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Generalized Fine-Resolution FPAR Estimation Using
Google Earth Engine: Random Forest or Multiple
Linear Regression

Yiting Wang “, Yinggang Zhan

Abstract—Accurate estimation of fine-resolution fraction of ab-
sorbed photosynthetically active radiation (FPAR) is urgently
needed for modeling land surface processes at finer scales. While
traditional methods can hardly balance universality, efficiency,
and accuracy, methods using coarse-resolution products as a ref-
erence are promising for operational fine-resolution FPAR esti-
mation. However, current methods confront major problems of
underrepresentation of FPAR-reflectance relations within coarse-
resolution FPAR products, particularly for densely vegetated ar-
eas. To overcome this limitation, this article has developed an en-
hanced scaling method that proposes an outlier removal procedure
and a method weighting the selected samples and models FPAR
through weighted multiple linear regression (MLR) between the
coarse-resolution FPAR product and the aggregated fine-resolution
surface reflectance. Meanwhile, a random forest regression (RFR)
method has also been implemented for comparison. Both methods
were particularly applied to Landsat 8 OLI and moderate res-
olution imaging spectroradiometer (MODIS) FPAR data on the
Google earth engine. Their performance was tested on a regional
scale for an entire year. The results of the enhanced scaling method
were closer to the in situ measurements (RMSE = 0.058 and R? =
0.768) and were more consistent with the MODIS FPAR (RMSE
= 0.091 and R? = 0.894) than those of the RFR, particularly over
densely vegetated pixels. This indicates that a well-designed simple
MLR-based method can outperform the more sophisticated RFR
method. The enhanced scaling method is also less sensitive to the
number of training samples than the RFR method. Moreover, both
methods are insensitive to land cover maps, and their computation
efficiency depends on the number of images to be estimated.

Index Terms—Fraction of absorbed photosynthetically active
radiation (FPAR), Google earth engine (GEE), Landsat, moderate
resolution imaging spectroradiometer (MODIS), remote sensing
trend surface, scaling.
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1. INTRODUCTION

HE faction of absorbed photosynthetically active radiation
T (FPAR) is defined as the fraction of photosynthetically
active radiation (PAR) absorbed by vegetation, where PAR refers
to the incoming solar radiation within the spectral range of
0.4-0.7 pm [1]. It provides critical information on vegetation
photosynthesis for modeling the energy-and-carbon exchange
between the biosphere and atmosphere. Numerous land surface
process models, e.g., soil-vegetation-atmosphere transfer mod-
els [2] and production efficiency models [3], require spatially
explicit FPAR data as input to calculate the vegetation pro-
ductivity, energy budget, and carbon transfer [4]. As the only
efficient approach to acquire large-scale spatially continuous
FPAR [5], accurate estimation from satellite data is increasingly
important [6]. While many global satellite FPAR products are
currently available at coarse spatial resolutions (250 m—1 km)
[71, [8], [9], fine-resolution FPAR products are urgently needed
for modeling finer-scale land surface processes and impacts [6],
[10], [11]. However, despite the many methods developed for
FPAR estimation from satellite data, they still have a long way
to go from algorithm development to operational fine-resolution
FPAR estimation in terms of algorithm generalization, compu-
tation efficiency, accuracy, and robustness.

Traditional methods for FPAR estimation include two main
groups: physical and empirical methods. Physical methods use
radiative transfer equations [7], gap probability [12], or recolli-
sional probability [2], [13] to model the relations between FPAR
and canopy reflectance through a physical description of the
light transfer process. Physical methods have been successfully
used in generating global operational FPAR products, e.g., mod-
erate resolution imaging spectroradiometer (MODIS) leaf area
index (LAI)/FPAR products [7], but they can hardly adapt to
fine-resolution satellite data because they require many input
parameters, such as the clumping index and soil albedo. Em-
pirical methods model the linear or nonlinear relations between
reflectance and FPAR from radiative transfer simulations [14],
[15], [16] or in situ measurements [17]. They are simple and
efficient and have been widely used at local scales, but they
may experience major difficulties in extending an established
empirical model to wider areas or longer time periods.

Recently, an alternative approach has been to model the com-
plex relations between reflectance and vegetation parameters us-
ing operational coarse-resolution products as areference through
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statistical learning methods. Multiple linear regression (MLR)
was initially used to estimate Landsat LAI[18], and then the ran-
dom forest regression (RFR) method was also used to estimate
LAI from Landsat data [19] or FPAR from sentinel-2 data [20]
using MODIS LAI/FPAR products as a reference. These meth-
ods inherited the sound physical foundations of the operational
coarse-resolution products [7], [8], [9], but their major chal-
lenge is to accurately represent the complex FPAR-reflectance
relations contained in the operational coarse-resolution FPAR
product that are highly variable in space and time and may
not adapt to fine resolutions due to the scale effect [21], [22].
Both the MLR in [18] and RFR in [19], [20] selected homo-
geneous MODIS pixels from multiple images to capture the
LAlI-reflectance relations and avoid scaling issues. Considering
the difference in FPAR-reflectance relations between different
solar zenith angles (SZAs) on different dates, Wang et al. [23]
proposed a scaling method to estimate fine-resolution FPAR via
MLR learning from each pair of MODIS FPAR and Landsat
images. However, these methods still face the problem of un-
derrepresentation of FPAR-reflectance relations over densely
vegetated areas, where fewer homogeneous MODIS pixels can
be selected and the fine-resolution reflectance saturates with
increasing vegetation density. This underrepresentation results
in the underestimation of high FPAR values and prevents the
further application of these methods to the operational estima-
tion of fine-resolution FPAR. Therefore, a generalized method
for fine-resolution FPAR estimation is urgently needed.

In addition, although both the RFR and MLR methods have
been successfully used in retrieving fine-resolution vegetation
parameters, few studies have compared their performance in
generating operational fine-resolution FPAR products. The RFR
method is advantageous over other traditional machine learning
methods, e.g., artificial neural networks, for its capability of
dealing with high dimensional problems and high computation
efficiency, while the MLR method is simple, efficient, and can
work with very few samples. The RFR method was found to
outperform the simpler MLR method in downscaling MODIS
LST products [24], [25], but the performance of a statistical
learning algorithm depends on many factors. Whether the more
complex RFR method outweighs the simpler MLR method
remains an unsolved issue.

Therefore, this article aims to develop a generalized method
for the operational estimation of fine-resolution FPAR based
on the scaling method proposed by Wang et al. [23], hereafter
referred to as the enhanced scaling method. To overcome the
underrepresentation of FPAR-reflectance relations over densely
vegetated pixels, the enhanced scaling method proposed a
method weighting the selected samples, and modeled the FPAR-
reflectance relations through a weighted MLR method. Other
improvements include the self-adaptive selection of representa-
tive samples and an outlier removal procedure. The RFR method
was also developed for comparison, and the retrieval chain
was modified from the RFR method used for LAI estimation
in [19]. Both the MLR-based enhanced scaling method and
RFR method were implemented on the Google earth engine
(GEE) to provide operational fine-resolution FPAR products.
The sensitivity of the two methods to the number of training

samples and to different land cover maps and their computation
efficiency were investigated in detail. The performance of the
two methods was compared over a large area covering more than
50 000 km? and during the entire year from September 2020 to
August 2021. The results were evaluated against the MODIS
FPAR and in situ FPAR measurements. This article expects to
promote the operational estimation of fine-resolution FPAR,
enhance our understanding of the performance of statistical
learning methods, and provide a reference for retrieving other
land surface parameters using a similar approach.

II. STUDY AREA AND DATA SET
A. Study Area

The study area is the Guanzhong area in Shaanxi Province,
China, covering a total area of 55 623 km? (see Fig. 1). The
Guanzhong area features complex terrain and spans a wide
range of elevations. The northern part belongs to the southern
edge of the Loess Plateau, the southern part is the steep Qinling
Mountains, and the Weihe River runs from west to the east in
the central parts. The land cover types in the study area vary,
including forests, croplands and built areas. Thus, the study area
is representative for testing the performance of the two methods
on a regional scale.

B. Data Set

1) Landsat 8: A total of 86 scenes of Landsat 8 OLI images
with cloud coverage less than 10% from September 2019
to August 2021 were selected on the GEE as atmospheri-
cally corrected surface reflectance data in the UTM/WGS
84 projection (see Fig. 2). To implement the RFR method,
Landsat data from September 2019 to August 2020 were
used for training, and those from September 2020 to Au-
gust 2021 were used for validation. The enhanced scaling
method was only implemented from September 2020 to
August 2021.

2) MODIS LAI/FPAR Product: The MODIS Version 6 LAI
and FPAR product (MCD15A3H) at four-day intervals and
500 m spatial resolution [26] was used in this article. To
match the selected Landsat images spatially and tempo-
rally, the MODIS FPAR images at the dates of available
Landsat images were selected and resampled to 480 m
resolution on the GEE.

3) Land Cover Maps: According to [19], the land cover maps
used in the RFR method were supposed to be similar
to the MODIS land cover product (MCD12Q]1) used in
MODIS FPAR estimation. For this reason, the finer res-
olution observation and monitoring of global land cover
(FROM-GLC) product at 30-m resolution in 2015 [27]
was used as input for the RFR method. To address the
discrepancy in classification schema and biomes between
the FROM-GLC and MCD12Q1 data, the land cover cate-
gories of the FROM-GLC data were analyzed and recoded
carefully in comparison to the MCD12Q1 data using the
method described in [19]. Finally, we defined eight biomes
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Fig. 2.  Temporal distributions of the Landsat images used for training and

validation in the RFR method.

TABLE I
MAPPING BETWEEN LAND COVER TYPES FROM FROM-GLC AND MODIS
FPAR BIOME CLASSIFICATION

Land cover FROM- MCDI12Q1
GLC
code
Cropland 10 Cropland
Evergreen Forest 21,23 Evergreen Broadleaf Forest (EBF)
Evergreen Needleleaf Forest (ENF)
Deciduous Forest 22,24 Deciduous Broadleaf Forest (DBF)
Deciduous Needleleaf Forest
(DBF)
Mixed Forest 25,26 Mixed Forest
Cropland 31,32,33 Cropland
Shrub 41,42 Shrub
Wetland 51,52,53 Wetland
Bareland 90 Bareland

for FROM-GLC land cover types to maintain consistency
with the MODIS land cover map (see Table I).

4) In situ Data: Field campaigns were implemented in the
study area to collect in situ FPAR data on April 16, April
17, and April 30, 2021. In situ sites were selected as
homogeneous areas covering at least one Landsat pixel
(i.e., 30 m x 30 m). Within each site, sampling points
were selected uniformly at 3-5 m intervals along the
diagonal direction, and FPAR was measured sequentially.
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Map of the study area. (a) Visible-NIR composite Landsat images. (b) Subarea with high spatial heterogeneity. (c) MCD12Q1 land cover map.

The SunScan Canopy Analyzer [28], [29] was used to
measure FPAR at each sampling point by measuring the
incident and reflected PAR above and below the canopy
layer [30] for crops (i.e., maize and wheat) in the study
area. For high trees, the fraction of intercepted PAR was
measured as the approximation of FPAR by measuring the
incident PAR in nearby open areas and under the canopy.
To match the satellite data in time and space, the measured
FPAR was temporally normalized to the time of satellite
overpass using the method in [30], and those within the
same Landsat pixel were averaged to the 30-m resolution.
Finally, a total of 63 in situ FPAR measurements were
acquired to validate the Landsat FPAR retrievals.

III. METHODOLOGY
A. Enhanced Scaling Method

The core of the MLR-based scaling method [23] is to explic-
itly linearize the complex relations between MODIS FPAR and
Landsat surface reflectance. The FPAR is modeled as a linear
combination of multiband reflectance, which varies with land
cover types and time, but is consistent across different spatial
resolutions. As a result, a specific MLR model can be trained
for each land cover type from each pair of MODIS FPAR and
Landsat images as follows:

Foi=Al, Py +e (D)

where . ;isa 1 x I matrix thatincludes MODIS FPAR values of
I selected samples for land cover type c ondate t, P, ; is a (ny+1)
x [ vector matrix that includes the reflectance of n; bands plus a
constant term of / selected samples, A, /is a (n,+1) x 1 vector
matrix that represents the algorithm coefficients (including the
constant term) for a specific linear retrieval model, and ¢ is the
residual error between the prediction and true value.

The implementation of the scaling method includes four major
steps: classifying the fine-resolution images automatically using
the K-means algorithm; selecting the best-quality and homoge-
nous MODIS FPAR retrievals and the corresponding aggregated
fine-resolution surface reflectance to compose the training sam-
ples; determining the coefficients of the linear model at 480
m resolution through the MLR for each land cover type on
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each date; and estimating the fine-resolution FPAR using the
established MLR model.

However, applying the existing scaling method to operational
estimation of fine-resolution FPAR confronts a major problem of
underrepresentation of densely vegetated pixels that have high
FPAR values and relatively high heterogeneity due to growth
differences. This problem leads to the underestimation of FPAR
for densely vegetated pixels. Particularly when MODIS FPAR
is very high (>0.8), the retrieved Landsat FPAR rarely exceeds
0.8. This underestimation problem can be attributed to a series
of factors, including: using only the best-quality MODIS FPAR
retrievals derived from the main algorithm under unsaturated
conditions; the constant standard for selecting homogeneous
MODIS pixels without considering seasonal variations; interfer-
ence from invalid samples that have disproportionate MODIS
FPAR and Landsat normalized difference vegetation index
(NDVI) values [19]; and the saturation of Landsat reflectance
for dense vegetation.

To address the underrepresentation problem, the enhanced
scaling method made improvements in the following aspects:

First, the enhanced scaling method utilizes high-quality
MODIS FPAR retrievals from the main algorithm under both
saturated and unsaturated conditions, which have quality flags
lower than 50 (QC < 50). This would include more saturated
samples of dense vegetation.

Second, the enhanced scaling method proposes a self-adaptive
standard for selecting homogeneous MODIS pixels. The mean
band-average coefficient of variation (CV) of the surface re-
flectance is used as the threshold. A MODIS pixel with a CV
value less than the mean CV is regarded as pure. Since spa-
tial heterogeneity varies with vegetation growth, the mean CV
represents the dominant spatial heterogeneity at a given time,
which can help select adequate samples to include the growth
variations within the same land cover type.

Third, the enhanced scaling method proposes a 3c-based
method to remove invalid samples, which have Landsat NDVI
values falling outside the normal range of MODIS FPAR val-
ues. Specifically, the selected samples are sorted ascendingly
by MODIS FPAR and divided into different groups by 0.02
intervals. For each group, the mean (1) and standard deviation
(o) of Landsat NDVI are calculated. The samples having Land-
sat NDVI values outside the 95% confidence interval [p-20,
u~+20] are removed as outliers. As a result, invalid samples
with disproportionate Landsat NDVI and MODIS FPAR values,
especially those with low MODIS FPAR but high Landsat NDVI
values, are removed, allowing the underrepresentation of FPAR
over densely vegetated pixels to be improved. This 3o-based
outlier removal method can remove exceptional values while
maintaining the normal values. The method requires sufficient
samples (i.e., >10) within each MODIS FPAR group. When the
number of samples within each group is < = 10, the neighboring
groups can be combined or the 0.02 interval can be increased.

Fourth, saturation of Landsat surface reflectance is a major
cause of the underrepresentation of the FPAR-reflectance rela-
tions in densely vegetated areas [19], [20]. This saturation is
represented by the very small increase in Landsat NDVI with
increasing vegetation density after Landsat NDVI > 0.8. Due to
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WEDISANE Reflectance Spatial Aggregation
Quality Control Spatial Heterogeneity Lanlt_inp:ver
!
Main Coefficient of
Variation :P

Algorithm :M
[

Outlier Removal

Multiple Linear
Regression
Landsat FPAR
Estimation

Fig. 3. Flow chart of the enhanced scaling method.

the saturation problem, the Landsat FPAR values estimated by
the scaling method rarely exceed 0.9 [23].

To overcome this saturation problem, the enhanced scaling
method proposes a weighting method to increase the weights of
samples with very high MODIS FPAR values. The weights are
calculated as follows:

o 17 (et :O>
Wt—{ 1+(1=6), (6 >0) 2

where W, represents the weight for each sample and 6, is the
ratio of samples with MODIS FPAR > =0.9 occupying the
samples with MODIS FPAR > =0.8. When 6; =0 or 0, = 1,
indicating that no samples have MODIS FPAR > = 0.9 or all
samples with MODIS FPAR > =0.8 are also > = 0.9, the
weights remain at 1. When 6; > 0, the value of W; ranges from
1 to 2; the lower 6, is, the greater the weight of the samples with
MODIS FPAR > = 0.9.

Based on the weighting procedure, the enhanced scaling
method employs a weighted MLR approach to model the FPAR-
reflectance relations.

The enhanced scaling method inherited the four major steps
of the scaling method and is primarily modified in selecting,
screening, and weighting samples. The input bands of the model
include green, red, near-infrared (NIR), shortwave infrared 1
(SWIRT1) and shortwave infrared 2, while the blue band was
excluded for its low signal-to-noise ratio after atmospheric
correction [32], [33], [34], [35]. The enhanced scaling method
is self-adaptive and implemented as an automated process on
GEE (sample codes are available at https://code.earthengine.
google.com/aec5d7e00b8b98d358b803ad0ed8fb2b), as shown
in Fig. 3.

B. Random Forest Regression

The RFR method was initially proposed by Breimans [36] as
a nonlinear statistical ensemble method to prevent overfitting
[37]. The RFR builds multiple unrelated decision trees through
a random selection of features and bootstrap sampling from the
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Fig. 4. (a) Frequency histogram and (b) spatial distribution of the screened
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entire training set [20]. Each decision tree can yield a prediction,
and the final output of an RFR is the mean of all predictions
from all individual decision trees. The RFR method used for
fine-resolution FPAR estimation was inherited from the method
used for fine-resolution LAI estimation in [19] (sample codes
are available at: https://github.com/yanghuikang/Landsat-LAI)
and implemented on the GEE because it is more generalized for
regional applications than that designed for cropland in [20].

To ensure the representativeness of the samples, the RFR in
[19] designed a complete workflow of the sample generation
process, which was also used in this article and involved five
major steps as follows.

1) Spatially representative MODIS pixels were selected as
those within which more than 90% of the 30-m FROM-
GLC pixels belonged to a single land cover type, hereafter
referred to as “spatial samples.”

2) For each spatial sample, high-quality FPAR retrievals for
homogeneous MODIS pixels were screened using the
criteria of a quality flag below 50 (QC < 50) and a
band-average CV value below 0.15.

3) Within the homogeneous samples, outliers were removed
as the samples whose NDVI fell outside the 1.5 interquar-
tile range (IQR) from the first and third quartile for each
FPAR interval.

4) All the selected samples were combined, and the sample
balance among different FPAR values was controlled. We
calculated the sample density in space and down-sampled

densely populated areas to make the sample distribution
more uniform.

5) The samples were further screened to remove confound-
ing unsaturated and saturated samples that share similar
spectral signatures from Landsat surface reflectance but
contrasting FPAR values, hereafter referred to as “satura-
tion screening process.” A random classifier was trained
to identify saturated and unsaturated samples based on
Landsat surface reflectance in green, red, NIR, SWIR
bands, NDVI, normalized difference water index (NDWI),
and solar illumination angles. Separate models were built
for different land cover types. Based on ten-fold cross-
validation, the misclassified samples were removed from
the samples.

Finally, a total of 124 509 samples were finally selected, which
were distributed evenly across the entire study area and across
the range of MODIS FPAR values, as shown in Fig. 4.

Considering the differences in the FPAR-reflectance relations
between different land cover types, we built random forest (RF)
models for each land cover type. Model inputs include surface
reflectance in the green, red, NIR, and SWIR1 bands, NDVI,
NDWTI [38], geographic coordinates (longitude, latitude) of the
pixel center, and solar zenith and azimuth of the scene center.
In the RFR training, the number of regression trees was set to
100, the minimum leaf population was 50, and the number of
variables for each segmentation was 5.

C. Validation and Comparison

Both the MLR-based enhanced scaling method and the RFR
method were implemented on the GEE for estimating Landsat
FPAR from September 2020 to August 2021. The results were
validated using in situ FPAR measurements and compared with
MODIS FPAR products. The root-mean-square error (RMSE),
mean absolute error (MAE), and coefficient of determination
(R?,) were used to evaluate the accuracy with in situ data
and the consistency with MODIS FPAR data [20], [23], [39].
The performance of the two methods was also evaluated for
homogeneous and heterogeneous pixels.

Moreover, the sensitivity of both methods to the number of
training samples was investigated. For the RFR method, varying
numbers of images were inputted for training, and the Landsat
FPAR images were estimated and evaluated for the entire year
from September 2020 to August 2021. As the enhanced scaling
method only requires one single pair of Landsat-MODIS images,
the Landsat image with p127/r036 on May 30, 2021, was used,
and the performance of the method was investigated by using a
varying number of samples, which were randomly selected from
the entire training set, for the MLR process.

IV. RESULTS

A. Consistency With MODIS FPAR

Fig. 5 shows the mosaiced Landsat FPAR images of the
Guanzhong area in different months in 2021. The estimated
Landsat FPAR of both the RFR and enhanced scaling method
were generally consistent with the MODIS FPAR. Spatial details
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Fig. 6.
and (d) the corresponding histograms.

and histograms reveal that the RFR underestimated high FPAR
values in spring (May) and summer (August) and overestimated
low FPAR values in winter (February), while the results of the
enhanced scaling method were closer to the MODIS FPAR in
spatial details and absolute values.

Fig. 6 compares Landsat FPAR retrievals using the two
methods with the MODIS FPAR image in the test area on August
2, 2021. Investigation of spatial details over the subareas of
cropland and woodland clearly shows that the enhanced scaling
method accurately restored the spatial patterns of MODIS
FPAR, while the RFR underestimated high FPAR values.
The histograms also show that the results of the MLR-based
enhanced scaling method were highly consistent with the
MODIS FPAR, while the RFR underestimated high FPAR
values. Entirely built upon the selected samples, the RFR may
experience major problems in densely vegetated heterogeneous
areas, where fewer samples could be selected and averaging
over a large number of samples may underrepresent pixels with
too little or too much vegetation.
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Comparison of (a) MODIS FPAR and the Landsat FPAR estimated by the (b) RFR and (c) enhanced scaling methods in the subarea on August 2, 2021,

Since both the RFR and enhanced scaling method rely on
pure MODIS pixels to model the relations between FPAR and
reflectance [22], [40], the estimated Landsat FPAR of both
methods for the entire year from September 2020 to August 2021
were compared with MODIS FPAR in homogeneous MODIS
pixels and heterogeneous MODIS pixels, as shown in Fig. 7. For
both methods, the density contours of homogeneous pixels were
generally more concentrated around the 1:1 line than those of
heterogeneous pixels. The contour lines of the enhanced scaling
method bulged out in the direction of the 1:1 line very well and
were more concentrated than those of the RFR for all pixels. The
contour lines show that the RFR overestimated low FPAR values
(i.e., <0.5) and underestimated high FPAR values (i.e., >0.8) for
all pixels. This indicates that the RFR model built on historical
data may not adapt to new data. In Fig. 7(a) and (b), a few
homogeneous pixels with MODIS FPAR values ranging from
0.4 to 0.7 derived high Landsat FPAR values of approximately
0.8. These pixels were removed from sample screening as out-
liers but were kept in the validation. Compared with the MODIS
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Fig. 7. 2D density contour of MODIS FPAR versus Landsat FPAR retrievals

from the (a and ¢) RFR and (b and d) enhanced scaling methods for (a and b)
homogeneous and (c and d) heterogeneous pixels.

FPAR products, the Landsat FPAR retrievals of the enhanced
scaling method (overall RMSE = 0.076, MAE = 0.052, and
R? = 0.887) were more accurate than those of the RFR method
(overall RMSE = 0.091, MAE = 0.068, and R?> = 0.819).

Fig. 8 shows the retrieved Landsat FPAR values and the
MODIS FPAR values as a function of day of year (DOY)
from September 2020 to August 2021. In general, the retrieved
Landsat FPAR values from the enhanced scaling method were
more consistent with the MODIS FPAR values than those of
the RFR in terms of the mean values, variations and RMSE for
all three vegetation types. The RFR overestimated the FPAR
values during the pregrowth and senescence stages for all three
vegetation types. During peak growth stages, the RFR underesti-
mated the FPAR values for the woodlands but overestimated the
FPAR values for the grasslands and croplands. Such bias can be
attributed to the adaptability of the RFR model built on training
samples to the new data. In contrast, the MLR-based enhanced
scaling method performed best over croplands, slightly under-
estimated the FPAR values for the woodlands and overestimated
the FPAR values for the grasslands during peak growth stages.
Such bias might be related to the high spatial heterogeneity in
the grasslands during the peak season, as shown by the large
standard deviations in the MODIS FPAR and Landsat FPAR
retrievals in Fig. 8.

B. Validation With in Situ FPAR

The scatter plots in Fig. 9 reveal that the FPAR values es-
timated by both the RFR and the enhanced scaling method
were generally consistent with the in situ measurements. This
can be attributed to the high accuracy of the MODIS FPAR
data over croplands, as validated in previous studies [30], [41],
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Fig. 8.  Spatiotemporal patterns of Landsat FPAR retrievals using the RFR
and enhanced scaling methods in the Guanzhong area from September 2020 to
August 2021 compared with the MODIS FPAR values as a function of DOY for
(a) woodland, (b) grassland, and (c) cropland.
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Fig. 9. Comparison of the in situ FPAR measurements and Landsat FPAR
retrievals from the (a) RFR and (b) enhanced scaling methods.

[42]. The FPAR estimated by the RFR method saturated at 0.75
when the in situ FPAR exceeded 0.7, while the enhanced scaling
method accurately estimated the FPAR values, which were very
close to the 1:1 line from low to high values. This indicates
that the MLR-based enhanced scaling method can estimate
fine-resolution FPAR values more accurately.
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number of training images/samples.

C. Sensitivity to Training Samples

Asadata-driven method, RFR relies on a large number of sam-
ples to model the FPAR-reflectance relations. The impacts of the
number of training samples on the RFR were thus investigated by
varying the number of input images for training. The trained RFR
models were applied to the study area for the entire year from
September 2020 to August 2021. Fig. 10(a) shows the change in
the accuracy of the RFR with varying numbers of input images
for training. A rapid increase in the accuracy was observed when
the number of input images increased from 1 to 7, while the
number of screened samples increased from 850 to 6000. The
accuracy was then stabilized when the number of input images
increased from 10 to 20, corresponding to at least 7400 training
samples. For 20 to 35 input images, the accuracy remained at a
relatively high level, corresponding to at least 29 000 training
samples. However, when the number of input images was 35,
a continual increase in the number of input images reduced the
accuracy. This is because adding different training samples can
cause different effects. Adding a peak-season image will add
more saturated samples, which can improve the accuracy of
saturated pixels but reduce the accuracy of unsaturated pixels.
Consequently, the final effects of adding a peak-season image
depend on the relative proportions of saturated and unsaturated
pixels in the images to be predicted. Therefore, when the number
of inputimages was 35, two peak-season images were added, and
the decrease in the accuracy of unsaturated pixels was greater
than the increase in the accuracy of saturated pixels, resulting in
an overall decrease in the accuracy. This indicates that the RFR
is very sensitive to training samples.

Fig. 10(b) shows the change in the accuracy of the MLR-based
enhanced scaling method with varying numbers of samples.
When the number of samples increased from 100 to 600, the
RMSE decreased from 0.095 to 0.088, and the R2, increased
from 0.772 to 0.798. When the number of samples was > 600,
the accuracy of the MLR was very stable. This indicates that
MLR requires fewer samples and is less sensitive to the training
samples.

V. DISCUSSION

A. Sensitivity to Land Cover Types

Both the RFR and MLR methods require land cover maps
to establish land cover-specific models for estimating fine-
resolution FPAR. Relevant research shows that the uncertainty
of land cover maps will affect the retrieval accuracy [43], [44],

[45], [46]. Thus, we investigated the sensitivity of both methods
to land cover maps by using different land cover maps. For both
methods, the same Landsat image with p127/r036 on May 30,
2021, was used and classified into five land cover types using
three different methods, including the unsupervised K-means
clustering algorithm, classification and regression tree (CART)
algorithm and RF algorithm. For the CART and RF supervised
algorithms, two sets of training samples were used: manually
selected training samples and randomly generated samples.
Therefore, including the FROM-GLC land cover map, six land
cover maps were available for both the RFR and MLR methods.

For the RFR method, the FROM-GLC land cover map was
used as the benchmark land cover map. Using the benchmark
land cover map as ground truth, the accuracy of the other five
land cover maps ranged from 53% to 82%, as given in Table II. To
maintain the same study area as the enhanced scaling method,
the training samples for the RFR on the Landsat image with
p127/r036 were selected from the entire set of training samples.
Each land cover map was used to update the land cover types of
the selected samples.

For the enhanced scaling method, the land cover map previ-
ously derived using the unsupervised K-means clustering algo-
rithm was used as the benchmark land cover map. The accuracy
of the other five land cover maps ranged from 53% to 91%, as
given in Table II.

For both methods, each land cover map was used as input to
generate a new FPAR image. The FPAR image corresponding to
the benchmark land cover map was used as the benchmark FPAR
image to evaluate the other FPAR images. The statistical metrics,
including RMSE, MAE, and R?, were computed for the respec-
tive pairs of FPAR images estimated using the different land
cover maps. The magnitude of the difference in FPAR (OFPAR)
between the new and benchmark FPAR images was examined.

Table II compares the FPAR images using the different land
cover maps. The table data show that large discrepancies ex-
isted between different land cover maps, as the overall Kappa
coefficients between the respective pairs of land cover maps
varied from 0.43 to 0.87. Generally, the differences in FPAR
were small for both the RFR and enhanced scaling methods,
with RMSE ranging from 0.034 to 0.037 and from 0.025 to
0.038, respectively. The R? values exceeded 0.966 for all cases,
indicating strong correlations between the different FPAR im-
ages using different land cover maps. The pixels with 0FPAR
< 0.05 occupied more than 89.98% in the results of the RFR
and 91.04% in the results of the enhanced scaling method. All
these statistics reveal that the different land cover maps would
result in limited differences in FPAR retrievals for both the RFR
and enhanced scaling methods. Moreover, the differences in the
FPAR images are positively related to the consistencies between
the respective pairs of land cover maps. For example, in cases 4,
8,and 9, the land cover maps with an overall accuracy exceeding
80% resulted in very low RMSE values between the respective
pairs of FPAR images.

The results of the enhanced scaling method were generally
more accurate than those of RFR, while case 10 using the
FROM-GLC land cover map in the enhanced scaling method
is an exception that derived the lowest accuracy. This indicates
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TABLE II
COMPARISON BETWEEN FPAR USING THE DIFFERENT LAND COVER MAPS

Random forest regression

Enhanced scaling method

Information Casel Case2 Case3 Case4

Land cover map
Training samples

Manually selected Randomly selected

Case5
Compared to the benchmark land cover map(FROM-GLC)

Case6 Case7 Case8 Case9 Casel0
Compared to the benchmark land cover map(K-means)
Manually selected Randomly selected

Classification Cart RF Cart RF K-means  Cart RF Cart RF FROM-GLC
Overall accuracy 57% 61% 75% 82% 53% 59% 64% 88% 91% 53%
Kappa Coefficient 0.45 0.48 0.66 0.79 0.43 0.47 0.54 0.84 0.87 0.43
FPAR images compared to the benchmark FPAR image
MAE 0.021 0.021 0.018 0.017 0.022 0.015 0.014 0.012 0.011 0.023
RMSE 0.037 0.035 0.034 0.035 0.037 0.029 0.029 0.025 0.028 0.038
R2 0.972 0.986 0.976 0.972 0.970 0.980 0.980 0.984 0.980 0.966
Area ratio(%)
OFPAR=0 30.56 31.07 38.26 39.11 24.61 41.32 44.42 45.65 54.23 21.98
0<FPAR<0.05 59.99 58.91 52.57 51.32 65.61 51.60 48.25 49.21 40.29 69.06
0.05<FPAR<0.1 5.39 6.56 5.72 5.23 5.77 5.59 5.54 4.11 3.82 6.29
OFPAR >0.1 4.05 3.46 3.45 4.34 4.01 1.50 1.79 1.04 1.66 2.67
500 ——RFR MO TN AE=0.063 L0 AE=0.061
— MIR RMSE=0.096 RMSE=0.083
400 e 081 R2=0.891 9| e 081 R=0.858 0
” < <
£300 & os & os
= 200 3 0.4 g 0.4
- U = 0.
! g
100 0.2 02
% 100 200 300 400 500 0.0 0.0
Number of images 0.0 02 04 06 08 10 0.0 02 04 06 08 10
MODIS FPAR MODIS FPAR
Fig. 11.  Computation time varying with the number of Landsat images to be (@) (b)
estimated. 1.0
MAE = 0.049 //
o 0.8} RMSE =0.063 5
h . . <€ R?=0.720 0008,
that the use of a different land cover map from a different date A 0.6 832G
can significantly reduce the accuracy of the enhanced scaling % ’ g/fj o
method. 2 0.4 et
g %
=02 g
B. Computation Efficiency /
. 0.
Both the RFR and enhanced scaling methods were automated 80 02 04 06 08 10
and streamlined on the GEE, and their computation efficiency In situ FPAR measurments
was further investigated. Fig. 11 compares the computation time ©)
for predicting varying numbers of images using the RFR and en- Fig. 12.  Validation of the Landsat FPAR retrievals using the existing scaling

hanced scaling methods. For the RFR method, the input images
for training were kept the same as in Section III-B, and the time
for predicting different numbers of images was recorded. The
time used by the RFR includes the time for screening samples,
training the model, and estimating the FPAR for new images. As
shown in Fig. 11, the RFR used 100 min for screening samples,
while it used a half minute for estimating the FPAR for one
Landsat image. For the MLR-based enhanced scaling method,
the processes of sample screening, MLR training, and FPAR
estimation are completed on one single pair of MODIS-Landsat
images, which in all took 1 min. Thus, the time used by the RFR
and enhanced scaling method was equal when predicting ap-
proximately 200 images. This offers us insights into choosing an
optimal method. MLR-based enhanced scaling is highly efficient
for predicting fewer images, while RFR is optimal for predicting
large numbers of images. However, although both methods were
implemented on the GEE, the enhanced scaling method is more
automated than the RFR by excluding all human interference.

method. Comparison with the MODIS FPAR for (a) homogeneous pixels and
(b) heterogeneous pixels. (¢c) Comparison with the in situ FPAR measurements.

In contrast, the sample balancing in the RFR requires an overall
analysis of the screened samples to decide whether and how the
samples are balanced. The time of this process was not included
in the comparisons above.

C. Improvement Over the Scaling Method

To validate the improvements over the existing scaling
method, the results of the existing scaling method were also
compared with the MODIS FPAR for the entire validation
period and with the in situ FPAR measurements, as shown
in Fig. 12. It clearly shows that the existing scaling method
significantly underestimated FPAR for densely vegetated pixels
with FPAR>0.75 compared with MODIS FPAR and in situ
FPAR measurements. The Landsat FPAR retrievals from the
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existing scaling method were less consistent with the MODIS
FPAR and less accurate than the enhanced scaling method.

D. Advantages and Disadvantages of Both Methods

Both the RFR and enhanced scaling methods have been
successfully applied to FPAR estimation on the GEE, while
both methods have their advantages and disadvantages. Both
the RFR and enhanced scaling methods can inherit the high
accuracy and wide applicability of the main algorithm of the
MODIS FPAR product and are easily automated on the cloud
computing platform.

To increase the representativeness of the FPAR-reflectance
relations in the MODIS FPAR products, both the RFR and MLR
methods used high-quality FPAR retrievals over homogeneous
MODIS pixels and involved an outlier removal process. The
difference is that the sample screening in the RFR is more
rigorous and complex. First, the RFR adopted a higher standard
(e.g., a lower CV threshold) for homogeneous MODIS pixels
because the nonlinear RFR algorithm built over heterogeneous
MODIS pixels cannot be applied to Landsat pixels due to
scale effects [21], [22]. Second, the proposed 3o-based out-
lier removal method in the enhanced scaling method is less
rigorous. In our experiments, the 30-based method removed
fewer outliers than the IQR method in the RFR method. In
statistical learning models, a few outliers within the samples
can enhance the generalization ability of the model [31]. Third,
the RFR involved two additional processes of sample balancing
and saturation screening because an unbalanced sample set and
spectral similarities between saturated and unsaturated samples
would undermine the skill of the RFR [19], [47]. In contrast, as a
linear algorithm, the enhanced scaling method used self-adaptive
CV thresholds to define homogeneous MODIS pixels, which can
capture the major within-class spatial variations and seasonal
variations. A weighted MLR procedure was proposed to increase
the representativeness of densely vegetated samples.

To analyze the effect of sample screening on the RFR, we
took a subarea covering the Landsat scene p127/r036 and used
the sample screened by the enhanced scaling method to train the
RFR. A total of 323362 training samples were screened from
the 5 Landsat images from 2019 to 2020 using the samples
screened by the enhanced scaling method, which is much more
than the 124 509 samples screened by the RFR method. The
trained RFR models were used to estimate Landsat FPAR images
from 2020 to 2021, and the results were shown in Fig. 13.
Compared to the results of the previously trained RFR, using
the samples screened by the enhanced scaling method slightly
improved the values of RMSE and R? for the RFR, while the
overestimation of low FPAR values and the underestimation of
high FPAR values were even more significant. This indicates that
the sample screening strategy in the enhanced scaling method
does not improve the performance of the RFR, which may be
attributed to the following reasons.

First, sample balancing and saturation screening are important
for the RFR to achieve optimal accuracy [19], but are not in-
cluded in the enhanced scaling method. The sample set screened
by the enhanced scaling method generally has a much larger size
and a higher proportion of unsaturated samples (i.e., 50% and
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Fig. 13. 2D density contour of MODIS FPAR versus Landsat FPAR retrievals
from the RFR using samples screened (a) by the RFR and (b) by the enhanced
scaling method for estimating Landsat FPAR images (p127/r036) from 2020 to
2021.

65% for the RFR and enhanced scaling method for the woodland,
respectively), which improves the overall prediction accuracy
but does not improve the underestimation of high FPAR values.

Second, the definition of homogeneous MODIS pixels is
more rigorous in the RFR than in the enhanced scaling method.
Consequently, many samples screened by the enhanced scaling
method have larger subpixel spatial variations, particularly for
densely vegetated areas, where scale effects possibly occur [21],
[22] and undermine the performance of the RFR.

Third, the algorithm design might be a major cause for the
prediction bias in the RFR method. The RFR averages the
predictions of all candidate decision trees as the final output,
which tends to produce a moderate value instead of a very
high or a very low value [48], [49]. Previous studies found
similar biases for low and high values in downscaling LST
satellite products and attempted to correct the residuals using the
coarse-resolution product [50], [51]. However, such correction
is performed at coarse resolution, thereby causing a block effect
in the fine-resolution images, and was not considered in this
article.

Therefore, the enhanced scaling method is even simpler, more
accurate, and less sensitive to the training samples than the RFR
method based on better representation of FPAR-reflectance rela-
tions in densely vegetated areas. The enhanced scaling method is
more ready-to-use for requiring only one pair of MODIS FPAR
and Landsat images, yet the FPAR-reflectance relations trained
from one image pair can only apply to the image pair observed at
similar SZAs. In contrast, the RFR requires many input images
to cover various dates, locations, SZAs and land cover types
to model the complex FPAR-reflectance relations. The major
strength of the RFR method is that once built, it can quickly es-
timate fine-resolution FPAR from satellite images, while the ma-
jor limitations include prediction biases and higher requirements
for training samples. In practical applications when MODIS
FPAR values are poorly retrieved on some dates, the RFR can
still work, while enhanced scaling can use the MODIS FPAR
data at adjacent dates in the same year or similar dates in another
year as alternatives to establish the FPAR-reflectance relations.

Therefore, for a specific application, the choice of an optimal
method depends on a series of factors. The enhanced scaling
method is more ready-to-use with fewer requirements on input
data, higher accuracy, and a higher degree of automation, while
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the RFR method is suitable for continuous estimation of FPAR
for hundreds of images in the same study area.

In

VI. CONCLUSION

this article, we developed an enhanced scaling method that

integrates an outlier removal procedure and a method for weight-
ing the samples in the MLR for operational fine-resolution FPAR
estimation using the MODIS FPAR product as a reference. The

prop
was

osed enhanced scaling method based on weighted MLR
compared to the RFR method on the GEE for regional

application in the large Guanzhong area for predicting Landsat
FPAR images for one entire year from September 2020 to August
2021. The main conclusions can be drawn as follows.

1)

2)

3)

(1]

[2]

(3]

[4]

[3]

(6]

(71

Both the enhanced scaling method and RFR method
generate MODIS-consistent and spatially consistent fine-
resolution FPAR. The RFR method overestimated low
FPAR values and underestimated high FPAR values,
while the enhanced scaling method outperformed the RFR
method. In particular, the underestimation of high FPAR
values for densely vegetated pixels was significantly im-
proved in the enhanced scaling method.

Both the enhanced scaling method and RFR method were
validated with in situ FPAR measurements. The enhanced
scaling method performed better than the RFR method,
particularly for densely vegetated pixels. Overall RMSE
values of 0.049 and 0.046 and overall R? values of 0.685
and 0.768 were attained for the RFR and enhanced scaling
methods, respectively.

The enhanced scaling method is less sensitive to the train-
ing samples, while the RFR method has a higher degree
of reliance on the training samples. The enhanced scaling
method is easier to implement with a minimum require-
ment of one pair of MODIS-Landsat images and is more
accurate than the RFR method over both homogeneous
and heterogeneous pixels.
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