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Abstract—Remote sensing images (RSIs) are characterized by
complex spatial layouts and ground object structures. ViT can be
a good choice for scene classification owing to the ability to cap-
ture long-range interactive information between patches of input
images. However, due to the lack of some inductive biases inherent
to CNNs, such as locality and translation equivariance, ViT cannot
generalize well when trained on insufficient amounts of data. Com-
pared with training ViT from scratch, transferring a large-scale
pretrained one is more cost-efficient with better performance even
when the target data are small scale. In addition, the cross-entropy
(CE) loss is frequently utilized in scene classification yet has low
robustness to noise labels and poor generalization performances
for different scenes. In this article, a ViT-based model in combina-
tion with supervised contrastive learning (CL) is proposed, named
ViT-CL. For CL, supervised contrastive (SupCon) loss, which is
developed by extending the self-supervised contrastive approach
to the fully supervised setting, can explore the label information of
RSIs in embedding space and improve the robustness to common
image corruption. In ViT-CL, a joint loss function that combines CE
loss and SupCon loss is developed to prompt the model to learn more
discriminative features. Also, a two-stage optimization framework
is introduced to enhance the controllability of the optimization
process of the ViT-CL model. Extensive experiments on the AID,
NWPU-RESISC45, and UCM datasets verified the superior perfor-
mance of ViT-CL, with the highest accuracies of 97.42%, 94.54%,
and 99.76% among all competing methods, respectively.

Index Terms—Joint loss function, remote sensing, scene
classification, supervised contrastive (SupCon) loss, vision
transformer.

I. INTRODUCTION

THANKS to the rapid development of Earth observation
(EO) technology, a massive amount of remote sensing (RS)

images with a high spatial resolution (HSR) are being generated
every day. Interpreting these RS images, which contain sufficient
land-cover/land-use information, has practical significance in
many fields, such as object detection [1], land planning [2], and
traffic management [3]. Among the many image interpretation
tasks, RS images have received increasing attention. RS images
aim to allocate a semantic label to the input RS image, where
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the label is from a predefined label set that refines the content of
the RS images [4], [5], [6].

Scene classification is done in feature space so that the
description ability of features extracted by the model directly
affects the classification performance. In the beginning, scene
classification methods are mainly based on hand-crafted fea-
tures, which can be divided into low-level and high-level fea-
tures. Low-level features [7], [8], [9] are usually constructed
by visual attributes such as color [10], texture [11], and shape.
And mid-level features are generated by encoding the low-
level features through some encoding methods, such as bag-
of-visual-words (BoVW) [12], vectors of locally aggregated
descriptors (VLAD) [13], and improved Fisher kernel (IFK) [7].
These hand-crafted features heavily depend on the expertise
of designers, and the capacity of information expression is
limited.

With the rise of deep learning, data-driven feature extraction
methods that do not rely on prior knowledge are born. Especially
in supervised deep learning, models learn deep features by train-
ing themselves on a large number of the labeled dataset so that
they can fully exploit category information to extract high-level
semantic features. Among them, convolutional neural networks
(CNNs) have shown powerful capability of feature learning
in visual applications. Several classical CNNs have been pro-
posed, such as AlexNet [14], VGGNet [15], GoogLeNet [16],
ResNet [17], and U-Net [18]. Concerning scene classification,
CNN-based methods can be divided into three branches depend-
ing on how they are used: employing a pretrained model as a
feature extractor, fine-tuning a pretrained model, and training a
new model from scratch.

In the first branch, pretrained CNNs are considered feature
extractors, and then, the resulting features are fused or combined
to capture more visual information. Studies [19] use different
pretrained CNNs to extract vision features and fuse the result
features. The results show that fused features are more dis-
criminated against. In [20], the CNN model is used to extract
multilayer feature maps, and these feature maps are combined by
calculating their covariance matrix of them after being stacked.
Finally, the result covariance matrices are used for classification.
The aforementioned models demonstrate that CNNs have good
generalization capability for scene classification.

In contrast with using pretrained CNNs as extractors, fine-
tuning pretrained CNNs on target datasets, which can lead to an
end-to-end model, is more straightforward and more effective.
In addition, when training data are insufficient, fine tuning
takes precedence over training from scratch. The emphasis of
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Fig. 1. Coexistence of multiple ground objects. Multiple ground objects
related to the “School” scene are distributed over different locations of the RSI.
The image is from the AID dataset [32].

optimizations in the second branch is placed on fine adjusting
the networks [21], [22], [23] and loss functions [24], [25].

Although fine tuning pretrained CNNs can achieve effective
classification performance, pretrained CNNs still have some
limitations. Due to the gap between the nature dataset and the
RSI dataset, features learned by the model trained on the nature
dataset are not perfectly suitable for the RSI dataset. Moreover,
modifying the pretrained model is not that convenient. Many
studies of the third branch focused on either improving the CNN
structure [26], [27], [28], [29] or constructing a hybrid model
framework [30], [31] according to the characteristics of remote
sensing datasets.

Overall, the CNN is a multilayer structure, where the con-
volutional layer plays a prominent role in extracting features
from images. Thanks to the convolutional operations, the model
can learn the local spatial information of the input images.
And though progressively expanding the receptive field of the
convolutional kernels in each layer, it can acquire the features of
a global view. Sacking multiple convolutional layers can boost
the classification performance significantly. However, the CNN
cannot capture long-range relationships limited by the local
receptive field.

Due to the complex spatial distribution of ground objects
and the bird’s eye view of RS imaging equipment, it is very
generic for multiple ground objects to coexist in one single
RS image [33], [34]. In the RS image shown in Fig. 1, which
is of the “school” scene, there are multiple ground objects, a
baseball field, a tennis court, a playground, roads, and so on.
Furthermore, these objects are distributed in all directions of the
image. The coexistence and dispersed distribution of multiple
ground objects bring challenges to scene classification. So cap-
turing global long-range interactions for these ground objects
has vital practical significance in scene classification. Besides
the CNN, transformer [35] is another deep learning structure that
has taken off in the natural language processing (NLP) domain.
The transformer benefiting from the self-attention mechanism,

can capture long-range interactions on input sequence data and
learn a global representation. Encouraged by the success of the
transformer in NLP, Dosovitskiy et al. [36] have extended the
standard transformer structure to visual applications and pro-
posed the ViT model that demonstrates the enormous potential
for image classification.

Although ViT has shown excellent feature learning ability,
its performance on RS images has not yet reached saturation.
Further improving its performance without increasing the pa-
rameter scale or integrating with additional depth structure is
possible. In addition to the characteristics of the coexistence of
multiple ground objects mentioned above, intraclass diversity
(shown in Fig. 2) and interclass similarity (shown in Fig. 3) are
also two nonnegligible challenges. In recent years, contrastive
learning has received considerable attention due to its great
potential for visual representation learning ability. Since 2019,
research on comparative learning (CL) has developed rapidly,
resulting in many excellent methods, such as SimCLR [38],
SimCLR V2 [39], MoCo [40], and MoCo V2 [41]. Among them,
the supervised contrastive (SupCon) loss, a batch contrastive
approach for a supervised setting, has the intrinsic ability to
perform hard positive/negative mining [42]. So, it is possible
to employ SupCon loss to help the ViT model to learn more
discriminative features.

Given the appealing properties of ViT and CL, in this article,
a novel two-stage end-to-end framework for the scene classi-
fication is proposed, named ViT-CL. ViT-CL aims to combine
the advantages of the transformer structure and the principle
of contrastive learning to improve the performance of scene
classification. First of all, considering that the scale of RS image
datasets is hardly sufficient to train ViT models from scratch,
transferring a large-scale pretrained ViT model to the target
dataset, which can help ViT surpass inductive bias, is preferred.
Second, as a combination of SupCon loss and CE loss, a joint
loss is proposed to fine tune the pretrained ViT model. In this
way, the two loss functions complement each other, forcing the
model to learn more discriminating high-level semantic features
and further making the model more robust. Finally, considering
ViT is hard to optimize and sensitive to hyperparameters, we
develop a two-stage optimization. In the first stage, only CE
loss is adopted to fine tune the pretrained ViT model on the
target dataset. In the second stage, the proposed joint loss is
utilized to fine tune the model produced in the first stage. After
the two-stage fine tuning, the optimized model is obtained, but
only the cross-entropy loss part of the model is retained for the
following inference.

II. RELATED WORK

In the last two years, some studies have begun to explore
how ViT performs in RS images. Bazi et al. [43] introduced
the ViT model into the RS images and improved the classifica-
tion accuracy through data augmentation such as CutMix and
Cutout. Also, they proved that the model performance could be
maintained even if half of the layers were pruned to compress
the network. Then, Bashmal et al. [44] proposed the data-
efficient image transformers (DeiT), a ViT-based model trained
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Fig. 2. Intraclass diversity.

Fig. 3. Interclass similarity. (a) Similarity between scene “freeway” and “runway.” (b) Similarity between scene “railway station” and “industrial area.” These
images are from the NWPU-RESISC45 dataset [37].

by knowledge distillation with fewer data, and proved that the
performance of ViT was superior to the CNN-based method on
the remote sensing datasets AID and NWPU-RESISC. In [45],
SCViT is proposed to overcome the disadvantage that the origi-
nal model can only capture global spatial features. By improving
the structure of ViT, the model not only considers the detailed
geometric information of high spatial resolution images but also
considers the contribution of different channels of the class
token.

In addition, as the advantages of convolution structure and
transformer structure complement each other, some studies have
explored ways to combine these two network structures. Deng
et al. [46] designed a joint loss function to build the joint
framework CTNet. In this framework, the ViT model is used
to capture semantic features, while the CNN model is used to
extract local structure information. In [47], the advantages of
the two models are integrated without improving the computa-
tional complexity by knowledge distillation, in which the ViT
is worked as a teacher to guide the student model ResNet18.
Besides classifying tasks, this article also proves that this method
has good generalization ability for different tasks.

The remainder of this article is organized as follows: Sec-
tion III introduces ViT and the supervised contrastive loss, then
describes the proposed method ViT-CL in detail. Section IV
contains both contrast and ablation experiments. The former
compares our models with several classical CNN models and
ViT-based methods on three well-known datasets, and the latter
analyzes how the optimized model works. Finally, Section V
concludes this article.

III. PROPOSED METHOD

Let D = {Xi, yi}ri=1 denote an SRI dataset of size r, where
Xi represents the ith image and yi is its corresponding cat-
egory label. Xi ∈ Rh×w×c, where h, w, and c represent the
height, the width, and the number of channels, respectively.
yi ∈ {1, 2, . . . ,m}, where m is the predetermined number of
categories.

A. Vision Transformer

A vision transformer is proposed to apply the vanilla trans-
former to the image task. The main goal is to generalize it to
visual applications without integrating any data-specific archi-
tecture. ViT only retains the encoder module of the standard
transformer, and the complete end-to-end architecture is shown
in Fig. 4.

First, the input image is subdivided into nonoverlapping 2-D
patches with dimensions p× p× c before being passed to the
transformer encoder to adapt the standard transformer structure.
The path size p is usually set to 16 or 32, and a smaller patch
size will lead to a longer sequence and vice versa. Then, the n
2-D patches are flattened and passed to a liner layer to generate
a patch sequence P ∈ Rn×(p2·c), where n = h×w

p2 is the length

of P . In the liner layer, a learnable matrix E ∈ R(p2·c)×d is
utilized to embed these patches into a d-dimensional space. After
that, like most classification tasks with transformer structure, the
embedded patch sequence is concatenated with a learnable clas-
sification tokenP0. Finally, the patch’s spatial arrangementEpos,
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Fig. 4. Illustration of the proposed ViT architecture. (a) Main architecture of the model. (b) Transformers encoder module. (c) Multihead self-attention (MSA).
(d) Self-attention head (SA).

which helps the transformer to distinguish them, is encoded and
added to the embedded patch sequence to obtain the embedding
sequence Z(0). The aforementioned process is formulated as
follows:

Z(0) = {P0;P1E;P2E; · · · ;PmE; }+ Epos

E ∈ R(p2·c)×d, Epos ∈ R(n+1)×d. (1)

Next, the embedding sequence Z(0) is entered into the trans-
former encoder that contains L blocks. As shown in Fig. 4(b),
there are two main subcomponents in each block: multihead
self-attention (MSA) [see (2)] and multilayer perception (MLP)
[see (3)]. Before entering these two components separately,
the input needs to be preceded by a normalization layer (LN),
which can stabilize the gradient of the loss to the input during
backpropagation. And both the output of the two subcomponents
employ residual skip connections to obtain a result as the input
of the next subcomponent. The calculation process is as follows:

Z(l)′ = MSA
(

LN
(
Z(l−1)

))
+ Z(l−1), l = 1 . . . L (2)

Z(l) = MSA
(

LN
(
Z(l)′

))
+ Z(l),′ l = 1 . . . L. (3)

Here, notice that the output of the Lth layer ZL is the final
result of the encoder. For classification, the first token of ZL

can be regarded as the final feature representation f of an input
image after an LN processing. The calculation is as follows:

f = LN
(
Z

(L)
0

)
. (4)

Then, f is passed into an MLP head, which is composed of
a full connection layer (FC) and the softmax loss function to
predict the class label

y = softmax (FC(f)) . (5)

The construction of MSA, the core of the transformer en-
coder, is shown in Fig. 4(c). Attention can be understood as
the weight of interaction between tokens, and self-attention
means these tokens belong to one single sequence. For each
token in the sequence Z, first, calculate the attention scores
between itself and all the tokens of Z. And second, calculate
the sum over all token embeddings weighted by these atten-
tion scores to obtain a new embedding for the current token.
Before calculating self-attention, the sequence Z is mapped
to three different sequences Q ∈ R(n+1)×dQ , K ∈ R(n+1)×dK ,
and V ∈ R(n+1)×dV by multiplying a learned matrix MQKV ,
where Q, K, and V represent query, key, and value, and dK , dQ,
and dV are their dimensions. In theory, it just requires dK = dQ,
and for convenience, there are dK = dQ = dV . The formula is
as follows:

[Q,K, V ] = ZMQKV ,MQKV ∈ Rd×3dK . (6)

Then, it comes to the SA block, shown in Fig. 4(c). The
dot production Q ·KT is calculated to measure the pairwise
similarity between tokens in sequence Z. And to alleviate the
problem of vanishing gradient, the result needs to be divided by√
dK . After a softmax operation, the final scaled dot attention

is obtained. The entire procedure is as follows:

SA(Q,K, V ) = softmax

(
QKT

√
dK

)
V. (7)

Suppose that the number of heads is h, and the MSA block
computes the scaled dot attention h times separately, using (7)
with h different values for Q, K, and V, respectively. These result
h SA values will be concatenated, and then, passed to a linear
layer with parameter W 0 to ensure that the dimensions of the
input and output of each MSA block stay the same. The formula
is as follows:

MSA = Concat (SA1, SA2, . . . , SAh)W
0
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TABLE I
PARAMETER STATISTICS FOR THE SMALL BASE AND LARGE VARIANTS OF

VISION TRANSFORMER

W 0 ∈ R(h·dK)×d. (8)

When it comes to the MLP block, there are two dense layers
and a GeLU activation in between. It is too simple to expand on.

From the calculation process of MSA, it can be seen that this
mechanism can capture long-distance dependencies between
tokens. The generated feature representation, not only contains
the information of all patches but also their higher order spatial
interaction information. However, as mentioned previously, the
transformer lacks some inductive biases, so it cannot generalize
well when there is no adequate data. The authors in [48] has
analyzed the effects of pretraining data scale, data augmentation,
model size, and compute budget on the performance of the
ViT model. And they proved that for most practical purposes,
compared with training a ViT model from scratch, fine tuning
a large-scale pretrained ViT model on the target dataset is both
more cost effective and can produce better results. The author
also gives some suggestions on how to choose a pretraining
model.

1) The larger the pretrain dataset, the more generic the ob-
tained model, and the larger the model, the longer the
inference time;

2) The validation score obtained in a pretrain stage can be the
direct reference index. And there is no need to transfer all
available pretrained models to the target data and choose
the model by comparing verification scores in a fine-tuning
stage.

The pretrained ViT model mainly contains three versions with
different scales of parameters: small ViT, base ViT, and large
ViT. And each version usually owns two different patch sizes,
16 and 32. See Table I for some vital parameters of the three
version models.

Following the aforementioned suggestions and the rec-
ommendations of the official ViT documents,1 The model
B/16_21 k, which means base ViT with patch size 16, is cho-
sen as the backbone network. More specifically, the model is
pretrained on a large-scale dataset ImageNet-21 k (including
13 M images) [49], applying varying amounts of AugReg strate-
gies [48].

B. Supervised Contrastive Learning

Most classification tasks usually employ CE loss as the ob-
jective function. But some studies have shown that this loss has
drawbacks such as not being robust to noisy labels [49] and
may produce poor margins [50], which can reduce the model’s

1https://github.com/google-research/vision_transformer

generalization ability and further affect the classification ac-
curacy. As mentioned in the introduction section, RS images
are characterized by big intraclass diversity and high interclass
similarity. That is to say, RS images of the same class may be very
different (shown in Fig. 2), while RS images of different classes
may be very similar (shown in Fig. 3). So, poor margins, which
means CE loss does not explicitly encourage discriminative
learning of features, will be a loss for scene classification. How-
ever, SupCon loss can promote model learning discriminative
feature representations by pulling together the clusters of similar
samples in feature space while pushing apart the clusters of
dissimilar samples. It can be employed to compensate for the
drawbacks of CE loss.

SupCon loss is produced by extending the self-supervised
contrast learning [38] to the fully supervised setting [42]. In a
supervised setting, the loss’ selection criteria of positive samples
changed to “whether it belongs to the same class,” from that
“whether it is from the same picture” in a self-supervised setting.
Thus, the number of positive sample pairs in the comparison loss
is expanded. It has been proved that this change can encourage
the model better depict the intraclass similarity. For each anchor,
the SupCon loss first calculates the similarity scores between it
and all the other positive samples, and then, weighted sum these
scores. The calculation formula is as follows:

lsup
i =

−1

|p(i)|
∑

p∈P (i)

log
exp

(
fi · fp/τ

)
∑

a∈A(i) exp (fi · fa/τ)
. (9)

Here i ∈ I ≡ {1 · · ·N} is the index of the anchor. A(i) ≡
I \ {i} represents the overall sample set besides the sample i,
and P (i) ≡ {p ∈ A(i) : ỹp = ỹi} is the positive sample set, in
which the samples have the same label as the anchor. The symbol
“·” represents the inner (dot) product and τ ∈ R+ is the tem-
perature parameter. It can be seen from (9) that the contrastive
denominator contains the summation over negative samples, and
this form improves the model’s ability to discriminate between
signal and noise (negative samples). Overall, the significance of
SupCon loss lies in narrowing the distance between the samples
from the same class in the feature space, while widening the
distance between samples from different classes. However, for
each anchor, only positive samples in the batch contribute to the
numerator of (9), so the batch size should be larger than the num-
ber of classes to ensure that there are enough positive samples
in the batch. Meanwhile, a larger batch size call also guarantees
enough negatives to form a sharp contrast with positive pairs.

C. ViT-CL

In this article, a method named ViT-CL is proposed to combine
the advantages of SupCon loss and ViT. ViT-CL utilizes ViT as
a backbone network, and then, optimizes the backbone network
by a two-stage optimizing framework with a joint loss. The
framework of ViT-CL is shown in Fig. 5.

After encoding by the ViT, each image Xi can obtain its em-
bedding feature fi. In the proposed framework, image features of
one input batch will be passed to a joint loss, which is constituted
by the CE loss and SupCon loss. In Fig. 5, each loss function is
visualized as a task.

https://github.com/google-research/vision_transformer
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Fig. 5. Framework of the proposed ViT-CL.

The first task is the classification task, corresponding to the
left one of the two tasks in Fig. 5. Here, the classifier structure
of ViT is directly applied: First, feature fi is mapped to a new
feature space for classification by the MLP head, and then, the
CE loss is calculated. The calculation formulas are as follows:

fCE
i = FC (fi) (10)

lCE
i = LCE

(
softmax

(
fCE
i

)
, yi

)
. (11)

The second task is supervised contrast learning, correspond-
ing to the right one of the two tasks in Fig. 5. Referring to
the contrast learning framework [38], [42], a project network
proj(·), which plays the same role as the MLP head in the
classification task, is introduced. Some studies on contrast learn-
ing have shown that the project network is necessary and can
help to improve the model’s performance [38]. Here, proj(·)
is instantiated as a two-layer MLP, whose hidden layer size is
2048 and output layer size is 128. Formulaic the calculations as
follows:

fSupCon
i = FC (ReLU ((FC))) (12)

lSupCon
i =

−1

|p(i)|
∑

p∈P (i)

log
exp (fi · fp/τ)∑

a∈A(i) exp (fi · fa/τ)
. (13)

It should be pointed out that in the actual minibatch opti-
mization process, the positive sample set P (i) of each anchor is
limited in the batch where the anchor is, so the optimization
parameter batch size would impact the performance of the
model. Finally, the joint loss of one input batch is calculated
as follows:

L =

n∑
i=1

(
lCE
i + λlSupCon

i

)
(14)

where λ acts as a tradeoff between these two losses, which
needs to be judiciously tuned to control the distinctiveness
of learned features. Along with ViT’s sensitivity to optimizer
hyperparameters [51], tuning these hyperparameters including
λ is time consuming. Instead, a simpler but effective strategy

TABLE II
PARAMETER STATISTICS FOR THE SMALL BASE AND LARGE VARIANTS OF THE

VISION TRANSFORMER

is proposed to tackle this problem: a two-stage optimization
method. In the first stage, the pretrained ViT model selected
in Section III-A is initially fine tuned only by the CE loss on
the target RSI dataset. In the second stage, the result fine-tuned
model of the first stage is fine tuned by the joint loss again.
Corresponding to the framework shown in Fig. 5, the model is
fine tuned using only the classification part in the first stage.
Then, in the second stage, both the classification part and the
supervised contrastive learning part are used. After the two-stage
join fine tuning, only the classification part of the framework is
reserved to complete inference work.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Datasets Description: In our experiments, three public
remote-sensing datasets are utilized to evaluate the ViT-CL:
Aerial Image Dataset (AID) [32], Northwestern Polytechnical
University Dataset (NWPU-RESISC45) [37], and UC-Merced
Land Use Dataset (UCM) [12], the detail information of the three
datasets are displayed in Table II. Among them, the NWPU-
RESISC45 dataset and UCM dataset are more challenging than
the AID dataset.

2) Hardware and Software Environment: All subsequent ex-
periments are conducted on a personal computer, and the detailed
computing environment is shown in Table III.
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TABLE III
PARAMETER STATISTICS FOR THE SMALL BASE AND LARGE VARIANTS OF THE

VISION TRANSFORMER

3) Parameter Optimization Setup: For comparison purposes,
the overall accuracy (OA) is employed to evaluate the perfor-
mance of different classic methods, which indicates the per-
centage of correctly classified images in the total number of
images. When training or fine tuning models, 50% and 80%
of the UCM dataset, 20% and 50% of the AID dataset, and
10% and 20% of the NWPU-RESISC45 dataset are randomly
selected for training, respectively. One thing to note is that
when using two-stage ViT-CL, the division of the train set
(referring to the samples assigned to the set rather than the
sample proportion) needs to be consistent in both stages. The
pretrained ViT model used as the backbone of our ViT-CL is
selected as described in Section III-A, a B/16 version pretrained
on Imagenet-21 k with AugReg strategies. It can be downloaded
from https://storage.googleapis.com/vit_models/augreg/.

In the optimization stage, adaptive moment estimation
(Adam) is introduced to update the parameters of all methods
and the learning rate (LR) is set to 0.0001. Also, stepLR is used
to control the LR, whose step_size is set to 20 and gamma is set
to 0.9. That is to say, LR is multiplied by a factor of 0.9 every 20
epochs. All the methods are fine tuned 100 epochs and for each
epoch, batch_size is set to 128 limited by the memory of the
GPU. Besides, the input images are resized to 256 × 256 pixels.
In addition, with respect to the parameters in joint loss, λ is
set to 0.2 through many experiments, and temperature τ is set to
0.07 as recommended in most comparative learning papers [40],
[41], [52].

B. Comparison With Some Classic Methods

we compare our method with five classic CNN-based meth-
ods, one traditional ViT model, and two ViT-based improved
models, which are as follows:

1) Fine-tune ResNet-50 [17];
2) Fine-tune AlexNet [14];
3) Fine-tune VGGNet-16 [15];
4) Fine-tune GoogLeNet [16];
5) Fine-tune MobileNe_V2 [53];
6) V16_21k [43];
7) SCViT [45];
8) ET-GSNet [47].
Table IV shows detailed comparisons between ViT-CL and

other models on three datasets, AID, NWPU-RESISC45, and
UCM. It can be seen that the proposed two-stage joint fine-
tuning method ViT-CL has an obviously higher OA, compared

with both these classical CNN-based models and the improved
ViT-based models.

Furthermore, the confusion matrices (CMs) of the ViT mod-
els’ prediction on the two more challenging datasets AID and
NWPU-RESISC45 are calculated to prove the improvement of
the ViT-CL model. The two CMs are shown in Fig. 6; (a) is
for AID with a training ratio of 50% and (b) is for NWPU-
RESISC45 with a training ratio 20%. It can be seen from the CMs
that the proposed method performs well on the two datasets.

In the dataset AID, where the total number of categories is
30, the class number owning a greater than 90% accuracy is
as high as 29. And among them, 25 have an accuracy greater
than 95%. Besides, even the worst accuracy can reach 88%.
In detail, the model achieves excellent results in categories with
high intraclass diversity, such as “Airport” (97%), “Commercial”
(97%), “Railway Station” (98%), “Chruch” (99%), “Farmland”
(99%), and “Mountain” (100%) (some results is shown in Table
V). Also, it performs well in categories with high interclass
similarity. And these highly similar pairs of categories include
“BareLand” (99%) and “Desert” (99%), “Park” (94%) and
“Resort” (92%), and “Playground” (98%) and “Stadium” (99%)
(some predict results is shown in Table VI).

In dataset NWPU-RESISC45, there are 40 categories, whose
accuracy is over 90% out of 45, and 26 categories are above
95%. The five categories with the lowest accuracies are “Palace”
(76%), “Commercial Area” (88%), “Dense Residential” (88%),
“Medium Residential” (89%), and “Church” (89%). Except for
the category “Palace” in which the model performs worst (76%),
the accuracy is close to 90%. For the two categories “Church”
and “Railway Station,” which have high intraclass diversity in
this dataset, the proposed model achieves accuracies of 89% and
93%, respectively (some predicted results of these categories are
shown in Table VII). And for category pairs with a high interclass
similarity: “Freeway” with “Runway,” “Industrial Area” with
“Railway Station,” and “Railway Station” with “stadium,” the
accuracies achieved by the model are 92%, 95%, 90%, 95%,
95%, and 97%, respectively (some predict results is shown in
Table VIII) .

Moreover, from images in Tables V and VII, it can be seen that
images belonging to the same scene can appear very different,
and ViT-CL has the ability to capture diversity. When it comes
to Tables VI and VIII, images of different scenes may look very
similar or contain the same objects, ViT-CL also has the ability to
distinguish between these scenarios. The aforementioned results
fully show that ViT-CL can well distinguish both intraclass
diversity and interclass similarity.

C. Ablation Study and Analysis

This article also conducted experiments on the variants of
the model to illustrate the effectiveness of the two-stage joint
optimization, including the following.

1) Fine-tune B/16_21 k: Fine tune the pretrained ViT model
once, utilizing and only utilizing CE loss for classification.

2) One-stage ViT-CL: Fine tune the pretrained ViT model
once utilizing joint loss and retain the classification part
for classification.

https://storage.googleapis.com/vit_models/augreg/.
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TABLE IV
CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON THE AID, NWPU-RESISC45, AND UCM DATASETS (%)

Fig. 6. CMs of ViT-CL on AID dataset and NWPU-RESISC45 dataset. (a) CM of ViT-CL on AID dataset with train percent 50%. (b) CM of ViT-CL on
NWPU-RESISC45 dataset with train percent 20%.

TABLE V
PART PREDICT RESULTS OF DATASET AID, CATEGORIES ARE CHOSEN FOR THEIR BIG INTRACLASS DIVERSITY
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TABLE VI
PART PREDICT RESULTS OF DATASET NWPU-RESISC45, CATEGORIES ARE CHOSEN FOR THEIR BIG INTRACLASS DIVERSITY

TABLE VII
PART PREDICT RESULTS OF DATASET AID, CATEGORIES ARE CHOSEN FOR THEIR HIGH INTERCLASS SIMILARITY

TABLE VIII
SOME PREDICT RESULT OF DATASET NWPU-RESISC45, CATEGORIES ARE CHOSEN FOR THEIR HIGH INTERCLASS SIMILARITY

TABLE IX
CLASSIFICATION ACCURACIES OF THREE VIT BASED METHOD ON THE AID,

NWPU-RESISC45, AND UCM DATASETS (%)

3) ViT-CL: Our proposed two-stage joint fine-tune model.
Table IX shows detailed comparisons for the three ViT-based

methods. First, compared with fine-tuning B/16_21 k, one-stage
ViT-CL additional introduces supervised contrast loss. Their
OAs illustrate that merely adding supervised contrast loss does
not work and may disturb the backpropagation process to obtain
better results. Second, comparing the last two models, one-stage
ViT-CL and the proposed ViT-CL, the difference between them
is when to execute the fine tuning by joint loss. It can be seen
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TABLE X
CLASSIFICATION ACCURACIES OF THREE VIT-BASED METHOD ON THE AID, NWPU-RESISC45, AND UCM DATASETS (%)

Fig. 7. 2-D visualization of feature representations extracted by Fine-tuned B/16_21 k and ViT-CL on the AID and NWPU-RESISC45 dataset using t-SNE.
(a) Fine-tuned B/16_21 k. (b) ViT-CL.

that the two-stage optimization, which introduces supervised
contrast loss after the pretrained model has achieved a good
result on the target dataset by initial fine tuning, can make the
joining loss effective. Finally, as for fine tuning B/16_21 k and
ViT-CL, the main difference is that the latter is optimized by
the two-stage joint framework, while the former is optimized
only once by CE loss. Their results show that our proposed
framework can improve the OAs by more than 1% on the two
more challenging datasets AID and NWPU-RESISC45. And
the lower proportion of the training set, the more significant the
improvement.

Furthermore, this article statistic the distributions of category
accuracy obtained by fine-tuning B/16_12 K and ViT-CL on
different datasets (i.e., diagonal elements of the CM) to show
how much the two-stage joint fine-tuning framework improving
feature representations’ expression ability compared with the
CE loss. The maximum, minimum, average, and variance
of each category’s accuracy are statistical, respectively. The
results are shown in Table X. It can be seen from Table X
that the average classification accuracies of the ViT-CL on
different three datasets are all higher than those of Fine-tune
B/16_21 k, so do the minimum accuracies except the one on
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dataset NWPU-RESISC45 with train ratio 20%. Together with
the lower variances of classification accuracies of the ViT-CL, all
of these indicate that the introduction of contrast loss can make
similar samples from the same scene more clustered, while the
confusion degree among different scenes becomes lower.

More intuitively, the t-distributed stochastic neighbor em-
bedding (t-SNE) algorithm [54] can reduce the dimension of
the feature representations generated by different models so
that feature projections can be visualized in a 2-D space. The
2-D visualization images of feature representations extracted
by Fine-tuning B/16_21 k and ViT-CL on the two dataset AID
(train ratio 50%) and NWPU-RESISC45 (train ratio 20%) are
shown in Fig. 7, where (a) is for Fine-tuned B/16_21 k and
(b) is for ViT-CL. From Fig. 7, it can be found that the feature
structure is clear no matter whether the two-stage joint oper-
ation is adopted, which demonstrates the effectiveness of the
backbone ViT model. Furthermore, compared with the feature
clusters extracted by Fine-tuned B/16_21 k, the feature clusters
extracted by ViT-CL are closer together, and their boundaries
of them are clearer. This fact confirms the usefulness of our
framework.

V. CONCLUSION

In this work, a two-stage end-to-end framework named ViT-
CL is proposed. The framework combines the ViT model with
supervised contrastive learning and gives full play to the ad-
vantages of the two so that it can further improve the accu-
racy of scene classification. The backbone ViT of this frame-
work can capture long-range dependencies among patches via
a self-attention mechanism. And the proposed joint loss func-
tion composed of cross entropy loss and supervised contrast
loss can help the model learn more robust and discriminating
semantic features. Besides, to avoid time-consuming parameter
tuning, a two-stage fine tuning is employed to ensure the joint
loss function can show its best performance. ViT-CL has been
evaluated on three public remote-sensing image datasets, and the
experimental results demonstrate the effectiveness in improving
the overall accuracy of scene classification, compared to some
classical CNN-based methods and improved ViT-based models.
Moreover, with the ablation experiment, how the two-stage
joint fine-tuning framework improves the performance of scene
classification is discussed and it concluded that both “two-stage”
and “joint” are necessary. In the future, we will employ unsuper-
vised contrast learning or data enhancement strategies to build a
scenario classification framework with lower time consumption
and better performance.
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