

maps, region maps, and evaluation images, respectively. The green, red, blue, and background pixels in the evaluation images represent true positive, false positive,

false negative, and true negative predictions, respectively.

and quantitative metrics with the results obtained with the NMS
method on the two datasets.

1) Results from the Jiangbei New Area Buildings Dataset:
Fig. 10 shows three typical images of the Jiangbei New Area
Buildings test set with a size of 256 x 256 pixels. The odd rows
are the original images, corner maps, boundary maps, region
maps, and evaluation images produced by the NMS method,
and the even rows are those from our algorithm. We produced
the evaluation images by evaluating the building regions with the
ground truth labels. It is worth mentioning that since the NMS

method cannot directly extract the building corners, the corner
map is generated as the endpoint of the boundary map.

As shown in the first image, when extracting the vector
shapes of angular residential buildings, although our algorithm
misclassified a small area of the roof with more false positives
(red pixels in the evaluation image), we detected building corners
and building boundaries more accurately than the NMS method.
For the building covered with trees in the second image, the
boundary extracted by the NMS method is partially broken,
whereas our algorithm better judged the building corners and
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TABLE I
EVALUATION RESULTS COMPARING THE NMS METHOD AND OUR ALGORITHM
ON THREE IMAGES FROM THE JIANGBEI NEW AREA BUILDINGS TEST SET, AND

TABLE II
EVALUATION RESULTS OF THREE REPRESENTATIVE IMAGES AND THE WHOLE
MASSACHUSETTS BUILDINGS TEST SET, AND THE BEST VALUES ARE MARKED

THE BEST VALUES OF COLUMNS 3-5 ARE MARKED AS BOLD AS BoOLD
Images Method OA (%) F1 (%) IoU (%) Images Method OA (%) F1 (%) IoU (%)
NMS 99.35 94.60 89.76 NMS 92.17 70.08 53.94
Image 1 Image 4
Ours 99.35 94.87 90.24 Ours 94.76 83.05 71.01
NMS 99.19 98.19 96.45 NMS 95.23 66.19 49 .47
Image 2 Image 5
Ours 99.31 98.49 97.02 Ours 96.20 76.80 62.33
NMS 97.06 95.50 91.38 NMS 94.13 74.17 58.94
Image 3 Image 6
Ours 97.44 96.13 92.55 Ours 96.37 86.88 76.80
NMS 98.53 96.10 92.53 NMS 79.46 52.22 37.22
Mean Test set
Ours 98.70 96.50 93.27 Ours 87.40 80.26 66.55

provided more regular building shapes. When extracting the
school building shapes in the third image, both methods missed
a small passage. However, the building boundaries extracted by
our algorithm are tidier. In conclusion, our algorithm performed
better and generated more regular building vector shapes for
the complex architectures in the Jiangbei New Area Buildings
dataset.

Our algorithm not only extracts more regular building shapes,
but also has better performance in the metrics. Table I shows the
relaxed OA, F1, and IoU values of the three images generated
using the NMS method and our building shape extraction algo-
rithm. Note that our algorithm outperforms the NMS method for
all three metrics. For the three images, our algorithm in relaxed
OA, Fl-score, and IoU on average increased by 0.17%, 0.40%,
and 0.74%, respectively.

Moreover, our algorithm has achieved the best performance
for the test images of the Jiangbei New Area Buildings dataset,
and the mean OA even reached 98.70%. However, since this
building dataset is built by ourselves, these test images may
not be representative enough. To assess the transferability of
our algorithm, we also compared the performances using the
public Massachusetts Buildings dataset, and the results will be
discussed in the second part of Section III-D.

2) Results from the Massachusetts Buildings Dataset: Sim-
ilar to Fig. 10, Fig. 11 presents three representative test images
of the Massachusetts Buildings dataset. The buildings of this
dataset are densely distributed; thus, the region map results of
each building for both methods are not complete enough. The
NMS method misses more building shapes than our algorithm
with more false negative predictions (blue pixels) shown in the
evaluation image.

In addition, as shown in the large building in the lower left area
of the sixth image, our algorithm can produce a better building
corner map with more exact corner positions. Furthermore, our
boundary maps are square and more in line with the geometric
characteristics of real buildings. In summary, our proposed
algorithm is superior to the NMS method based on the extraction
results of building vector maps from left to right.

Table II lists the relaxed quantitative evaluation metrics of the
two methods on the Massachusetts Buildings test set. Compared

with the Jiangbei New Area Buildings dataset, the three metrics
dropped sharply because of the lower resolution of the Mas-
sachusetts dataset. As indicated in the Table II, our algorithm
exceeds the NMS method by 7.94%, 28.04%, and 29.33% for
the whole test set in relaxed OA, F1, and IoU, respectively. One
reason is that the NMS method often extracts broken building
shapes and misses some smaller buildings, so it has poor perfor-
mance for extracting building vector shapes based on the input
building edge maps by DCNNs on the Massachusetts Buildings
dataset. The other reason is that our algorithm can extract the
accurate building corners and produce a correct building shape,
so our algorithm achieved the relaxed OA of 87.40% on the test
set, and even obtained 96.37% on the sixth test image of this
dataset.

As mentioned in the introduction of Section I, the input
building edge maps of DCNNs have a problem interpreting
thick edges, and some adjacent buildings were connected by
mistake. To analyze the performance of our algorithm on the
Massachusetts Buildings dataset further, we filtered out these
wrongly connected buildings, and we segmented 3249 complete
and independent buildings in the Massachusetts Buildings test
set. The relaxed OA, F1, and IoU curves of all the buildings are
shown in Fig. 12. The building shape result of the NMS method
has broken building boundary and incomplete building region
issues, so the NMS method achieves a lower IoU that even equals
0 for some buildings.

In addition, the OA of our algorithm exceeded 90.00% on
average for each building as shown by the red curve in Fig. 12.
Moreover, almost all the curves of our algorithm are clearly
higher than those of the NMS, indicating that our algorithm has
a greater improvement in the Massachusetts Buildings dataset.
In summary, our PCA-based corner extraction algorithm and our
hierarchy had an improved capability for more accurate building
shape vectorization.

IV. DISCUSSION

A. Ablation Analysis

In this article, our building shape vectorization hierar-
chy contains two modules: building edge detection and our
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Img4(NMS)

Img4(Ours)

Img5(NMS)

Img5(Ours)

Img6(NMS)

Img6(Ours)

Corner map

Fig. 11.

Boundary map

Region map

Evaluation image

Three examples of the Massachusetts Buildings test set with a size of 256 x 256 pixels. The columns 1—5 are original images, building extraction results

of corner maps, boundary maps, region maps, and evaluation images using the NMS method or our algorithm, respectively.

proposed PCA-based corner extraction algorithm, and we ap-
plied the ME-Net for the building edge detection. To demon-
strate the improvement of the ME-Net and our corner extraction
algorithm, we performed the ablation analysis for these two
modules in our hierarchy. More specifically, we combined five
edge detection models (HED [3], RCF [4], BDCN [6], DRC
[8], and ME-Net [10]) with two-edge-based building vector
shape extraction method (the NMS method and our corner
extraction algorithm), and conducted the comparative building
shape extraction experiments on the Massachusetts Buildings
test set.

Table IIT lists the relaxed quantitative results of the building
shape results using different combinations on the Massachusetts
Buildings test set. We also compared the run-times of different
models, and the results are shown in the last column of Table I11.
For every aerial image, the average time cost of models using
our proposed PCA-based corner extraction algorithm is 1.08 s,
which is faster than 1.25 s using the NMS method. In addition,
when extracting building shapes based on the five edge detection
models of DRC, HED, RCF, BDCN, and ME-Net, all the metrics
of the NMS method scored lower than those of our algorithm.
For the building shape extraction results of the NMS method,
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Fig. 12.  OA, F1, and IoU of all the 3249 independent buildings on the
Massachusetts Buildings test set. The red, yellow, and pink curves represent
the OA, F1, and IoU of our algorithm, whereas the blue, green, and orange
curves represent those metrics for the NMS method.

TABLE III
QUANTITATIVE RESULTS AND TIME COST OF COMBINATIONS GENERATED BY
FIVE EDGE DETECTION MODELS AND TWO BUILDING VECTOR SHAPE
EXTRACTION METHODS ON THE MASSACHUSETTS BUILDINGS TEST SET

Model Method OA (%) F1(%) IoU (%) Time (s)
+NMS 72.50 21.70 13.65 1.34
DRC
+ Ours 81.38 65.87 48.27 1.33
+NMS 75.97 40.19 25.27 1.19
HED
+ Ours 83.44 72.44 54.09 0.99
+NMS 79.06 52.90 35.63 1.19
RCF
+ Ours 83.85 73.59 54.34 0.86
+NMS 80.90 57.43 41.96 1.22
BDCN
+ Ours 86.68 79.18 63.71 0.91
ME- +NMS 79.46 52.22 37.22 1.29
Net + Ours 87.40 80.26 66.55 1.32

the combination of the BDCN and the NMS method surpassed
1.44%, 5.21%, and 4.74% than the combination of ME-Net and
the NMS method in terms of OA, F1, and IoU, respectively.
Furthermore, of all 1 combinations, the architecture of ME-Net
and our algorithm achieved the best performance in the three
metrics of 87.40%, 80.26%, and 66.55%. This proves that the
ME-Net and our corner extraction algorithm play a vital role in
improving the performance of our building shape vectorization
hierarchy.

B. Regularization and Correction of Building Edges

To better manage our algorithm, there are three kinds of
parameters in this article. First, in the Step 1 of Algorithm 1,
the classification threshold is used for transforming the building
edge probability map into a building edge binary map. Since
various building types in different datasets need to be measured
uniformly, this threshold value is generally 0.5. Second, in the
Step 2 of Algorithm 1, the parameter of find_contours level is
used for producing the (x, y) coordinates along the building
contour. We carried out relevant experiments and found that
under the premise of the operation efficiency of algorithm, the
value of 0.1 represents the minimum difference between the edge
coordinates, so that the most accurate range of each building can
be detected. Third, in the Step 4 of Algorithm 1, the parameter of
bandwidth level is used for clustering rough corners in a certain
range. Considering the resolution of the dataset and the width of
building edge, we tried to change this parameter from 1 to 10,
and the value of 4 obviously extracted the most accurate corners.

Some buildings are covered by shadow in remote sensing
images, and from these images DCNNs-based edge detection
networks will produce broken building edges. The NMS method
is unable to make up the broken edges and produces fractured
building boundaries and incomplete building regions. However,
our hierarchy can better deal with such buildings for two reasons:
one is that we relaxed the limit (allowing two nonedge pixels) for
searching corners in our proposed PCA-based corner extraction
algorithm, to improve corner extraction from the broken building
edges. The second reason is that we construct the building vector
map based on the extracted corners rather than based on scattered
points, so we can produce more regular building boundaries and
regions.

Although our hierarchy has an improved capacity for reg-
ularizing broken and distorted building edges in the Jiangbei
New Area Buildings and the Massachusetts Buildings datasets,
we mainly focused on correcting the most common quadrilat-
eral buildings for a high-speed performance. Hence, when our
hierarchy is applied for extracting the unconventional building
vector shapes such as triangle or circle, it is necessary to add the
additional directions of searching corners in the third step of our
hierarchy.

V. CONCLUSION

In this article, we used the state-of-the-art DCNNs-based
edge detection network, ME-Net, for producing the building
edge image, but it cannot be further vectorized due to the
thick edges. Although the NMS method can meet the purpose
of edge thinning, there is still the problem of irregular building
boundaries and incomplete building regions.

To extract the regular building vector shapes from VHR
remote sensing imagery automatically, this article constructed
a new hierarchy that consisted of five continuous steps. The
first is to detect building edges using the DCNN of ME-Net
from the VHR remote sensing imagery. In a broad sense, the
second to fifth steps are designed as a PCA-based corner ex-
traction algorithm. Specifically, the second step is to split each
independent building by producing the minimum circumscribed
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rectangle; the third is to search building rough corners through
PCA-based rough corner extraction (this step analyzes the actual
direction of each building and searches building corners along
the principle component direction of building edges instead of
searching all the directions); the fourth is to extract accurate
corners based on the mean-shift clustering algorithm; and the
final step is to connect all the qualified corners in turn, and
then produce the building vector map. To verify the effective-
ness of our vectorization hierarchy fully, this article conducted
comparative experiments on the Jiangbei New Area Buildings
and Massachusetts Buildings datasets. The extraction results of
building vector shapes by our hierarchy are more accurate and
regular and we also achieved the best performance in terms of
the quantitative evaluation metrics.
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