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Abstract—Due to the wide application of remote sensing (RS)
image scene classification, more and more scholars activate great
attention to it. With the development of the convolutional neural
network (CNN), the CNN-based methods of the RS image scene
classification have made impressive progress. In the existing works,
most of the architectures just considered the global information
of the RS images. However, the global information contains a
large number of redundant areas that diminish the classification
performance and ignore the local information that reflects more
fine spatial details of local objects. Furthermore, most CNN-based
methods assign the same weights to each feature vector causing the
mode to fail to discriminate the crucial features. In this article, a
novel method by Two-branch Deep Feature Embedding (TDFE)
with a dual attention-aware (DAA) module for RS image scene
classification is proposed. In order to mine more complementary
information, we extract global semantic-based features of high level
and local object-based features of low level by the TDFE module.
Then, to focus selectively on the key global-semantics feature maps
as well as the key local regions, we propose a DAA module to
attain those key information. We conduct extensive experiments
to verify the superiority of our proposed method, and the experi-
mental results obtained on two widely used RS scene classification
benchmarks demonstrate the effectiveness of the proposed method.

Index Terms—Attention mechanism, convolutional neural
network (CNN), dual attention-aware (DAA), remote sensing (RS),
scene classification.

I. INTRODUCTION

W ITH the development of satellite imaging technology,
the number of remote sensing (RS) images increases

rapidly, especially the acquisition of high-resolution RS im-
ages. Analyzing and understanding these RS images, such as
identification or classification, bring new opportunities for more
accurate surface monitoring and management and have received
extensive attention [1], [2]. Especially, the RS image scene
classification, which attempts to allocate a label to the RS image
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based on a variety of semantic categories, has been widely
used in the urban planning [3], environment monitoring [4], [5],
agriculture development [6], geography exploration [7], disaster
monitoring [8], and military [9].

In recent decades, a number of methods have been pro-
posed for RS image scene classification. In the early, low-level
feature-based methods are adopted for RS image scene clas-
sification [10], [11], which concentrates on designing various
human-engineering features, such as histogram of oriented gra-
dient [12], local binary pattern [13], and scale-invariant feature
transform [14]. Although these methods performed well on
images with simple objects, they failed to classify the complex
and challenging RS images. To improve the feature represen-
tation, mid-level feature-based methods emerged, which obtain
a global feature representation by encoding the local descrip-
tors. A popular mid-level method named Bag-of-Visual-Word
(BoVW) utilizes visual word occurrences histogram to describe
an image [15]. Due to the simplicity and effectiveness of the
BoVW, it has been extensively used in the RS image scene
classification [16], [17], [18]. In order to attain spatial infor-
mation, spatial pyramid matching (SPM) divides the image into
several subregions to code the spatial pyramid [19]. Although
the mid-level features methods have made a great performance,
they are not still satisfied with the increasingly complex and
challenging RS images due to the insufficient representation
capacity [3], [20], [21]. Both low-level feature-based methods
and mid-level feature-based methods are handcrafted feature-
based and largely rely on professional knowledge of image
processing. Therefore, these methods show weak performance
when processing complicated and challenging RS images.

The deep-learning-based methods have recently achieved ex-
cellent performance in many fields including object recogni-
tion [22], image classification, [23], [24], semantic segmenta-
tion [25], and other fields [26]. Subsequently, the deep-learning-
based methods have been utilized in RS image scene clas-
sification [27], [28] and also achieved excellent performance
due to the powerful feature representation learning ability of
deep convolutional neural networks (CNNs) [29], [30], such as
AlexNet [31], VGGNet [32], GoogLeNet [33], and ResNet [34].
Those architectures move the burden from hand-engineering
knowledge to the framework of deep CNNs and become the most
commonly used backbones for RS image scene classification.
Then, by virtue of the strong feature extraction capability of
CNNs, a series of RS image classification methods have emerged
based on CNNs. Han et al. [35] propose a pretrained model
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Fig. 1. (a)–(c) Categories of the airport, airport, and farmland from the AID
dataset, respectively. The complex spatial distributions in RS scene images bring
larger intraclass variance and smaller interclass variance. Panels (a) and (b) have
a big difference in their scene but come from the same category of Airport, which
shows that even if the same category may have a different structure of the scene.
Panels (b) and (c) are from the different categories of Airport and Farmland,
respectively, but they have very similar scene distribution, which reveals that
even if the similar arrangement also may exist in different categories.

based on AlexNet to solve the nonconvergence caused by the
insufficient training samples for RS scene classification. In order
to attain more effective feature representation, Zeng et al. [36]
propose an end-to-end CNN-based architecture by merging the
local features and the global features. Liu et al. [37] propose
a weighted SPM method to boost the performance of the RS
image scene classification. In [38], a multisource compensation
network is introduced to address the distribution inconsistency
and category insufficiency. Although excellent results have been
achieved in RS scene classification [39], [40], [41], there are
still great challenges. Due to the special acquisition method,
RS images present the characteristics of multiscale, multitarget,
and complex structures [42]. Therefore, in order to build a dis-
tinguishing feature representation, Xu et al. [43] take advantage
of the feature fusion strategy by multilayers for the RS scene
classification. Tian et al. [44] propose multiscale dense networks
to extract more effective features by automatically transforming
between small networks.

However, the current CNN-based methods mainly tend to
learn global semantic-level feature representation from raw im-
ages for the RS image scene classification. The high-level se-
mantics features are helpful for explicitly understanding scenes
via strong activations to semantics. Nevertheless, the global
semantic-level feature ignores the spatial information between
local objects, which is also crucial for classification [45], [46],
[47]. To optimize the training model, Zhang et al. [48] take
into account globe consistency and local particularity in the
loss function. Therefore, only utilizing the global semantic-level
features for scene classification to those images, which have
significant intraclass variances and small interclass dissimilarity
may lead to allocating wrong labels [49]. For example, Fig. 1(a)
and (b) has an extremely diverse distribution of objects and
would be assigned to two different categories, but in fact, they are
the same category. Conversely, Fig. 1(b) and (c) has absolutely
similar global scene semantic distribution but they are different
categories actually. The low-level features reflect the fine details
of the local objects and are able to capture the clear boundaries
of small objects, which are beneficial to complement the loss of
spatial information of the high-level features [29], [41]. In this
case, the low-level local features are indispensable for RS image
classification. Feature pyramid network (FPN) [50] is proposed
for passing high-level semantic information to low-level local

information. FPN is originally proposed to be applied to object
detection, which usually involves assigning a specific category
to a single object. However, RS image usually contains multi-
objects and complex background. Therefore, people often need
to assign a label by local objects as well as a global scene to the
RS image. Inspired by FPN, we propose a Two-branches Deep
Feature Embedding (TDFE) module, which contains two-level
feature aggregation for global semantic-based features and local
object-based features, respectively.

Moreover, the global information of the RS images contains
a great number of redundant areas, which diminish the perfor-
mance of classification. Similarly, the local information also
has various local objects and some of them interfere with the
results of classification. Therefore, how to selectively focus on
the key parts of the image is crucial for scene classification.
To deal with this problem, the attention mechanism [51], [52],
[53] that suppresses irrelevant features and focuses on the im-
portant features has been widely applied in RS image scene
classification. Wang et al. [54] introduce an attention recurrent
convolutional network (ARCNet) according to the human visual
system (HVS), which can highlight the crucial areas. In order to
exploit the local semantic representation, Bi et al. [55] propose
an APDC-Net that utilizes the spatial attention mechanism. Ding
et al. [56] propose a local attention network (LANet) to improve
the capability of feature representation with patch-level local
attention. Considering the influence of the similarities between
images and the spatial rotation, Tang et al. [30] proposed an at-
tention consistent network (ACNet) to enhance the performance.
In order to capture class-specific features, Li et al. [57] propose
an augmentation operation, which can capture discriminative
regions. Fan et al. [58] combine attention mechanisms and
residual units to allocate large weight to the important areas
and ignore redundant parts adaptively. Woo et al. [52] utilize
channel attention and spatial attention modules along two sep-
arate dimensions to boost the capability of feature extraction
and propose the convolutional block attention module (CBAM).
The channel attention mechanism is capable of discovering the
key global semantic information of each feature map along
the channel axis while the spatial attention mechanism aims
to focus on the important local objective information by the
spatial axis. It is well known that the CBAM is composed of the
concatenation of channel attention and spatial attention modules,
which is generally embedded in each convolution block in a
deep convolutional network to refine features. However, TDFF
module contains two branches with different roles, which are
the high-level global semantic-based features extraction branch
and the low-level local object-based features extraction branch,
respectively. In order to enhance the roles of these two branches,
we need to design attention modules that can explore the discrim-
inating high-level semantic features and the important low-level
local object features, respectively. Therefore, according to the
analysis, we propose a dual attention-aware (DAA) module to
perform channel attention on the high-level global features and
spatial attention on the low-level local features, so as to obtain
key global features and local features, respectively.

Therefore, according to the above analysis, we proposed a
promising method by introducing the TDFE module consisting
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Fig. 2. Overall architecture of the proposed TDFE-DAA for the RS image scene classification.

of the high-level semantic-based feature embedding and the low-
level object-based feature embedding, and the DAA module into
the vanilla framework to obtain the crucial information of the
RS images, so as to the performance of the classification.

Overall, our contributions are summarized as follows.
1) A two-branches deep feature embedding (TDFE) module

is proposed, through which more robust global semantic-
based features and local object-based features are both
extracted, respectively.

2) A DAA module is proposed. With the DAA module, the
key high-level semantic-based features are extracted from
the channel dimension, and the key local object-based
features are captured along the spatial dimensions.

We organize the rest of this article as follows. The details of the
proposed method are introduced in Section II. In Section III, the
experiments and analysis are presented. Section IV discusses
the scalability of our method and the effectiveness of each
module in our proposed method. Finally, we make conclusions
in Section V.

II. PROPOSED METHOD

In this section, our proposed TDEF-DAA for RS image scene
classification will be explained in detail. The overall architecture
of our proposed method is shown in Fig. 2, which contains four
modules. The first module is the backbone network of TDEF-
DAA, which attempts to extract features from RS images. The
second module is the TDFE, which consists of two branches:
1) the high-level branch aiming to integrate the global semantic
information and 2) the low-level branch incorporating the local
object spatial information. The next DAA module is composed
of channel attention and spatial attention for obtaining the crucial
representation of global features and local features, respectively.
The last module concatenates the feature vectors from the DAA
module in the channel dimension to get the final discriminative
feature representation for classification.

A. Two-Branches Deep Feature Embedding

1) Motivation: Currently, CNN-based methods mainly tend
to learn global semantic-level feature representation from raw
images for RS image scene classification [36]. The global se-
mantic information is the strong activations of the last layers of
CNNs, which have global receptive fields [59]. Consequently,
the high-level semantics features are helpful for explicitly under-
standing scenes via strong activations to semantics. However, the
global semantic-level feature ignores the spatial information be-
tween local objects, which is also crucial for classification [41].
More seriously, only using the global semantic-level feature for
classification may reduce the accuracy when the separability
of interclass is small and the variance of intraclass is large. In
order to make up for the global high-level semantic informa-
tion, the low-level local object features that reflect more fine
spatial details of local objects are utilized as complementation.
Therefore, according to the above analysis, we propose a novel
module named Two-branches Deep Feature Embedding (TDFE)
to generate the discriminative representation of global semantic-
based features and local object-based features simultaneously.
The specific composition is shown in Fig. 3.

2) Two-Branches Deep Feature Embedding: Fig. 3 shows the
overall structure of our proposed TDFE module. This module
consists of two branches of feature fusion modules, which
are the aggregation of the higher-level semantic features and the
low-level local features, respectively. The detailed description
of TDFE is as follows.

In our method, we take ResNet50, which has five hierar-
chies [25] as our basic backbone to extract features from RS
images. We select four hierarchies, which are the output of the
last convolutional layer of the last residual block in each stage
from up to bottom as the feature candidate. Formally, we utilize
[F2, F3, F4, F5] to denote the output feature maps of conv2_3,
conv3_4, conv4_6, conv5_3 of ResNet50. Furthermore, inspired
by FPN [50], we concatenated the top-two adjacent feature
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Fig. 3. Detailed description of TDFE. (a) High-level branch. (b) Low-level branch.

maps to attain the high-level semantic-based features, and add
the down-two adjacent feature maps to obtain the low-level
object-based features. We do not use the output of the block of
conv1 due to its too small receptive field and too much memory
footprint [50].

High-level Branch: The detailed structure of the high-level
branch is shown in the Fig. 3(a). Given the ith feature Fi ∈
R

Ci×Hi×Wi , i = 1, 2, 3, 4, 5, where i denotes the ith stage of
ResNet50, Ci represents channel dimension and Hi,Wi are
spatial sizes. The higher-level feature maps F4 and F5 are
adopted in this branch. First, we get the feature maps F′

i by
the convolutional layer of 1× 1 to each bottom-up feature maps
to reduce the channel dimension, as follows:

F′
i = F1 (Fi, ω1) , i = 1, 2, 3, 4, 5 (1)

whereF1(·, ω1) represents a 1× 1 convolution with parameters
ω1. In this branch, a deconvolution process is adopted to upsam-
ple the feature mapF′

5 by a factor of 2 due to that the higher level
feature map the coarser spatial information. And following the
deconvolution, a batch normalization (BN) and a rectified linear
unit (ReLU) are used. The process of the deconvolution is as
follows:

Dup = D (F′
5, ψ) (2)

where D(F′
5, ψ) denotes a deconvolutional layer with a kernel

size of 3× 3 and parameters ψ. Therefore, a feature map named
Dup with the same spatial resolution as theF′

4 is obtained. After
that, we concatenate the channels of Dup and F′

4 to obtain more
global-semantic information. Finally, the final feature maps of
a high-level branch named Pup are generated that the channel
dimension is the sum of Dup and F′

4

Pup = F1 (F4, ω1) C©Dup (3)

where denotes the concatenation operation along channelwise.
Low-level Branch: The low-level feature map reflects the

fine details of the local objects and is able to capture the clear
boundaries of small objects. Therefore, this branch merges the

two lower-level features to aggregate complementary informa-
tion of adjacent features to get more discriminative feature
maps. The detailed structure of the low-level branch is shown in
Fig. 3(b). The lower-level feature mapsF2 andF3 are adopted in
this branch. Different from the high-level branch, the low-level
branch uses the downsampling to generate the same spatial di-
mension features as the adjacent higher-level features. Equation
(1) is used to get the feature map F′

2, and then, the convolution
function with a kernel size of 3× 3 and factor 2 of stride is
applied to downsample the feature F′

2 to obtain the feature map
Ddown. The process of the downsampling is as follows:

Ddown = F2 (F1 (F2, ω1) , ω2) (4)

where F2(·, ω2) denotes a convolution of 3× 3 kernel and 2
stride with parameters ω2. Unlike the high-level branch that
aggregates features by concatenation, in order to capture more
spatial information of low-level features, the outputs of the
downsample are aggregated by elementwise addition. Besides, a
3× 3 convolution is applied to alleviate the aliasing effect. The
process of the final output of the low-level branch is represented
by Pdown. The formulation is as follows:

Pdown = F3 ((F1 (F3, ω1)⊕Ddown) , ω3) (5)

where ⊕ denotes the addition operation of elementwise and
F3(·, ω3) represents a 3× 3 convolution with parameters ω3.

B. DAA Module

1) Motivation: Intuitively, global semantic information con-
tains much of redundant areas that may mitigate the performance
of feature representation. In the same way, the local semantic
information has various dispensable objects, which may reduce
the results of classification. Therefore, it is crucial to extract
key features and remove redundant information for classifica-
tion. The attention mechanism aims to restrain the irrelevant
features and focus on the important features. Especially, the
channel attention mechanism can concentrate on the key global
semantic information of each feature map along the channel
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Fig. 4. Detailed description of DAA. (a) Channel attention module. (b) Spatial attention module.

axis. The spatial attention mechanism can focus on the crucial
local objective information of each feature map by the spatial
axis and boost the attention network to the key local objective
and the key small object of the image. Therefore, we propose a
DAA module, which introduces the channel attention module to
the higher-lever features to capture the key global semantics and
the spatial attention module to the lower-level features to focus
on the important spatial object information.

2) DAA Module: Fig. 4 shows the detailed structure of the
DAA module. These attention modules consist of a channel
attention module and spatial attention module to boost the capa-
bility of feature extraction for higher-level semantic features and
lower-level local features, respectively. The detailed description
of the DAA module is as follows.

Channel attention module: In order to capture the important
semantic information, we embed the channel attention module
to the higher-level feature maps to map the interchannel rela-
tionships so as to obtain the more discriminative features. The
channel attention module receives the higher-level feature maps
Pup, which are generated by TDFE. As shown in Fig. 4(a),
this module first executes global average pooling (GAP) by
the spatial dimension to extract the global semantic features
Pavg ∈ R

C×1×1. Then, two 1× 1 convolution operations are
employed to generate the channel-attention weight map. The
formulation is as follows:

pl
avg =

1

H ×W

H∑

i=1

W∑

j=1

fl(i, j), l = 1, 2, . . ., C (6)

Acha = F5 (F4 (Pavg, ω4) , ω5) (7)

in (6), fl(i, j) express the elements at position (i, j) in the
lth channel, pl

avg is the lth element in Pavg, and C is the total
number of feature channels.

In (7), F4(·, ω4) and F5(·, ω5) denote 1× 1 convolution with
parameters ω4 and ω5, respectively. Following each convolu-
tional layer, a BN layer and a ReLU layer are applied. Table I
shows the details of those two convolutions. After attaining the
weights of channels, we weight the original feature map Pup by
those weights to highlight the significant channels and diminish
the insignificant channels, as follows:

P′
up = Pup ⊗Acha (8)

where “⊗” represents the multiplication operation of element-
wise executed by expanding along the spatial dimension.

Spatial attention module: Similar to the channel attention
module, the spatial attention module is embedded in the low-
level feature maps to focus on the more important parts and
restrain irrelevant parts of an image. The spatial attention module
receives the lower-level feature maps Pdown, which are gener-
ated by TDFE. Fig. 4(b) shows the architecture of spatial atten-
tion. First, we execute max-pooling (MP) operation along the
channel dimension to highlight the informative regions [60] to
generate a more efficient feature descriptor Pmax ∈ R

1×H×W .
Subsequently, two 3× 3 convolutional operations are applied
to obtain a spatial-attention weight map Aspa ∈ R

1×H×W . For
each convolutional layer, a BN layer and a ReLU layer are
applied, which can be formulated as

Aspa = F7 (F6 (Pmax, ω6) , ω7) (9)

F6(·, ω6) and F7(·, ω7) denote 3× 3 convolution with param-
eters ω6 and ω7, respectively. Table I shows the details of those
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TABLE I
DETAILS OF THE ATTENTION BLOCKS IN THE DAA MODULE (BACKBONE IS RESNET50)

two convolutions. Performing the same operation as channel
attention, we weight the original feature map Pdown to highlight
the informative regions and weaken the insignificant regions, as
follows:

P′
down = Pdown ⊗Aspa (10)

where “⊗” represents the multiplication operation of element-
wise executed by expanding along the channel dimension.

C. Scene Classification

First, GAP [61] is utilized for the feature map of the output
of the channel attention module by (6) to obtain the feature map
Tavg, which can strengthen the correspondence between scene
semantic information and the categories. Simultaneously, the
global max pooling (GMP) is applied to the output of the spatial
attention module, which can reinforce the ability to discriminate
the salience regions and generate the feature mapTmax. And the
expression of GMP is as follows:

Tmax =
[
t1max, t

2
max, . . . , t

C
max

]
(11)

tlmax = max(f l) (12)

where tlmax is the lth element in Tmax, C is the total number
of feature channels, and f l express the feature map of the lth
channel.

Following, we concatenate the channels of Tavg and Tmax

to further enhance the feature representation. After attaining the
comprehensive feature vectors including the enhanced channel
information and the strengthened spatial information, a fully
connected (FC) layer and a Softmax layer are applied to predict
the category label of the input image.

Given zi, (i = 1, 2, . . . ,C) is the output of the FC layer, where
C is the total number of the category labels. The formulation of
the Softmax function is as follows:

αi =
exp(zi)∑C
j exp(zj)

(13)

label = argmax
i

(αi) (14)

where αi stands for the probability of the input image belonging
to the ith category. And by (14), the final label is determined.

To optimize our proposed model, the cross-entropy loss func-
tion is applied for classification [62]. The cross-entropy loss

function is given as follows:

Loss = − 1

N

N∑

n=1

C∑

c=1

ync log(ŷnc ) (15)

where y denotes the real scene label, ŷ denotes the predicted
scene label, N is the number of samples in a minibatch, and C
is the number of categories.

III. EXPERIMENTS

A. Dataset

To demonstrate the effectiveness of our proposed TDFE-
DAA, two publicly available RS image benchmarks are em-
ployed in experiments. One is the well-known UC Merced
Land-Use dataset (UCM) [6], and another one is the aerial image
dataset (referred to as AID) [63].

UCM: The UCM dataset contains 2100 RS scene images of 21
classes in total collected by the United States Geological Survey
(USGS) National Map. Each class consists of 100 images, and
the resolution is 256 × 256 with a spatial resolution of 30 cm
per pixel. A detailed description of the UCM dataset is given in
Table II, and Fig. 5 gives one example image of each category
in the UCM dataset.

AID: The AID dataset consists of 30 classes including 10 000
RS scene images in total, which are collected by Wuhan Univer-
sity from the Google Earth platform. Each class contains 220 to
420 images, and the spatial resolution varies from 1 to 8 m with
the image resolution fixed to 600 × 600. A detailed description
of the AID dataset is given in Table II, and Fig. 6 gives some
example images including all categories in the AID dataset.

B. Experimental Setup

Data setting: In the experiment, we randomly select the
training ratios of 80% and 50% for the UCM dataset, 50% and
20% for the AID dataset, and then the remaining are for testing.
The input images are all resized to 224 × 224.

Implementation Details: All experiments are done based on
the Pytorch library with an NVIDIA RTX 3080 GPU for accel-
eration. The model of the backbone is pretrained on ImageNet.
The Adam algorithm [64] is employed to optimize the model
weights, the initial learning rate is set to 1e-5, and the weight
decay penalty is 0.1 for 20 epochs.
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TABLE II
DESCRIPTION OF EACH DATASET

Fig. 5. Example images of the UCM dataset.

Fig. 6. Example images of the AID dataset.
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TABLE III
COMPARISON OF THE OA (%) ON THE UCM DATASET

Evaluation Metrics: To quantitatively estimate the perfor-
mance of our proposed method, overall accuracy (OA) and
confusion matrix is selected. The OA is the ratio of the correct
predictions with the overall predictions. Furthermore, to analyze
the detailed accuracy of each category, a confusion matrix is
used, which denotes the probability that the category of each
row predicts the categories in the corresponding column.

C. Comparison With State of the Arts

To fully verify the advance of our proposed method, we
compared it with some state of the arts, including BoVW [6],
GoogleNet [6], CaffeNet [6], VGG-VD-16 [63], TEXNet [65],
VGG16-CapsNet [66], VGG-VD-16-SAFF [47], VGG-VD-16-
DCF [67], ResNet-LGFFE [68], and EFPN-DSE-TDFF [29].
For those methods whose codes can be obtained, we trained
and tested the models with the default settings, and for those
models of which the corresponding code cannot be got, we
used the original results in their works. In order to have a fair
comparison, we use the same ratios in the same dataset with
data augmentation operation of random horizontal flipping for
all models and repeat ten times for the experimental results with
the corresponding means and standard deviations of the OA.

1) Experimental Results on UCM Dataset: We selected 80%
and 50% images randomly as the training set, respectively, and
the rest of the images are categorized as the testing set. We
compared some state of the arts with our proposed method on the
UCM dataset. Table III shows the experimental results. As can be
found in Table III, the BoVW got the lowest results of OA, which
also tells the truth that the deep-level-based approaches have
better performance than the method based on mid-level features.
We can also find from Table III that our proposed method has
got the best performance. Compared with other methods, the
OA values attained by our proposed TDFE-DAA are increased
by 3.84% (VGG-VD-16), 2.03% (VGG-VD-16-SAFF), 0.93%
(EFPN-DSE), respectively, on the UCM dataset with the ratio of

Fig. 7. Confusion matrix of TDFE-ADD under the 80% training proportion
on the UCM dataset.

80%. And with the ratio of 50%, the OA values of our method are
3.18% higher than VGG-VD-16, 1.90% higher than VGG-VD-
16-DCF, and 0.67% higher than EFPN-DSE, respectively. And
there are twofold reasons for achieving the best performance
of our proposed method. First, the Two-branch Deep Feature
Embedding (TDFE) architecture, not only captures the global-
semantic features but also takes into account the local-object
features. Second, with the DAA mechanisms, the key channels
and the important regions in RS images can be fully explored.

Furthermore, we conduct the confusion matrix to verify the
advantage of our proposed method. As can be seen from Fig. 7,
under the 80% training ratio, we can find that most results are
equal to 1 except for the “Buildings,” “Dense Residential,” and
“Storage Tank.” The “Dense Residential,” get the worst result
of classification, with 5% being mistakenly classified as the
“Mobile Home Park” and 5% into the “Sparse Residential.”
As is known, those categories have seriously similar objects
in their scenes. In addition, 5% of images from the category
of “Buildings” are misclassified into the “Medium Residential”
while 5% images from “Storage Tank” are mistakenly classified
as “Tennis Count.” As is known, those categories have common
properties including diverse objects, complex distribution, and
similar scenes, which makes scene classification difficult.

Fig. 8 presents the results of the confusion matrix under the
50% training ratio, and we can find that 11 of 21 categories
attain 1, and 19 categories reach results of more than 90%. Only
two categories are less than 90%, including “Dense Residential”
(88%) and “Sparse Residential” (88%). As we know, those two
categories contain similar objects, such as “building,” “tree,” and
“road,” which causes the difficulty to distinguish.

2) Experimental Results on AID Dataset: To further verify
the advancement of our proposed method, we compared various
state-of-the-art methods with ours on another broadly used RS
scene classification dataset named AID dataset. We selected
50% and 20% images randomly as the training set, respectively,
and the rest of the images are categorized as the test set. The
comparison results are shown in Table IV. We can find the same
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Fig. 8. Confusion matrix of TDFE-ADD under the 50% training proportion
on the UCM dataset.

TABLE IV
COMPARISON OF THE OA (%) ON THE AID DATASET

conclusion as the UCM dataset that the deep-level-based ap-
proaches have better performance than the method based on
mid-level features. In Table IV, we can also find that our pro-
posed method has got the best performance. Compared with
other methods, the OA values obtained by our proposed TDFE-
DAA is increased by 5.72% (VGG-VD-16), 1.53% (VGG-VD-
16-SAFF), and 1.83% (EFPN-DSE), respectively, on the AID
dataset with the ratio of 50%. Furthermore, at the ratio of 20%,
our method still achieves the best performance. Therefore, on
the AID dataset, we obtain the same superior performance as the
UCM dataset, which proves that our method has the property of
robustness.

In order to further demonstrate the superiority of our proposed
method, we show the confusion matrixes under 50% and 20%
training ratio in Figs. 9 and 10, respectively. As can be seen
from Fig. 9, 26 of 30 categories reach the results of accuracy
of more than 90%. Only the categories of “Center” (85%),

Fig. 9. Confusion matrix of TDFE-ADD under the 50% training proportion
on the AID dataset.

Fig. 10. Confusion matrix of TDFE-ADD under the 20% training proportion
on the AID dataset.

“Resort” (85%), “School” (89%), and “Square” (85%) obtain
a bit of severe misclassification. This is caused by the similar
geometrical structures or distributions of a ground object. There
are still several categories that can be exactly classified, such
as “BareLand” (99%), “Desert” (99%), “Forest” (99%), and
“Meadow” (99%).

The confusion matrix under the 20% training ratio is shown
in Fig. 10. We can find that there are 21 of 30 categories that
achieve an accuracy of over 90%, and even 13 of 30 categories
attain an accuracy of more than 95%. Although, the training ratio
is reduced to 20%, there are several categories that still achieve
an excellent effect of classification, such as “Beach” (97%),
“Forest” (96%), “Mountain” (100%), “Parking” (99%), “Port”
(98%), and “Viaduc” (99%). This further shows the effectiveness
of our proposed method for RS scene classification.

From the above experiments, we can summarize that the
proposed TDFE-DAA shows excellent performance on both
UCM and AID datasets. It can find that our proposed method is
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Fig. 11. Scalability analysis on the backbone of VGG-VD-16.

Fig. 12. Scalability analysis on the backbone of ResNet50.

far superior to those mid-level-based methods, as well as better
than those CNN-based methods. Those results further demon-
strate the effectiveness of our architecture, including the TDFE
module that concatenation the high-level global features and
low-level local features, and the DAA module that highlights the
crucial global features and key local features. And those results
also indicate the superiority and robustness of our proposed
architecture for RS image scene classification.

IV. DISCUSSION

To comprehensively verify the advance of our proposed
method, we conduct various experiments including scalability
and the effect of each module.

A. Scalability

Our proposed method of TDFE-DAA is well suited to apply
in the most popular CNNs, such as VGG-VD-16 and ResNet50,
which are commonly used in scene classification. We conduct a
number of experiments with two different backbones of CNNs
on the UCM dataset and the AID dataset accompanied by the
same training ratios as before to validate the scalability of our
proposed method. We utilize the same setting as before, and for
the VGG-VD-16, we use the same strategy as the ResNet-50,
which is to choose the last output of the convolutional layer of
each stage as the initial input of the TDFE module. The detailed
results are presented in Figs. 11 and 12. We can find from Fig. 11
that the performance of our proposed TDFE-DAA-VGG-VD-16

TABLE V
RESULTS OF OA (%) FOR DIFFERENT METHODS WITH THE TRAINING RATIOS

OF 80% AND 50% ON THE UCM DATASET

TABLE VI
RESULTS OF OA (%) FOR DIFFERENT METHODS WITH THE TRAINING RATIOS

OF 50% AND 20% ON THE AID DATASET

is all better than the VGG-VD-16 on each training ratio. With
the backbone of ResNet50, we can get the same conclusion as
the VGG-VD-16 shown in Fig. 12. From those results, it can
demonstrate the scalability of our method.

B. Effects of Different Modules

To certify how the TDFE module and the DAA module affect
our architecture, we conduct various ablation experiments. All
the ablation experiments are performed on the UCM dataset and
the AID dataset, and the results are presented in Tables V and VI.

Effects of TDFE: In order to comprehensively certify our pro-
posed TDFE (Backbone+TDFE), we perform experiments on
two different backbones of VGG-VD-16-based and Resnet50-
based, respectively. We can observe from Table V that the
VGG-VD-16 combined with the TDFE module obtained higher
results than only using the VGG-VD-16 and increase by 1.93%
and 1.76% under 80% and 50% training ratios on the UCM
dataset, respectively. Similarly, for the backbone of ResNet50,
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Fig. 13. Visualization results of Grad-CAM. (a) Input. (b) ResNet50. (c) Channel attention. (d) Spatial attention. (e) DAA.

we arrive at a consistent conclusion as the backbone of
VGG-VD-16. On the 80% and 50% training ratios for the UCM
dataset, the OA values obtained by ResNet50 combined with
the TDFE are higher at 1.35% and 1.07% than just utilizing
ResNet50, respectively. In addition, it can be found from Ta-
ble VI that on the AID dataset, we can get a consistent conclusion
as on the UCM dataset. Therefore, it can be seen from the above
observations that the TDFE module is exactly effective for RS
image scene classification.

Effects of DAA: To further verify the effects of the DAA
module, we perform the same experiments as mentioned above.
From Tables V and VI, we can obtain consistent results as the
TDFE module. Compared with two backbones, by utilizing our
DAA module, our proposed methods (backbone+DAA) achieve
better performance. In detail, the VGG-VD-16+DAA increased
the OA by 2.40% and 1.61%, as well as, the ResNet50+DAA
increased the OA by 1.11% and 1.26%under 80% and 50% train-
ing ratio for the UCM dataset, respectively. For the AID dataset,
we can get a consistent conclusion as on the UCM dataset. Those
results strongly prove the superiority and effectiveness of our
proposed module of DAA. To further illustrate the effectiveness
of our proposed DAA module, the Gradient-weighted Class
Activation Mapping (Grad-CAM) [69] is utilized to visualize
how the attention module affects the performance of feature
representation. From Fig. 13, we can find that the activated field
by ResNet50 is relatively large, resulting in the inclusion of a
lot of redundant information which may interfere with the clas-
sification accuracy. As can be seen from Fig. 13(c), the channel
attention module covers the salient regions, which indicates that
our proposed channel attention can more accurately response to
important global-semantic features than the original ResNet50.
Fig. 13(d) shows that the activation of local features by the
spatial attention mechanism, we can find the lighter regions

are some local details that are crucial for distinguishing other
images. From Fig. 13(e), we can observe that the lighter regions
are the addition of the activation of the channel attention with
the activation of the spatial attention, which illustrates that our
proposed DAA can obtain more discriminative features.

Effects of TDFE-DAA: We can find from Tables V and VI
that the OA obtained by our proposed ResNet50+TDFE-DAA
is higher than that obtained by both ResNet50+TDFE and
ResNet50+DAA. Similarly, the VGG-VD-16 based to get
the same conclusion. Especially compared to VGG-VD-16
and ResNet50, our proposed methods of VGG-VD-16+TDFE-
DAA and ResNet50+TDFE-DAA obtained significant progress,
which improves the OA by 2.88% and 2.07% for 80% training
ratio and also 3.09% and 1.62% for 50% training ratio on
the UCM dataset. For the AID dataset, we got the consistent
conclusion. From those results, one can find that our introduced
architecture achieves the best performance, and also proves the
superiority and effectiveness of the TDFE module and the DAA
module for RS image scene classification.

C. Time Efficiency

The time efficiency is important to assess a model; thus, we
conduct the experiments on the UCM dataset and the AID dataset
with 50% training ratio to show the time consumption. The time
efficiency is measured by the training time of the corresponding
model for an epoch, and the amount of weight parameters
of different models is also counted, which are both shown in
Table VII. It can be found from Table VII that the time taken
by ResNet50-TDFE-DAA is very close to that of ResNet50, but
the OA is improved by 1.63% and 0.65% on the UCM dataset
and the AID dataset, respectively. In addition, we can find that
VGG16+TDFE-DAA consumes less time than VGG-VD-16,
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TABLE VII
COMPARE TIME COST WITH OTHER MODELS ON THE UCM DATASET AND THE AID DATASET WITH 50% TRAINING RATIOS

which is due to that the original VGG-VD-16 uses extra two
fully connected layers in the classification block to fuse features
while our method replaces them with the proposed TDFE block
consisted of convolutions with less parameters. It can be also
found from Table VII that compared with EFPN-DSE, our
proposed methods take almost the same time but achieve better
performance whether on the UCM dataset or the AID dataset. In
conclusion, our method can achieve a better result of OA with
approximated even less time when compared with the original
network and EFPN-DSE. Meanwhile, we can find that the pa-
rameter amount of ResNet50-TDFE-DAA is only increased by
7.2 M compared to ReNet50 while the OA is greatly increased.
Obviously, the parameter amount of VGG16+TDFE-DAA is
greatly reduced compared with VGG-VD-16, and the OA value
is also improved by 3.09% and 4.88% on the UCM dataset and
the AID dataset, respectively. Therefore, it can be concluded
from the above observations that our proposed method strikes a
balance between accuracy and time efficiency.

V. CONCLUSION

In this article, we introduce a competitive method named
TDFE-DAA to further improve the performance of the RS image
scene classification. The method consists of two modules, which
are the TDFE module and the DAA module, respectively. The
TDFE module contains two branches, which are a high-level
branch and a low-level branch and is designed to aggregate the
high-level but low-resolution features and the low-level but high-
resolution features to enhance the image feature representation.
The DAA module is introduced to further highlight the important
features, which consist of the channel attention module and
spatial attention module. The channel attention module is de-
signed to capture the key channels and diminish the insignificant
channels for the higher-level features and the spatial attention
module focuses on the important spatial locations and suppresses
irrelevant locations. We conducted a number of experiments to
prove the advantages of our proposed method for the RS image
scene classification.
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