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PCL–PTD Net: Parallel Cross-Learning-Based Pixel
Transferred Deconvolutional Network for Building
Extraction in Dense Building Areas With Shadow

Wuttichai Boonpook , Yumin Tan , Kritanai Torsri , Patcharin Kamsing, Peerapong Torteeka,
and Attawut Nardkulpat

Abstract—Urban building segmentation from remote sensed im-
ageries is challenging because there usually exists a variety of
building features. Furthermore, very high spatial resolution im-
agery can provide many details of the urban building, such as
styles, small gaps among buildings, building shadows, etc. Hence,
satisfactory accuracy in detecting and extracting urban features
from highly detailed images still remains. Deep learning semantic
segmentation using baseline networks works well on building ex-
traction; however, their ability in building extraction in shadows
area, unclear building feature, and narrow gaps among buildings in
dense building zone is still limited. In this article, we propose paral-
lel cross-learning-based pixel transferred deconvolutional network
(PCL–PTD net), and then is used to segment urban buildings from
aerial photographs. The proposed method is evaluated and inter-
compared with traditional baseline networks. In PCL–PTD net, it
is composed of parallel network, cross-learning functions, residual
unit in encoder part, and PTD in decoder part. The performance is
applied to three datasets (Inria aerial dataset, international society
for photogrammetry and remote sensing Potsdam dataset, and UAV
building dataset), to evaluate its accuracy and robustness. As a re-
sult, we found that PCL–PTD net can improve learning capacities of
the supervised learning model in differentiating buildings in dense
area and extracting buildings covered by shadows. As compared
to the baseline networks, we found that proposed network shows
superior performance compared to all eight networks (SegNet,
U-net, pyramid scene parsing network, PixelDCL, DeeplabV3+,
U-Net++, context feature enhancement networ, and improved
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ResU-Net). The experiments on three datasets also demonstrate
the ability of proposed framework and indicating its performance.

Index Terms—Building extraction, building shadow, dense
building, PCL–PTD net, semantic segmentation.

I. INTRODUCTION

ACCURATE and up-to-date building information is es-
sential for urban analysis and management [1], and it

can be obtained from pixel-based classification [2] or semantic
segmentation [3] in remote sensing images. Typically, pixel-
based classifying with low to medium spatial resolution of
imagery is widely used and can provide reasonable results
[4]. Deep-learning (DL)-based semantic segmentation methods
could extract buildings by learning object features and patterns
in high spatial resolution imagery [5]. However, there are still
some challenging problems in extracting urban buildings from
high spatial resolution imagery where there are many details of
features, such as, tall buildings, and narrow gaps and shadows
between buildings making building boundary unclear, leading
to unsatisfactory accuracy of building extraction.

In recent years, numerous studies have used DL techniques
and semantic segmentation has become a popular method [6].
Many studies have demonstrated that the DL could yield highly
accurate segmentation [7]. The main part of a DL algorithm
is network architecture embedded in the system that functions
in cultivating features and patterns of objects by convolutional
methods and learns multidimensional data by pooling methods
[8]. Various novel functions had been proposed to improve the
learning abilities, for example, astrous convolution [9], residual
learning [10], bottleneck module [11], PixelDCL function [12],
attention refinement module [13], Shufflenet unit [14], channel
and position attention module [15], etc. These functions are used
as parts in many networks for semantic segmentation, such as
fully convolutional network [16], DeconvNet [17], U-Net [18],
SegNet [19], pyramid scene parsing network (PSPnet) [20],
Deeplab [9], and so on. Some of these networks are proposed to
accurately extract buildings from remote sensing images. The
complexity of building shapes as well as the variety of building
features are hot topics in DL-based semantic segmentation.
Luo et al. [21] presented a comprehensive review on DL-based
building extraction from remote sensing images. In addition, Lin
et al. [22] proposed ESFNet to reduce the computational cost
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and memory consumption. Ding et al. [23] presented a spatial
pyramid pooling module based on the LinkNet architecture to
learn various building features. Chen et al. [24] evaluated the
Res2-Unet to enhance its efficiency of small building extraction
and confusing background objects. Lei et al. [25] performed
Selective Nonlocal ResUNeXt++ (SNLRUX++) to increase
the performance of building extraction tasks on high-resolution
remote sensing images. Kang et. [26] proposed a novel network
(PiCoCo) which comprises pulling intraclass and separating in-
terclass representations in latent space, and imposing the predic-
tion consistency of the model in different augmented unlabeled
data for semi-supervised learning building segments with lim-
ited data annotations. Wang and Miao [27] demonstrated resid-
ual U-Net (RU-Net) architecture to extract the building. The net-
work comprises U-Net architecture, residual learning, and atrous
spatial pyramid pooling. Its performance overcomes the sharp,
boundary, and multiscale information of the building on remote
sensing imagery. Later, Sheikh et al. [28] presented improved
ResU-Net (IRU-Net) architecture which integrating spatial pyra-
mid pooling module, atrous convolution, residual connection,
and skip connection for building extraction. Chen et al. [29]
proposed the context feature enhancement network (CFENet)
that comprises the spatial fusion module, the focus enhance-
ment module, and the feature decoder module to overcome the
complexity and diversity of buildings. For building boundary ex-
traction, Wu et al. [30] introduced a BR-Net to overcome errors
from roof segmentation and outline extraction. Yang et al. [31]
demonstrated an end-to-end edge-aware network (EANet) to ex-
tract building boundary. For boundary constraint, Wei et al. [32]
investigated an automatic building footprint extraction method,
and Liu et al. [33] developed a trainable chain fully convolutional
neural network in order to fuse ortho images and digital surface
model (DSM) in building extraction. The above proposed archi-
tectures not only present high accuracy in building segmentation,
but also reduce computational parameters and increase learning
capacity.

However, building extraction in highly dense urban areas
with heavy shadows caused by tall buildings and complex
building features is still a challenge for semantic segmenta-
tion. Thus, the objective of this article focuses on the build-
ing extraction in shadows area, unclear building feature, and
narrow gaps among buildings. The main contribution is to
propose an adjustment network architecture as called PCL–
PTD net, which comprises a parallel network, cross learning,
residual unit, and pixel transferred deconvolution, to increase
learning features capability over dense urban zone. The per-
formance of proposed the PCL–PTD network is further de-
signed to evaluate on remote sensing datasets [Inria aerial
dataset, international society for photogrammetry and remote
sensing (ISPRS) Potsdam dataset, and UAV building dataset]
and intercompared with several traditional baseline network
architectures and adjustment network architectures. After the
introduction, methodology is described in Section II, followed
by experiment designs and analysis in Section III. Then, dis-
cussion and conclusion are presented in Sections IV and V,
respectively.

Fig. 1. Parallel deep convolutional network.

II. METHODOLOGY

As aforementioned, the proposed semantic segmentation net-
work is based on a parallel cross-learning-based pixel trans-
ferred deconvolutional network (PCL–PTD) that comprises of
a parallel convolutional network, residual block, cross-learning,
pixel transferred deconvolution, and adjusted encoder and de-
coder networks. Details of each PCL–PTD net’s component are
described below.

A. Parallel Deep Convolutional Networks

The parallel convolutional networks comprise two deep con-
volutional networks. Each network performs 12 convolution
layers to produce a set of feature maps and 4 max pooling
methods to calculate translation invariances over small spatial
shifts with 4-unit levels. It helps the model to learn multidimen-
sional features from low to high levels. The numbers of filter
banks are 32, 64, 128, and 256 at each stage level separately,
as shown in Fig. 1. The increasing number of filter banks is
for expanding learning capacity on feature maps to detect and
extract target features. To learn object features, the first network
(top) applies a receptive field with kernel size of 5 × 5 and
the second network (bottom) is convoluted with a 3 × 3 kernel
size to local operations. These multiple receptive fields can
recognize features in different perspectives. Furthermore, we
know Max-pooling operations could change feature maps into
small translation features. A residual block is introduced to the
networks and its operation is described in subsection B.

B. Residual Block

The residual block aims to solve degradation problems and
expand feature maps. There are two steps in this process. First is
to process the residual framework by adding a skip connection
(x) from top layer to bottom layer in a convolutional block F(x).
It optimizes residual learning when data are fed layer by layer.
Second is to concatenate two sets of feature maps derived from
previous layer H(x) and cross layer N(x), as shown in Fig. 2.
This concatenation increases the number of feature maps and
enlarges the learning capacity of features.
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Fig. 2. Residual block.

Fig. 3. Cross-learning framework: (a) cross learning and (b) transfer learning.

C. Cross-Learning Framework

This cross-learning framework consists of interconnected net-
works in order to transfer learning features, and it has two types:
cross-learning encoder network and cross-learning between
encoder–decoder network, as shown in Fig. 3. Fig. 3(a) shows the
architecture of a cross-learning encoder network, which shared
features map between parallel tracks of convolution layers. In
this step, feature maps of the last convolution layer in each unit
level transfer to the residual block located in opposite track to
concatenate with other sets of feature maps. Fig. 3(b) illustrates
a transfer learning framework, which implements cross-learning
between encoder–decoder network, and we can see it builds
direct relationships between encoder to decoder parts in order to
solve checkerboard problems and deal with spatial features with
edges and shapes suffered from regular convolution operations.
Outputs of the residual block from parallel tracks will be sent to
the upsampling function to shuffle the feature maps in encoder
part, and then they will be combined in a deconvolutional
operation of decoder part.

Fig. 4. Pixel transferred deconvolution.

D. Pixel Transferred Deconvolution

This proposed PCL–PTD net takes advantages of pixel de-
convolution and transfer learning methods in order to unsampled
the size of feature maps. Since simple deconvolution methods
may cause checkerboard artifacts over the upsampled features
map, which will produce inaccurate object features, edges, or
shapes. Thus, the combination of pixel transferred deconvolution
is proposed to take the benefits of feature relationship between
encoder and decoder in maintaining spatial features suffered
from periodical shuffling operations. This pixel transferred de-
convolution method generates an up-sampled feature map, as
shows in Fig. 4. In the process, a feature map with 1 × 1-unit
pixel is upsampled to a feature map with 2 × 2-unit pixels. The
transfer learning from convolutional layer in parallel encoder
networks is applied to build direct relationships among encoder
and decoder networks. The upsample processing uses values
from transfer learnings and previous convolutional layers to add
dependencies among indices (11), (22) and unit pixels (12), (21)
in feature map, respectively.

E. Parallel Cross-Learning Based and Pixel Transferred
Deconvolutional Network

The PCL–PTD aims to improve learning capacity of semantic
segmentation on remote sensing images, as shown in Fig. 5.
This network inherits the depth of convolutional neural network
to detect and extract the various pattern features of object by
generating invariant and abstract feature maps. The encoder part
provides learning abilities on feature map(s), which takes advan-
tage of the parallel deep convolutional network, residual block,
and cross-learning framework. A corresponding decoder part
upsamples feature map(s) into proper size that applies to transfer
learning and pixel deconvolutional layer, as shown in Fig. 4.
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Fig. 5. Cross-learning-based and pixel transferred deconvolutional network.

The encoder part comprises parallel deep convolutional net-
works, which includes 24 convolutional layers, 6 max-pooling
layers, and 8 residual blocks. The first layer feeds input data,
which consists of three feature bands (red, green, and blue) with
a size of 480 × 360 pixels to parallel networks. These networks
have attractive properties to learn interesting patterns from Seg-
Net network. The structure creates parallel learning and sharing
features. Each network is convoluted by sets of filter banks from
low-level to high-level features to generate smooth learning and
various features. The top network has 12 convolutional layers
with a 3× 3 filtering kernel, 3 max-pooling layers, and 4 residual
blocks. The bottom network is with the same structure as the top
network, but the convolutional operation is applied with a 5 × 5
filtering kernel. The larger filtering kernels or receptive fields can
increase the computation of its statistical efficiency in learning
object features. In addition, there are 4-unit levels in encoder
networks to generate feature maps in various perspectives in
different spatial resolution. A unit level includes three convolu-
tion layers and a residual block, which has the cross-learning and
residual unit methods. The residual block expands the learning
feature maps by sharing a set of features between the networks,
and it solves the degrading features from convolution method
by skip connection. In detail, the third convolutional layer in
each unit level is shared to a residual block in another network.
The residual unit is implemented to each unit level by using
skip connection from the first convolutional layer to the residual
block. The output of residual block is fed to the next layer and
pixel transferred deconvolution layer is located in decoder part.
Then, the set of feature maps are fed to Max-pooling operation,
which reduces the feature map resolution by a kernel with size
of 2 × 2. It reduces the memory requirements of the model in
storing the parameters and adds an infinitely strong capacity
prior to learning small translations over object features. As a
part of the decoder process, the last layers of parallel networks
pass through the first pixel transferred deconvolution layer. This
unsampled layer is to expand the feature map resolution with
a factor of 2. In the adjustment process, the operation builds

relationship with previous layer and corresponding layer in
encoder part. It upsamples the feature map by adding a unit value
from top network with kernel indices (21), (12) and a unit value
from bottom network with kernel indices (11), (22). The output
is then sent to the next convolution network. Furthermore, the
second pixel transferred deconvolution layer upsamples feature
maps and fills the unit values from residual block in top network
to kernel index (12), the unit value from residual block in bottom
network to kernel index (21), and the unit value from previ-
ous convolutional layer to kernel indices (11), (22). Thus, this
decoder part consists of three pixel transferred deconvolution
layers and five convolutional layers. Last, the feature maps
are fed to a soft-max classifier to produce class probabilities.
In total, this network architecture comprises 29 convolutional
layers, 6 max-pooling layers, 8 residual blocks, 3 PTD layers,
and 1 soft-max layer for building extraction on very high spatial
resolution images.

F. Training

This adjustment network architecture is placed in supervised
learning model for DL semantic segmentation. It is implemented
based on four algorithms to achieve segmentation accuracy.
The model optimizes the weight training in convolution layers
by stochastic gradient descent in backpropagation algorithm.
Hyperparameters including adaptive learning rates, momentum,
and weight decay parameters are set to 0.001, 0.9, and 0.0005,
respectively. The maximum round of iteration is defined as 100
000 times. The step size of learning is set to every 50 iterations
with a factor of 10. To prevent modeling errors in statistics
(overfitting or underfitting), batch normalization and dropout
functions are introduced to the model. The cost function is set
by early step techniques and L2 regularized logistic regres-
sion. This DL algorithm is implemented by TensorFlow with
python on a PC with CPU of Intel Core i7 (3.4 GHz), RAM of
48 GB, and GPU NVIDIA GeForce RTXTM 3060 Ti with 8 GB
memory.
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G. Evaluation Metrics

To evaluate the performance of supervised learning model,
some quantitative accuracy metrics have been introduced to
assess the learning procedure with evaluation and test datasets.
Accuracy assessment is conducted in two steps. The first is
to assess the learning procedure during its iterations with an
evaluation dataset, and the second is to evaluate the performance
of supervised learning model with a test dataset. The quantitative
metrics used are overall accuracy (OA), mean intersection over
union (mIoU), precision, recall, and per class IoU, as described
below.

OA calculates the percentage of properly classified pixels
[true positive (TP) and true negative (TN)] in the total number
of pixels [TP, TN, false positive (FP), and false negative (FN)]
as follows:

OA =
TP + TN

TP + TN+ FP + FN
. (1)

mIoU calculates the average IoU of all classes. The intersec-
tion over union (IoU) or the Jaccard index evaluates the ratio
of intersection between all correctly classified pixels (TP) and
the union of all correctly classified pixels (TP) and all falsely
classified pixels (FP + FN), as follows:

mIoU = J (A,B) =
|A ∩B|
|A ∪B| =

TP
TP + FP + FN

. (2)

Precision is calculated by the ratio of TP to the sum of a TP
and FP, as follows:

Precision =
TP

TP + FP
. (3)

Recall is expressed by the ratio of TP to the sum of a TP and
FN, as follows:

Recall =
TP

TP + FN
. (4)

IoU or the Jaccard index computes the ratio of the intersection
value (the number of TPs) to the union value (the sum of FPs,
FNs, and TPs), as follows:

IoU =
TP

TP + FP + FN
. (5)

III. EXPERIMENTS AND ANALYSIS

To verify the performance of building segmentation from
remote sensing imagery, this article conducted the ablation
experiment based on six proposed functions as described in
Experiment 1. The adjustment network architectures, which
were added on each proposed function, were evaluated on
three different datasets: Inria aerial dataset, ISPRS Potsdam
dataset, and UAV building dataset. Furthermore, the PCL–PTD
net is compared with other state-of-the-art networks and ad-
justment networks, such as SegNet, U-Net, PSPnet, PixelDCL,
DeeplabV3+, U-Net++, CFENet, and IRU-Net, to evaluate
its effectiveness in building segmentation as demonstrated in
Experiment 2–4. All experiments are computed based on six
evaluation metrics: OA, mIoU, per class IoU, Precision, and
Recall.

Fig. 6. Sample images from Inria aerial dataset: Upper is RGB images and
lower is labeled images (white areas are buildings and black areas are nonbuild-
ing).

TABLE I
NUMBER OF SAMPLES FOR TRAINING, VALIDATING, AND TESTING FROM INRIA

AERIAL DATASET

A. Experiment 1: Ablation Experiments of Proposed
Functions on the Inria Aerial Dataset

Inria aerial image labeling dataset is an open dataset released
by [34]. It is generated from aerial photographs with very high
spatial resolution captured over the USA and Austria. This
dataset shows very dense and high building structures in Austin
(TX), Chicago (IL), Kitsap County (WA), Tyrol, and Vienna.
Fig. 6 presents samples of aerial photographs in this dataset:
RGB orthoimages and labeled images with spatial resolution
of 30 cm. There are 24 densely annotated image tiles with the
original image size is 6000 × 6000 pixels. A total of 18 tiles are
used for training, with 20% of training images being randomly
selected for validating set. The other six tiles are used for testing.
Every image is cropped into small pieces with an image size
of 480 × 360 pixels. The annotated images have two classes:
building and nonbuilding. The total numbers of image patches
from Inria aerial dataset are provided in Table I.

This ablation experiment illustrates the improvement of build-
ing extraction over Inria aerial dataset. The network architectures
are adjusted by the proposed functions including SegNet-based
network, parallel network, cross-learning function, residual unit
function, pixel deconvolution function, and pixel transferred de-
convolution function. The performance of ablation experiments
is listed in Table II. The quantitative comparisons of the adjust-
ment network show that these networks can accurately detect
and extract the buildings over remote sensing data. The SegNet
based network (EX1) performs well in building extraction with
86.43% of OA and 72.90 of mIoU. When the SegNet-based
network adds residual unit function (EX2) to solve degradation
problems. The performance of building extraction increases to
86.89% of OA and 73.10% of mIoU. The pixel deconvolution
function proposed to decoder part (EX3) in order to make direct
relationship in adjacent pixels to perform upsampling feature
maps. It can improve the performance of building extraction with
87.43% of OA and 73.76% of mIoU. Then, the pixel transferred
deconvolution function is applied to the network (EX4) to solve
the checkerboard artifacts. It can increase OA up to 87.77%
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TABLE II
ABLATION EXPERIMENTS ON INRIA AERIAL DATASET

and 73.89% of mIoU. However, the SegNet-based network adds
only pixel deconvolution function (EX5). The performance of
OA drops to 87.02% of OA and 73.28% of mIoU. When the
network in EX5 compounds pixel transferred deconvolution
function (EX6), it can improve the accuracy up to 87.67% of OA
and 74.01% of mIoU. Furthermore, parallel network inspired
by SegNet based (EX7), which expands learning capacity from
multiple receptive fields, shows better performance of building
extraction. It has 88.89% of OA and 77.80% of mIoU. When
parallel network applies the residual unit function (EX8). The
performance presents a little improvement with 88.91% of OA
and 77.78% of mIoU. The integrated network (EX9) of SegNet-
based network, parallel network, residual unit function, and pixel
deconvolution function shows good performance on building
extraction with 89.03% of OA and 77.97% of mIoU. When pre-
vious network applies pixel transferred deconvolution function
in decoder part (EX10), the model illustrates the improvement
of OA up to 90.87% and 83.65%. Moreover, the improvement
of encoder part presents the combinations of SegNet-based
network, parallel network, and cross-learning function (EX11).
The performance is about 88.38% of OA and 76.80% of mIoU.
When the previous model (EX11) adds the residual unit function
(EX12), the OA and mIoU increase to 89.39% and 78.80%,
respectively. The improvement of the network by adding pixel
deconvolution function (EX13) shows better performance with
91.92% of OA and 83.80% of mIoU. Last, with our proposed
network (PCL–PTD net), the combination of six proposed func-
tions (EX14) presents the highest OA and mIoU with 92.93%
and 85.90% and outperforms other adjustment networks (EX
1–EX13). It shows that the integrated functions yield advantages
in learning ability in order to segment the buildings over remote
sensing data.

B. Experiment 2: Quantitative and Qualitative Results on the
Inria Aerial Dataset

This experiment is to evaluate the improvement of the
proposed PCL–PTD net, when the adjustment networks are
added on each function for extracting buildings in dense urban

areas with building shadows and unclear building features.
Table III lists results of accuracy assessment and Fig. 7 shows
the segmentation results of experiment 2. The baseline SegNet
network presents an accuracy result with 86.43% of OA and
72.9% of mIoU. The segmented building by SegNet illustrates
that the network can segment building accurately, but it does
not work well in dense building area, as shown in Fig. 7
(EX1). The parallel SegNet-based network achieves a very
good segmentation accuracy with 88.89% of OA and 77.8% of
mIoU, and it also shows that parallel network can learn complex
features in dense building area, but it introduces segmentation
errors in shadow area, as shown in Fig. 7 (EX2). Furthermore,
cross-learning function is applied to parallel network in order
to share learning ability between networks, but this network
(EX3) shows worse performance than previous network (EX2),
as listed in Table III, with only a little better result in per
class IoU (building). The improvement of parallel network and
cross-learning by adding residual unit function works better
with 89.39% of OA and 78.8% of mIoU in building extraction,
as shown in Fig. 7 (EX4). It can be seen that dense buildings are
segmented in a fairly accurate way, but it presents some errors
in areas with unclear building features and shadows. Then a
PixelDCL function is applied to the decoder part, where parallel
network, cross-learning, and residual unit are implemented in
encoder part. This function outputs upsampled feature map and
could solve checkerboard artifacts. This adjusted network (EX5)
presents an increase in accuracy with 89.39% of OA and 78.8%
of mIoU. This network works fairly well in dealing with building
segmentation in dense building areas, and it also improves
building detection and extraction in shadow areas, as shown in
Fig. 7 (EX5). For our proposed adjustment network PCL–PTD
net, which consists of a parallel network, cross-learning,
residual unit, and pixel transferred deconvolution, it performs
best with 92.93% of OA and 85.9% of mIoU. The segmented
results (EX6) are accurate in dense building areas where gaps
among buildings are very small, as shown in Fig. 7 [EX6(a),
(b)], and building under shadows are extracted accurately, as
shown in Fig. 7 [EX6(c), (d)]. However, it also does not work
when buildings are totally covered by dark shadows.
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TABLE III
ACCURACY RESULT (%) OF COMPARATIVE MODEL ON INRIA AERIAL DATASET

Fig. 7. Segmentation results of comparative model on Inria aerial dataset.

TABLE IV
ACCURACY RESULT (%) OF PROPOSED NETWORK AND EIGHT COMPARATIVE

METHODS ON INRIA AERIAL DATASET

The quantitative and qualitative comparisons of the different
networks for the testing set is presented the performance of the
proposed network architecture (PCL–PTD net) with other six
baseline networks and two adjustment networks. Table IV lists
the accuracy results of all networks. Though all these networks
can detect and extract buildings with a fairly high accuracy,
as shown in Fig. 8(a), some networks show their weakness in
Fig. 8(b)–(d). To be specific to our proposed network, it could be
seen that the PCL–PTD net works well in dealing with building
extraction from so complex scenes with the highest accuracy.
The SegNet presents the lowest accuracy with 86.43% of OA
and 72.9% of mIoU in building extraction among the eight
networks. It can be used to detect and extract buildings on high

spatial resolution images, but it is weak in areas with dense
buildings shadows, as shown in Fig. 8 [SegNet(b)–(d)]. The
most commonly used network architecture, the U-Net, is with
a U-shaped encoder–decoder network architecture, and shows
better performance with 88.38% of OA and 76.8% of mIoU.
This network can work well in extracting building shapes in
dense building areas, but it is weak in areas where buildings
are covered by shadows, as shown in Fig. 8 [U-Net(b)–(d)].
The performance of PSPnet, a global context aggregation by
pyramid pooling module in different region based, is higher than
the U-Net with 88.90% of OA and 77.8% of mIoU. Whereas,
its result in per class IoU is less accurate than that of the U-Net
network, as shown in Fig. 8 [PSPnet (b)–(d)]. The PixelDCL
architecture works well on building segmentation with 89.35%
of OA and 78.8% of mIoU, and it also presents better result
in per class IoU of building class with 90.01% accuracy. The
segmented result shows its good performance in detecting and
extracting buildings in dense building areas, but not in areas with
high buildings and shadows, as shown in Fig. 8 [PixelDCL(b)–
(d)]. The DeeplabV3+ is the latest version of DeepLab series
that comprises multiple atrous convolutional rates and aligned
Xception model. The performance has scored the best value
90.41% of OA and 79.01% of mIoU ahead of the PixelDCL.
The segmented images show an accurate of building segmen-
tation over the gaps among buildings and unclear building fea-
tures. However, it lacks in building shape and shadow building,
as shown in Fig. 8 [DeeplabV3+(a)–(d)]. The improvement
network, the U-Net++, is an essentially encoder and decoder
subnetwork, which is connected through a series of nested and
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Fig. 8. Segmentation results of comparative networks on Inria aerial dataset.

dense skip pathways. This network presents its performance with
88.89% of OA and 77.80 of mIoU that lower accuracy than the
DeeplabV3+, the PixelDCL, the PSPnet, respectively. The seg-
mentation results illustrate errors of building shape and narrow
gaps among buildings, as shown in Fig. 8 [U-Net++(b)–(d)].
For adjustment networks which designed for building extraction,
the context feature enhancement network, the CFENet [29], is
selected to this comparison. The performance is about 90.09%
of OA and 81.80 of mIoU, which is lower accuracy than the
DeeplabV3+ (0.32%), but higher than other state-of-the-art
networks. The segmented images show better results in building
shape. But it is an error in shadow buildings, as shown in
Fig. 8 [CFENet(c) and (d)]. Furthermore, the IRU-Net [28] is
integrating the residual learning and atrous spatial pyramid pool-
ing methods, skip connection for automatic building extraction.
This network achieves high accuracy with 91.92% of OA and
83.80% of mIoU. The model can detect the complex building
features and extract the building shape accurately, as shown
in Fig. 8 [IRU-Net(a) and (b)]. Its performance is claimed the
same as [27]. But the shadow area shows an error of building
extraction, as shown in Fig. 8 [IRU-Net(c) and (d)]. While our
proposed network architecture (PCL–PTD net) performs best
with 92.93% of OA and 84.3% of mIoU, together with 93.94%
of per class IoU in building class. Its segmentation outperforms
the other eight baseline networks in detecting and extracting
narrow gaps among buildings in dense buildings areas, as shown
in Fig. 8 [PCL-PTD net(b)]. Furthermore, it also works well
in segmenting buildings under shadows, as shown in Fig. 8
[PCL–PTD net(c)], as well as in dense areas with tall buildings,
as shown in Fig. 8 [PCL–PTD net(d)].

C. Experiment 3: Quantitative and Qualitative Results on the
ISPRS Potsdam Dataset

The ISPRS Potsdam dataset is an open dataset provided by
the commission III of ISPRS, which is available online [35]. It is
a very high-resolution aerial photograph with spatial resolution
of 5 cm. The images captured over the Potsdam city in Germany,
where there are the dense settlement structures. The dataset
consists of 36 images tiles, while 30 tiles were used for training
set, 20% of training set were randomly selected for validating

Fig. 9. Sample images from ISPRS Potsdam dataset: Upper is RGB images
and lower is labeled images (white areas are buildings and black areas are
nonbuilding).

TABLE V
NUMBER OF SAMPLES FOR TRAINING, VALIDATING, AND TESTING FROM

ISPRS POTSDAM DATASET

set. The remaining six tiles were used for a testing set. An image
comprises 1500× 1500 pixels. The annotated image was labeled
into two classes: building and nonbuilding. Each image tile was
clipped and split to 480 × 360 pixels, as shown in Fig. 9. The
number of samples for training, validating, and testing from
ISPRS Potsdam dataset shown in Table V.

This dataset is to verify the performance of the proposed
PCL–PTDnet to detect and extract the building in high building
and building shadow. Table VI and Fig. 10 show the accu-
racy result and building segmentation over the ISPRS Potsdam
dataset. The EX1 shows its performance with 89.39% of OA
and 78.8% of mIoU. The segmentation results work well on
building segmentation, but it lacks in building shadow, as shown
in Fig. 10 [EX1(f)–(h)], and unclear building feature as shown
in Fig. 10 [EX1(f) and (h)]. EX2 works better than EX1 with
increasing 89.90% (+0.51%) of OA and 79.8% (+1%) of mIoU.
The results overcome the building shadow problem, as shown in
Fig. 10 [EX2(g) and (h)]. However, it worse in unclear building
features, as shown in Fig. 10 [EX2(f)]. Furthermore, the EX3
achieves high performance over the EX2 with 90.91% (+1.01%)
of OA and 81.8% (+2%) of mIoU. This adjustment network can
learn and segment unclear building features, as shown in Fig. 10
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TABLE VI
ACCURACY RESULT (%) OF COMPARATIVE MODEL ON ISPRS POTSDAM DATASET

Fig. 10. Segmentation results of comparative on ISPRS Potsdam dataset.

Fig. 11. Segmentation results of comparative networks on ISPRS Potsdam dataset.

[EX4(f)]. The EX4 outperforms the EX3 by 91.41% (+0.5%) of
OA and 82.8% (+1%) of mIoU. This experiment segments very
well in unclear building features, but it shows some errors in
the building shape, as shown in Fig. 10 [EX4(f)–(h)]. The EX5
improves 92.46% (+1.05%) of OA and 84.9% (2.1%) of mIoU
over The EX4. The network can segment the building accurately,
as shown in Fig. 10 [EX4(e)–(h)]. The EX6 overcomes the EX5
with 93.00% (+0.54%) of OA and 86.00% (+1.1%) of mIoU.
The EX6 also shows an increase of per class IoU in building
class with 92.03% over the EX1 (87.45%), the EX2 (87.98%),
the EX3 (88.56%), the EX4 (90.12%), and the EX5 (91.76%),

respectively. The proposed network can learn complex building
features, shadow building, narrow gaps among buildings, and
also segment the building in accurate shape as shown in Fig. 10
[EX6(e)–(h)].

To test the efficiency of PCL–PTDnet with baseline networks
and adjustment networks, the accuracy results show in Table VII
and segmented images show in Fig. 11. The standard encoder–
decoder network (SegNet) achieves their accuracy result with
84.85% of OA and 69.7% of mIoU. The SegNet architecture
can detect and extract the building over high resolution imagery
as shown in Fig. 11 [SegNet(e)–(h)]. However, this network
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TABLE VII
ACCURACY RESULT (%) OF PROPOSED NETWORK AND EIGHT COMPARATIVE

METHODS ON ISPRS POTSDAM DATASET

shows worse segmentation in unclear building features, building
shadow, and narrow gaps among buildings. The other baseline
networks show better performance with 86.87% of OA and
73.7% of mIoU in the U-Net, 85.86% of OA and 71.7% of
mIoU in the PSPnet, and 86.87% of OA and 73.7% of mIoU
in the PixelDCL. These network architectures can overcome
narrow gaps among buildings, as shown in Fig. 11 [U-Net(f)
and (h), PSPnet(f) and (h), and PixelDCL(f) and (h)]. However,
the U-Net and the PSPnet lacks to segment unclear building
features as shown in Fig. 11 [U-Net(e) and PSPnet(e)]. For the
improvement networks, the DeeplabV3+ and the U-Net++,
these networks work well on building segmentation in narrow
gaps among buildings and unclear building features with 88.89%
of OA and 77.8% of mIoU in the DeeplabV3+, and 87.88%
of OA and 75.8% of mIoU in the U-Net++, as shown in
Fig. 11 [DeeplabV3+(e), (f), and (h), U-Net++(e), (f), and
(h)]. Furthermore, the adjustment networks, the CFENet, and the
IRU-Net were designed for building extraction. Their accuracy
results are increasing up to 89.40% of OA and 78.8% of mIoU
in the CFENet, and 87.88% of OA and 75.8% of mIoU in
the IRU-Net. This network can segment shadow building, but
it shows some errors on unclear building features, as shown
in Fig. 11 [CFENet(e) and (g) and IRU-Net(e) and (g)]. Our
proposed network architecture, the PCL–PTDnet, outperforms
other network architectures with 89.90% of OA and 79.8% of
mIoU. It shows the highest performance at 90.78% in per class
IoU in building class than the SegNet (85.22%), the U-Net
(87.01%), the PSPnet (86.68%), the U-Net++ (86.76%), the
PixelDCL (87.54%), the DeeplabV3+ (89.06%), the IRU-Net
(88.78%), the CFENet (90.23%), respectively. The segmentation
results outperform unclear building shape, building gap, and
shadow building as shown in Fig. 11 [PCL–PTDnet(e)–(h)].

D. Experiment 4: Quantitative and Qualitative Results on
UAV Building Dataset

UAV building dataset is produced by UAV mapping with
very high spatial resolution of 2–4 cm. It was collected over
riverbank area in Chongqing City, China from 20 flights covering
dense building area and countryside. There are 16 mappings
examined by training set and 20% of training sample were
randomly selected for validating set. The other four mappings

Fig. 12. Sample images from UAV building dataset: Upper is RGB images
and lower is labeled images (white areas are buildings and black areas are
nonbuilding).

TABLE VIII
NUMBER OF SAMPLES FOR TRAINING, VALIDATING, AND TESTING FROM UAV

BUILDING DATASET

were used for testing set, which represent the dense building and
fairly sparse area. The annotated image comprises two classes:
building and nonbuilding. Each mapping was clipped and split to
480 × 480 pixels, as shown in Fig. 12. The number of trainings,
validating, and testing samples is shown in Table VIII.

This dataset is to examine the proposed network architecture.
Table IX presents the quantitative accuracy, and Fig. 13 shows
the qualitative segmentation results for building extraction. Fol-
lowing the baseline network (EX1), it gains 84.34% of OA
and 68.7% of mIoU. This network can detect and extract the
building, but it shows some extraction errors in narrow gaps
among buildings [EX1(k) and (j)], unclear building features
[EX1(k) and (j)], and building shadow [EX1(i) and (l)]. The EX2
presents better results than the EX1 with 84.85% (+0.51%) of
OA and 69.7% (+1%) of mIoU. This network can differentiate
the narrow gaps among buildings, as shown in Fig. 13 [EX2(j)
and (k)], but it still lacks unclear building features, as shown in
Fig. 13 [EX2(i) and (k)]. The EX3 increases 85.86% (+1.01%)
of OA and 71.7% (+2%) of mIoU over the EX2. Its performance
can segment narrow gaps among buildings accurately, as shown
in Fig. 13 [EX3(i)–(k)]. The errors remain in building shadow.
Moreover, the EX4 performs higher performance with 86.87%
(+1.01%) of OA and 73.7% (+2%) of IoU than the EX3. It
shows a good segmentation in building shadow area. However,
unclear building features are worse in this network, as shown
in Fig. 13 [EX4(j) and (k)]. The EX5 achieves in accuracy
with 88.38% (+1.51%) of OA and 76.8% (+3.1%) of mIoU.
The network can detect and extract complex building features,
but it lacks the building shape, as shown in Fig. 13 [EX5(l)].
For our proposed network, the EX6 overcomes the EX5 with
89.39% (+1.01%) of OA and 78.8% (+2%) of mIoU. It shows
a good performance of building segmentation in building shape,
building shadow, and unclear building features, as shown in
Fig. 13 [EX6(i)–(l)].

This experiment is also made by comparing the proposed
network with others standard networks and adjustment
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TABLE IX
ACCURACY RESULT (%) OF COMPARATIVE MODEL ON UAV BUILDING DATASET

- -

Fig. 13. Segmentation results of comparative model on UAV building dataset.

TABLE X
ACCURACY RESULT (%) OF PROPOSED NETWORK AND EIGHT COMPARATIVE

METHODS ON UAV BUILDING DATASET

networks. The accuracy results are shown in Table X and
Fig. 14. The lowest accuracy is the SegNet with 84.34% of OA
and 68.7% of mIoU. It shows errors in unclear building features
and shadow building, as shown in Fig. 14 [SegNet(i)–(l)].
Other standard networks gain better performance with 85.86%
of OA and 71.7% of mIoU in the U-Net, 85.65% of OA and
70.9 of mIoU in the PSPnet, and 85% of OA and 73.7% of
mIoU in the PixelDCL. These networks can learn complex

building features, but it is worse segmentation in narrow gaps
among buildings. For improvement network, these networks
show the high performance with 86.36% of OA and 72.7% of
mIoU in the DeeplabV3+, and 85.86% of OA and 71.7% of
mIoU in the U-Net++, respectively. The results show better
segmentation over narrow gaps among buildings, as shown
in Fig. 14 [DeeplabV3+(i), (j), and (l) and U-Net++(j) and
(l)]. However, the segmented result lacks shadow building as
shown in Fig. 14 [DeeplabV3+(k) and U-Net++(i) and (k)].
Furthermore, the adjustment network architectures for building
extraction perform 85.35% of OA and 70.7% of mIoU in the
CFENet, and 85.86% of OA and 72.4% of mIoU in the IRU-Net,
which overcome other standard network architectures. But the
IRU-Net has limitation for extracting shadow building, as
shown in Fig. 14 [IRU-Net(k)]. The PCL–PTDnet achieves
the highest OA of 86.36% and mIoU of 72.7%. For per class
IoU in building class, the PCL–PTDnet gains 86.12%, which
also overcomes other network architectures with 82.35% of the
SegNet, 83.26% of the PSPnet, 83.96% of the IRU-Net, 84.01%
of the U-Net, 84.23% of the U-Net++, 84.35% of the CFENet,
84.87% of the DeeplabV3+, and 85.48% of the PixelDCL,
accordingly. The performance also shows a good segmentation
over shadow building, narrow gaps among buildings, building
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Fig. 14. Segmentation results of comparative networks on UAV building dataset.

shape, and unclear building features, as shown in Fig. 14 [our
proposed(i)–(l)].

IV. DISCUSSION

The proposed PCL–PTDnet shows its advantage in detecting
and extracting buildings in dense building areas with shadows
and narrow gaps among buildings. In the whole adjustment
process, it can be seen that the baseline SegNet network,
which is with an end-to-end network architecture, shows its
good performance in learning building features and extracting
buildings. The model takes advantage of deep convolution layer
and lower resolution feature maps to learn multidimensional
building features, and uses pooling indices of the corresponding
encoder to upsample feature maps in accurate building features.
This network has worse segmentation results in building shapes.
It is because of its simple deconvolution method. The model
is weak in dealing with dense building segmentation. While
the parallel SegNet network with different receptive fields can
enhance learning ability to detect and extract complex building
features. The parallel SegNet network improves the number of
learning filters. The multiple receptive fields help the model
to detect and extract the buildings in multidimensional object
features. This model shows better performance in learning and
extracting building features in dense building zones. Later, the
combination of parallel SegNet network and cross-learning
function shows its performance to detect and extract the dense
building area and narrow gaps among buildings accurately. This
model shares feature maps and convolutes building features in
different sizes of convolutional filter. The supervised learning
model improves learning ability to differentiate between
building features and other object features. The integration of
parallel SegNet network, cross-learning function, and residual
block improves segmentation accuracy. This network enhances
encoder capacity in learning multiple dimensional building
features and solves degradation problems when the feature
maps are convoluted through deep convolution layers. The
model can detect and extract unclear building features, gaps

among buildings, and building in shadow areas. Furthermore,
by adding a pixel deconvolution function in the decoder
part, this adjustment network is designed to solve checkerboard
problems. It is because of no direct relationship in adjacent pixels
to perform upsampling feature maps. This supervised learning
model improves the segmentation results of building features
in urban areas and dense building zones. The dense and tall
buildings with shadow have been largely solved. The proposed
adjustment network (PCL–PTDnet), which comprises a parallel
network, cross learning, residual unit, and pixel transferred de-
convolution, shows better performance in quantitative accuracy
and qualitative segmentation results. The supervised learning
model can detect and extract complex building features, narrow
gaps among buildings, building shadow, and building shape
accurately. The proposed algorithms benefit each other syner-
gistically to yield improved building segmentation performance.

Experiments on the three datasets (Inria aerial dataset, ISPRS
Potsdam dataset, and UAV building dataset) have shown that
the proposed architecture has competitive performance with
the six baseline networks (SegNet, U-net, PSPnet, PixelDCL,
DeeplabV3+, and U-Net++ network) and two adjustment net-
works (CFENet and IRU-Net network). The quantitative and
qualitative results illustrate that all networks perform relatively
well in building extraction. But our proposed network architec-
ture achieved the highest OA and mIoU value. The segmentation
results overcome building extraction in case of dense building
area, shadow building, and unclear texture features. For Inria
aerial dataset, which presents very dense and high building
structures and cement textures in roofs and grounds, this article
conducted many experiments, including quantitative and quali-
tative analysis. The adjustment network shows the improvement
of building extraction when applies the proposed functions. It
yielded better segmentation over complexity of building fea-
tures in small buildings covered partly by tree branches, dense
building area, narrow gaps among buildings, and buildings in
shadow area. Compared with the baseline networks and ad-
justment networks, the segmented results demonstrate that the
PCL–PTDnet has improved the reliability of building extraction
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to the comparative algorithms. Furthermore, the ISPRS Pots-
dam dataset, which represents the dense settlement structures
in Postdam city, is also applied for building extraction. The
performance of our proposed network shows that PCL–PTDnet
also achieves good competitive results in building extraction
over very high-resolution aerial photograph. The segmented im-
ages can handle the problems of inadequate building extraction
in shadow area and differentiate the texture features between
building and ground. It is beneficial in enhancing building
extraction results, particularly in the building shape and unclear
building features. In addition, the UAV building dataset derived
from UAV shows dense building and fairly sparse area with
various building styles over the very high spatial resolution
imagery. This dataset also evaluates the PCL–PTDnet. For this
adjustment network, the increasing accuracy of comparative
model can confirm the improvements of our adjustment network
architecture. Its performance shows high accuracy which is the
same as Inria aerial dataset and ISPRS Potsdam dataset. In
comparison with other networks, our proposed network still
gains robust segmented results in detecting and extracting the
buildings in shadow area, unclear building features, and adjacent
houses in dense building zone. Whereas the performance of other
networks was affected by the various building patterns, complex
structures, narrow gaps among buildings, and unique building
styles. This verifies the effectiveness of our proposed network
against the complex building features over very high-resolution
imagery. In conclusion, in quantitative and qualitative results
of three challenging datasets, it can prove that the proposed
network architecture, PCL–PTDnet, can detect and extract the
buildings in complex surrounding environment, shadow area,
dense building area, and unclear building features more accurate
than other tested architectures.

The limitation of the proposed network was that the number
of model parameters is relatively large. It caused the model
in computational cost and time-consuming. The complexity of
network architecture is added, the large number of model param-
eters will be increased. This model may be difficult to segment
the building shape or boundary that has similar texture feature,
especially building roofs and ground. This problem could be
solved by integration of DSM. Furthermore, the huge number
of data samples with complex building features and styles may
lead to better segmentation results.

V. CONCLUSION

This article demonstrates that the proposed PCL–PTDnet is
a good supervised learning model in detecting and extracting
building features from very high spatial resolution imageries
in urban areas with dense building and shadows. Performance
comparisons with other baseline networks (SegNet, U-net, PSP-
net, PixelDCL, DeeplabV3+, and U-Net++) and adjustment
networks (CFENet and IRU-Net) also confirm that the proposed
network architecture has obvious advantage in term of extraction
accuracy, and the supervised learning model can differentiate
buildings under shadow and extract buildings in dense area
well. The segmentation results also show an accurate building

segmentation with less error on unclear building features.
However, it has limitations in segmenting building shape and
precise border. In the following article, we will consider to add
a DSM and to integrate some postprocessing methods.
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