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LRAD-Net: An Improved Lightweight Network for
Building Extraction From Remote Sensing Images

Jiabin Liu , Huaigang Huang , Hanxiao Sun, Zhifeng Wu , Member, IEEE, and Renbo Luo , Member, IEEE

Abstract—The building extraction method of remote sensing
images that uses deep learning algorithms can solve the problems of
low efficiency and poor effect of traditional methods during feature
extraction. Although some semantic segmentation networks pro-
posed recently can achieve good segmentation performance in ex-
tracting buildings, their huge parameters and large amount of cal-
culation lead to great obstacles in practical application. Therefore,
we propose a lightweight network (named LRAD-Net) for building
extraction from remote sensing images. LRAD-Net can be divided
into two stages: encoding and decoding. In the encoding stage,
the lightweight RegNet network with 600 million flop (600 MF)
is finally selected as our feature extraction backbone net though
lots of experimental comparisons. Then, a multiscale depthwise
separable atrous spatial pyramid pooling structure is proposed to
extract more comprehensive and important details of buildings.
In the decoding stage, the squeeze-and-excitation attention mech-
anism is applied innovatively to redistribute the channel weights
before fusing feature maps with low-level details and high-level
semantics, thus can enrich the local and global information of the
buildings. What’s more, a lightweight residual block with polarized
self-attention is proposed, it can incorporate features extracted
from the space of maps and different channels with a small number
of parameters, and improve the accuracy of recovering building
boundary. In order to verify the effectiveness and robustness of
proposed LRAD-Net, we conduct experiments on a self-annotated
UAV dataset with higher resolution and three public datasets (the
WHU aerial image dataset, the WHU satellite image dataset and the
Inria aerial image dataset). Compared with several representative
networks, LRAD-Net can extract more details of building, and has
smaller number of parameters, faster computing speed, stronger
generalization ability, which can improve the training speed of
the network without affecting the building extraction effect and
accuracy.
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I. INTRODUCTION

BUILDINGS are primary spaces for human life and play an
important role in the development of humans and society.

Recently, building extraction from remote sensing images has
been widely used in smart city construction, land use surveys,
military target reconnaissance, and other fields of study. The
distribution of buildings also has a high reference value when
evaluating the population and development of a region and
understanding the historical origin of a region [1]. Traditional
building extraction methods first extract the statistical features
of remote sensing images using specific feature extraction algo-
rithms and then use hand designed classifiers to extract buildings.
Traditional methods can be roughly divided into two types: one
method is based on the cell values of remote sensing images,
and the other is object-oriented classification [2], [3], [4]. For
buildings in high-resolution remote sensing images, the tradi-
tional approach is to extract buildings from optical images using
spectral, textural, geometric and shading features [5], [6], [7].
From the analysis of principle, the current traditional methods
of building extraction can be classified as extraction based on
edge and corner point extraction [8], [9], extraction based on
area segmentation [10], extraction based on building features
and integration of various methods, such as digital elevation
model based on auxiliary information [11], [12], [13], [14],
[15]. Traditional extraction methods have many limitations with
complex images. For buildings with different shapes, sizes and
environments, it is difficult to obtain high accuracies and good
generalizability.

With the development of deep learning technology, convo-
lutional neural networks (CNN) have been applied to the field
of building extraction due to their powerful automatic feature
extraction capability [16]. Compared with traditional methods,
CNN methods are much more efficient and accurate. However,
CNN-based segmentation methods still have some drawbacks
[17], which hinder the wide application of CNN. First, the
storage overhead is large, such that the storage space required
by sliding window-based CNN methods will increase markedly
according to the number and size of sliding windows. The com-
putation of convolution for each pixel block one by one is compu-
tationally repetitive because adjacent pixel blocks typically have
repetitive parts, which markedly reduces efficiency. Second, as
the depth of the network increases, the number of required
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parameters increases exponentially, which is not conducive to
practical applications. These problems were somewhat solved
with the proposal of a fully convolutional neural network (FCN)
by Long et al. [18]. The FCN reduces the number of parameters
and improves the perceptual field of the neural network. Due to
these advantages, FCN-based models have been widely used for
other tasks [19], [20], [21]. However, FCN does not consider
global contextual information, and excessive down sampling
operations also lose information of some low-level features and
are insensitive to details in images.

To solve these problems, segmentation models that use low-
level features with rich spatial information have been devel-
oped. Typical model structures include the improved FCN-based
model U-Net proposed by Olaf et al. [22] and SegNet proposed
by Badrinarayanan et al. [23]. U-Net can achieve good results in
medical image segmentation, and U-Net ++ [24] and U-Net3+
[25] networks that fuse multilevel features have been derived.
Since 2014, the Deeplab series of networks were proposed
in [26], [27], [28], [29], and [30], where the most effective
Deeplabv3+ network was inspired by the depthwise separable
convolution [31], [32], [33] with the encoder-decoder structure.
Deeplabv3+ designed a simple encoder-decoder structure and
improves the Xception [34] and ASPP modules to improve
extraction accuracy.

Recently, the model based on FCN and its variants have been
widely used for the task of building extraction in remote sensing
images and achieved good results. For example, Zhang et al. [35]
proposed Gaussian expansion convolution and embedded it into
a hierarchical dense fusion structure to form a dense hierarchical
spatial Gaussian pool (dense HSGP). Dense HSGP has the ad-
vantages of the original expanded convolution and retains more
contextual information while providing richer perceptual fields
and higher feature extraction capability in the model. In [36], the
authors proposed a dense residual neural network, it combines
the densely connected CNN and residual network structures,
which can enable the full integration of the underlying features
with the high-level features. In order to alleviate the influence
of the background of the irrelevant feature region, a net with
attention block and multiple losses (AMUNet) was presented in
[37]. Zhu et al. [38] developed an E-D-Net to solve the problem
that the building boundary extraction is not obvious by intro-
ducing the cascading network. Meanwhile, a multiple attending
path neural network was proposed by Zhu et al [39]. This net can
learn multi-scale features through multiparallel paths and refine
discontinuous building footprint by using attention mechanism
and pyramid pool module.

With the continuous superposition of the number of model
layers, the number of network parameters and computational
complexity become huge, which has a serious impact on the
practical applications. Therefore, more researchers try to reduce
the number of parameters and simplify computational complex-
ity of the model, and proposed some lightweight models, such as
RFA-UNet [40], ARC-Net [41], and DAN-Net [42]. RFA-UNet
introduced the attention mechanism to reweight the features
at different stages before the feature fusion, so as to make
up for the semantic differences before the features. ARC-Net
used residual blocks with asymmetric convolution and atrous

convolution to reduce the number of parameters in the model
and speed up the calculation. DAN-Net combined lightweight
network DenseNet and spatial attention fusion module to effec-
tively extract high-level feature information and suppress noise.
In 2022, Huang et al. [43] proposed RSR-Net based on the
U-Net architecture, which has improved RegNet basic units by
incorporating attention mechanism.

All of these networks achieved marked successes in building
extraction, but how to find the balance between the accuracy
and speed of building extraction is still necessary to be studied.
Therefore, in order to reduce number of network parameters
and make the model more efficient in practical application, we
design a new lightweight network which named LRAD-Net
based on encoder-decoder structure. LRAD-Net can achieve
a good performance with a small number of parameters and
computation, and can achieve a good balance between speed and
accuracy. The main innovation points and work are summarized
as follows.

1) A lightweight residual block with polarized self-attention
(LPA) is proposed, it can extract fused features both from
space and channels, with smaller parameters and higher
accuracy of recovering building boundary.

2) We present a new depthwise separable atrous spatial pyra-
mid pooling (DSASPP) module, it can make full use of the
context information of the original remote sensing images,
enlarge receptive field without changing the map shape,
and improve the capability of network multi-resolution
feature extraction.

3) In order to extract more details of the building, we fuse
feature maps with the low-level detail and high-level se-
mantics in the decoder. Before the fusion, the squeeze-and-
excitation (SE) attention mechanism is used innovatively
to improve the feature weight of the building, so as to
improve the performance of extracting the building.

4) As the spatial resolution of used public datasets are 0.3 m,
in order to validate the robustness of LRAD-Net, a new
building data set with higher spatial resolution 0.1 m is
labeled for building extraction evaluation and analysis,
which we refer to as the “self-annotated UAV dataset.”

II. PROPOSED LRAD-NET

This section details our proposed LRAD-Net, and the specific
structure of LRAD-Net is shown in Fig. 1. First, consider-
ing the computational efficiency of the network, we take the
network structure searched by RegNet with the computational
complexity of 600 million flops (600 MF) as our feature extrac-
tion backbone, and record it as RegNet-600. Second, SE [44]
block is added before the feature fusion, which can enhance
the sensitivity of the network to the channel and improve the
accuracy effectively under the condition that only a few network
parameters are added. Third, due to the inconsistency of building
scales in remote sensing images, the process of single path
extraction of semantic features fails to make full use of image
context information. Therefore, we proposed DSASPP module
to enrich semantic information. Finally, an LPA is proposed and
used in the decoder. Compared to the traditional decoder that
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Fig. 1. Structure of LRAD-Net. The SE means squeeze and excitation attention mechanism, DSASPP represents depthwise separable atrous spatial pyramid
pooling structure, LPA is a lightweight residual block with polarized self-attention.

uses two sets of 3×3 standard convolution layers [34], the LPA
block can reduce the number of parameters and floating point of
operations (FLOPs) while in extracting important features from
the relevant spaces and channels to recover building boundaries
with greater accuracy.

A. Encoder

1) RegNet-600: In 2020, RegNet [45] was proposed as a
network that combines manual design with a neural structure
search [46], [47], [48]. We select the network structure searched
by RegNet under the computational complexity of 600 MF as
our feature extraction backbone, and name it RegNet-600. The
structure of RegNet-600 is shown in Fig. 2.

As shown in Fig. 2(a), RegNet-600 consists of a set of stem
layers and four stages. As shown in Fig. 2(b), each stage consists
of a series of stacked RegY blocks. By passing each stage,
the height and width of the input feature matrix is reduced by
half. The RegY block primarily consists of a residual structure
with group convolution, and a SE module is added between the
convolution layers, its detailed structure in shown in Fig. 2(c). In
the RegY block, the first 1×1 convolution layer can reduce the
features dimension, thus reducing the network parameters and
the number of calculations. The 3×3 group convolution layer
is used to extract textural features, where S is the stride of the
convolution and G is the number of groups. g stands for the
group width of each group in the group convolution.

2) Depthwise Separable Atrous Spatial Pyramid Pooling
(DSASPP): DSASPP takes the advantage of depthwise sepa-
rable atrous convolution and spatial pyramid pooling [49], it
can enlarge receptive field without changing the maps shape

Fig. 2. A concrete illustration of RegNet-600. Gconv stands for group convo-
lution and G is the number of groups, S is the stride of the convolution, g stands
for the group width of each group in the group convolution.

and enhance the network multiscales feature extraction ability.
As depthwise separable convolution can greatly compress the
number of parameters and computation of the model while
maintaining similar, we use depthwise separable convolution
to build our DSASPP module.

AS is shown in Fig. 3, the DSASPP consists of a set of 1×1
convolution; four groups of 3×3 depthwise separable atrous
convolutions with atrous rates of {6, 10,14,18}; and a global
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Fig. 3. Structure of DSASPP. The dwconv stands for deepthwise separable
convolution.

Fig. 4. Structure of SE block.

average pooling layer. Thus, the network receptive field is
magnified without losing detailed information and increasing
computational complexity, the output of each convolution in-
cludes a wide range of information, and the multiscale features
can be captured. As a result, the targets with deferent sizes
can be segmented well by the proposed four groups of atrous
rate convolution kernels. In the building extraction application,
DSASPP can extract more multiscale features and better seg-
ment buildings with different sizes.

3) SE Attention: In order to improve the extraction accu-
racy of buildings from remote sensing images, SE blocks are
added after the feature extraction backbone network and before
the fusion of deep and shallow layer features. Through SE
block, the convolution operation of the network can focus on
the extraction of building features and ignore the existence of
irrelevant features. SE block operation can adjust the channel
information of the input feature map, increase the weight of the
building information in the feature map, and the network can
pay more attention to the building information of the image, so
as to complete the building extraction and reconstruction more
efficiently. The SE block structure is shown in Fig. 4.

The procedure of the SE module can be divided into two
steps. In the first step, we obtain a vector with a global receptive
field through a global average pooling layer. The equation is as
follows:

z =
1

W ×H

H∑
i = 1

W∑
j = 1

fin (i, j) (1)

where fin is the input feature, and H and W represent the
height and width of the input feature, respectively. Equation (1)

Fig. 5. Structure of proposed LPA block. Gconv stands for group convolution
and G for grouping number, Cin, Cout represent the input channels, output
channels, and b is bottleneck ratio.

changes the input with size (H ×W × C) into output with
size (1× 1× C), the real number z contains global feature
information.

In the second step, z is used to generate weights for each
feature channel through two fully connected layers, and its
equation is as follows:

s = ∂ (L2σ (L1z)) (2)

whereL1 represents the first fully connected layer,L2 represents
the second fully connected layer, and σ represents the activation
function. According to (2), s can be obtained to express the
correlation between feature channels.

B. Decoder

The structure of decoder can be seen in Fig. 1. Its input
is composed of two parts: one is the low-level features from
the output in the first-stage layer of RegNet-600, which has
48 channels; the other part is the high-level features obtained
by DSASPP module, which has 256 channels. The two parts
are fused together after passing through the SE module to
form a new feature map with 304 channels. This new feature
map contains meaningful semantic information and building
boundary information. Then, we input the fused feature maps
into the LPA module for feature extraction, and obtain a feature
map with 256 channels. Finally, the segmentation result can be
obtained through a 1×1 convolution layer and up sampling.

1) Lightweight Residual Bottleneck With Polarized Self-
Attention (LPA) Block: The proposed LPA block consists of
three parts: the residual bottleneck structure, PSA block and
group convolution. The structure of LPA block is shown in
Fig. 5. Cin, Cout, H, and W represent the input channels, output
channels, length, and width of the feature graph, respectively.
b represents bottleneck ratio, which means that the channel of
the output characteristic matrix is reduced to 1/b of the input
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Fig. 6. Structure of PSA block.

characteristic matrix channel. G is the number of groups in a
grouping convolution. In this article, b is 1 and G is 8.

As shown in the Fig. 5, LPA module includes a main branch
and a shortcut branch. The main branch first reduces the di-
mension through a 1×1 convolution layer to reduce the num-
ber of network parameters. Then in order to improve the fea-
ture extraction capability, we use two groups of 3×3 group
convolution layers for feature extraction, and finally connect
a 1×1 convolution layer. In order to reduce the information
loss caused by dimension reduction, PSA module is applied
following group convolution. At the end of LPA, the different
features extracted from the main branch and the shortcut branch
are fused. Compared with the method using two sets of 3×3
standard convolution, the LPA module can improve the ability
of network feature extraction with fewer parameters.

2) Polarized Self-Attention (PSA): PSA [50] block maintains
a relatively high resolution in channel and spatial dimensions,
which can reduce the information loss caused by dimension
reduction. The PSA module is a lightweight plug and play mod-
ule that can improve the performance of semantic segmentation
tasks. The details of PSA can be seen from Fig. 6.

As shown in the Fig. 6, PSA block includes channel-only
and spatial-only branch. Each branch is divided into two parts.
The PSA module first uses 1×1 convolution to fully collapse
the features in one dimension (like channel dimension) while
maintaining high resolution in the orthogonal dimension (like
spatial dimension). For compressed dimensions, PSA uses the
softmax normalization function to enhance its information to
improve the dynamic range of attention. Finally, the sigmoid
function is used for dynamic mapping.

Compared with other attention mechanisms in CNNs (such as
convolutional block attention module [51] and efficient channel
attention [52]), PSA can maintain a higher resolution in attention
calculation and capture long-distance dependencies at a lower
computational overhead. In addition, in the channel and space
branches, PSA can improve the performance of building extrac-
tion task by using softmax-sigmoid joint function to adjust and
optimize the focus weights.

3) Group Convolution: The process of grouping convolution
can be divided into three steps. We start by defining some com-
mon notations.X is the input feature map with size (C1, H,W ),
Y is the output feature map with size (C2, H,W ). C1 represents
the number of input channels, H , W represent the width and
height of the input, respectively. G represents the number of

groups. C2 represents the number of output channels. k stands
for convolution kernel size.

In the first step, the X with size (C1, H,W ) is divided into
G parts, we use Xi to represent the feature map of ith part. the
size of Xi is as follows:

size (Xi) =

(
C1

G
,H,W

)
. (3)

The second step is to convolve Xi and Wi to get Yi. Wi is
the group convolution kernel size with ( c2G , k, k), Yi is output
feature map of ith part by the operation of group convolution,
The size of Yi as follows:

size (Yi) =

(
C2

G
,H,W

)
. (4)

The third step is to concat the Yi with size (C2
G , H,W ), then

get Y with size (C2, H,W )

Y =

G∑
i=1

Yi. (5)

III. DATASET AND LABORATORY ENVIRONMENT

A. Dataset Selection

To demonstrate the feasibility and generalizability of the
proposed LRAD-Net in practical applications, we perform ex-
periments on four datasets: the WHU aerial image dataset [51],
WHU satellite image dataset [51], Inria aerial image dataset [52]
and a custom GZHU UAV image dataset. Several sample cases
from these four datasets are shown in Fig. 7.

As shown in Fig. 6, the various colors and changeable en-
vironments in the WHU satellite image dataset and Inria aerial
image dataset make the task of extracting buildings more difficult
compared to the WHU aerial image dataset and GZHU UAV
image dataset.

The WHU aerial imagery dataset contains 8189 pictures with
a resolution of 0.3 m, and each picture has a spatial coverage
of 512 × 512 pixels. This dataset is divided into three sets: the
training set, which contains 130 500 buildings (4736 pictures);
the validation set, which contains 14 500 buildings (1036 pic-
tures); and the test set, which contains 42 000 buildings (2416
pictures).

The WHU satellite dataset after pretreatment and random
grouping, training sets (3135) and test sets (903) are obtained.

The Inria remote sensing dataset includes the areas with
different landforms and building types, such as the highly dense
urban center area dominated by high-rise buildings, the suburban
area dominated by low-rise buildings and the mountainous area
sparsely distributed buildings, which can effectively test the
accuracy and robustness of the extraction of model buildings.

The image quality and label quality of the above three public
datasets are relatively high, but the quality of the partcial dataset
cannot be the same as that of the WHU dataset in applications.
Therefore, to test the performance of LRAD-Net in practical
applications, we use UAV images to make a building dataset
in actual applications. In this dataset, UAV images of parts of
Haizhu District, Guangzhou, in 2012 were selected to make
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Fig. 7. Demonstration of four datasets.

building labels. The UAV image products selected for this
self-annotated dataset are red, green and blue band images with
a spatial resolution of 0.1 m. We select 13 high-quality drone
images, each of which included different buildings (e.g., single-
story houses, multistory houses, schools, irregular buildings),
as well as many nonbuilding areas. The size of each image was
10 401×10 401, and a dataset is made. After completing the
dataset, we trim images and labels twice with a size of 512×512,
which can be input into the network in bulk. The completed
dataset consisted of 6854 samples, which is divided into training
sets (4798 samples) and test sets (2056 samples).

B. Experimental Environment Configuration and
Evaluation Metrics

The experimental environment is a Windows 10 system, the
hardware parameter CPU is i5 9500, the running memory is
64 G, the GPU is an NVIDIA Geoforce RTX 3080, the video
memory is 10 G, and the deep learning framework is PyTorch
1.8.1. To make the models fit faster, the backbone networks of
all models in this article are initialized with parameters that have
been pretrained by ImageNet, and the remaining network parts
are initialized with random parameters. To ensure the fairness
and authenticity of the network, the hyperparameter settings of
all networks in this article are consistent. The optimization algo-
rithm uses the Adam optimizer with default parameter settings,
the loss function uses Dice loss, the initial learning rate is set
to 0.0001, and the batch size is set to 8. A total of 80 epochs
of training are conducted. Each batch of images is randomly
rotated horizontally and vertically, flipped 90° and scaled for

data enhancement. The image size as input into the network is
512 × 512.

We use the evaluation metrics to measure the effectiveness of
LRAD-Net: intersection over union (IoU); precision; recall; and
F-score. The formulae of these indicators are as follows:

IoU =
TP

FN + TP + FP
(6)

Precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F-score =
2 · Precision · recall
Precision + recall

(9)

where TP refers to the number of positive samples (buildings)
predicted to be positive samples; FP is the number of negative
samples (nonbuildings) predicted to be positive; TN means the
number of negative samples expected to be negative samples;
and FN denotes the number of positive samples predicted to be
negative.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first design ablation experiments to test the
impact of different modules on network performance with WHU
aerial image dataset. Second, to evaluate the feasibility and
robustness of LRAD-Net in building extraction tasks, we use the
four datasets mentioned in Section III to do several experiments
and compare it with several the state-of-art networks.

A. Ablation Experiment

In order to explore the contribution of different modules (e.g.,
DSASPP module, SE blcok, LPA block) in improving LRAD-
Net performance, we conduct ablation experiments on WHU
aerial image dataset. We first build the baseline model based
on LRAD-Net. In the baseline, we remove the SE block and
replaced DSASPP with the ASPP (the atrous convolution with
atrous rates of {6, 12,18}) module used in Deeplabv3+. Then we
replace the LPA block with two sets of 3×3 standard convolution
layers.

On the basic of the baseline, the DSASPP block is named
(D), the SE attention module is represented by (S), and the
LPA block is called (L). Performance was evaluated on IoU,
Precision, Recall, F-score, FLOPs and parameter. The results of
the ablation study are given in Table I .

The results in Table Ⅰ show that DSASPP increases the IoU
and precision of the network by 0.39% and 0.25%, respectively.
At the same time, compared with ASPP module, DSASPP
module can slightly reduce the number of network parame-
ters and computational complexity. This shows that depthwise
separable convolution can achieve better performance while
reducing the number of model parameters and computation.
Adding the SE attention module after feature extraction of the
backbone network and before the feature fusion improves the
performance of building extraction and increased the IoU by
0.58%. Using LPA module instead of two sets of 3×3 standard
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TABLE I
INFLUENCE OF DIFFERENT MODULES ON BUILDING EXTRACTION PERFORMANCE ON THE WHU AERIAL IMAGE DATASET

TABLE II
EFFECT OF SAMPLING RATES ON SEGMENTATION PERFORMANCE OF THE NETWORK

TABLE III
QUANTITATIVE COMPARISON OF THE PROPOSED LRAD-NET WITH VARIOUS MODELS ON THE WHU AERIAL IMAGE DATASET

convolution increases IoU by nearly 1% and reduces the amount
of computation by nearly 1 time. Compared with the baseline,
LRAD-Net in IoU and precision index increased by 1.26% and
1.25%, respectively, which indicates that the model can achieve
better performance.

In order to explore the influence of sampling rate in DSASPP
on model performance, three sets of comparison experiments
were designed based on LRAD-Net, and the sampling rate of
atrous convolution in DSASPP structure was set as {612,18},
{612,18,24}, {610,14,18}, and test results are given in Table
Ⅱ. As can be seen from Table Ⅱ, LRAD-Net with the sam-
pling rate of {610,14,18} has a higher score overall than the
sampling rate of {612,18,24}, which indicates that compared
with DSASPP module with a large sampling rate, appropriately
reducing the sampling rate can make the features extracted by
atrous convolution better fit the character of the buildings in
remote sensing images. Compared with the LRAD-Net with a
sampling rate of {612,18}, the combination of {610,14,18} can
improve the precision by 0.5% and the IoU by 0.32% on the
basis of only increasing the number of parameters by 0.19M.
Therefore, LRAD-Net selected the atrous rate combination of
{610,14,18} to ensure the optimal performance of the model.

B. LRAD-Net Network Performance Experiment

To verify the segmentation performance of LRAD-Net,
we conduct experiments on the four datasets mentioned in
Section III. Here, four common classical networks (U-Net,
Deeplabv3+ and PANet [53], PSPNet [54]) and two recently
proposed lightweight networks (BiseNet [55] and BisenetV2
[56]) are used for comparison. In the classic network, we use
ResNet50 as the backbone network of U-Net, Deeplabv3+,
PANet, and PSPNet. At the same time, the lightweight network
MoblieNetv3 [57] is used as the encoder for the experiment.
Experiments show that LRAD-Net can achieve high accuracy
with less parameters. The experimental results are shown in
Tables III–VI.

As given in Table III, on the WHU aerial image dataset,
although the IoU of Deeplabv3+(Res50) is higher than U-
Net (Res50), PANet(Res50) and PSPNet(Res50) with 0.58%,
1.24%, and 2.50%, respectively, it is 0.79% lower than LRAD-
Net. The precision and F-score of LRAD-Net are also signif-
icantly higher than these compared networks. Compared with
the lightweight networks BiseNet and BiSeNetV2, LRAD-Net
is 2.37% and 2.27% higher in IoU and 1.14% and 0.76% higher
in precision. It can also be seen from Table III that Parameters of
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TABLE VI
QUANTITATIVE COMPARISON OF THE PROPOSED LRAD-NET WITH VARIOUS MODELS ON SELF-ANNOTATED UAV DATASET

TABLE IV
QUANTITATIVE COMPARISON OF THE PROPOSED LRAD-NET WITH VARIOUS MODELS ON THE WHU SATELLITE IMAGE DATASET

TABLE V
QUANTITATIVE COMPARISON OF THE PROPOSED LRAD-NET WITH VARIOUS MODELS ON THE INRIA AERIAL IMAGE DATASET

LRAD-Net is only 7.30M, compared with U-Net, Deeplabv3+,
PANet, and PSPNet, the parameters and Flops of LRAD-Net
are 3×4 times lower. This shows that LRAD-Net not only has
a significant improvement in model performance, but also has
a significant advantage in the number of parameters and FlOPs.
Compared with BiSeNet and BiSeNetV2 network, the number
of parameters of LRAD-Net has no significant difference, but its
precision index such as IoU is significantly higher. According
to the comprehensive accuracy index and application index,
LRAD-Net outperforms the above seven networks in building
extraction.

It can be seen from Tables IV and V, in the WHU satellite
Image dataset and the Inria aerial image dataset, IoU of all
networks are generally not high. In the WHU satellite dataset,
lightweight models, such as Deeplabv3+(MobileNetv3) and
BiSeNet have better extraction effect than larger models, such as
Deeplabv3+(Res50) and U-Net(Res50). This is because WHU
satellite dataset has a small amount of data and sparse distri-
bution of buildings and there are obvious mismarks and omis-
sions, which affect the performance of the deep network model.
Compared with Deeplabv3+(MobileNetv3) and BiSenetV2, the
IoU of LRAD-Net increased by 1.27% and 0.52%, respectively.
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Fig. 8. Examples of the building extraction results by our proposed LRAD-Net, and various models on the WHU aerial image dataset. (a) Image. (b) Label.
(c) Deeplabv3+(Res50). (d) Deeplabv3+(Mbv3). (e) PANet(Res50). (f) U-Net(Res50). (g) PSPNet(R-es50). (h) BiSeNet. (i) BiSeNetV2. (j) LRAD-Net.

This is because LRAD-Net integrates the attention mechanism
in the feature fusion stage, so that the network can pay more
attention to the architectural information in the image, and
DSASPP module and LRA module can extract more effective
and accurate feature information.

As the spatial resolution of the datasets used above are 0.3 m,
some details of the buildings with small size may be ignored, the
advantages of our proposed network are difficult to highlight. In
order to validate the robustness of LRAD-Net, we do more exper-
iments with a self-annotated building dataset with spatial resolu-
tion 0.1 m. Table VI gives the quantitative comparison of the pro-
posed LRAD-Net with other models on the self-annotated UAV
dataset. It is clear that LRAD-Net has higher IoU than BiSeNet
and BiSeNetV2 with 3.99% and 4.32%, respectively. Compared
with U-Net(Res50), PANet(Res50), Deeplabv3+(Res50), and
PSPNet(Res50), it has a very small number of parameters.

It can be seen from Tables Ⅲ–VI that the performance
of different networks on different datasets is different. In
general, complex networks, such as Deeplabv3+(Res50) and
U-Net(Res50) perform better than lightweight networks, such as
Bisenet on datasets with large amount of data and good quality,
while WHU satellite image dataset with small amount of data
and inaccurate image labels perform poorly. Compared with
these networks, LRAD-Net can achieve the best performance
on different data sets, which fully demonstrates the superiority
of LRAD-Net network.

In order to better observe the specific performance of the
n-etwork in building segmentation, Figs. 8–11 show the spe-
cific effect of LRAD-Net and other networks in extracting
buildings on four datasets. The letter numbers in the figure
r-efer to (a) input picture, (b) image label, (c) Deeplabv3+(Re-
sNet50), (d) Deeplabv3+(Mobilenetv3), (e) PANet(ResNet-

50), (f) U-Net(ResNet50), (g) PSPNet(ResNet50), (H) BiSeNet,
(I) BiSeN-etV2, and (j) LRAD-Net.

It can be seen from scene 1 of Fig. 8 that Deeplabv3+(Res50),
U-Net(Res50) and LRAD-Net can completely extract
large buildings in WHU aerial image dataset, while
Deeplabv3+(MobileNetv3) and PSPNet(Res50) have obvious
leakage phenomenon. From the marks in scene 2, we can
see that for irregular buildings, LRAD-Net can accurately
extract the outline of the building, and there is no obvious
void phenomenon. As can be seen from scenes 3, 4, and 5,
for areas with dense buildings, LRAD-Net can accurately
extract the boundaries of adjacent buildings, with relatively few
misclassification phenomena.

According to scenes 1 and 4 in Fig. 9, when extracting a
single regular building from the WHU satellite image dataset,
U-Net(MobileNetv3), BiSeNet and LRAD-Net have good per-
formance, while the other five networks have poor effects.
PANet(Res50), PSPNet(Res50), and BiSeNetV2 have serious
missing scores and misclassification phenomenon, this is due to
the simple network structure of PANet(Res50), PSPNet(Res50),
and BiSeNetV2 cannot fully extract the deep features of build-
ings. As can be seen from the red areas in scenes 2 and
3, there are close adjacent buildings in the image, and there
is shadow occlusion, which leads to the network misjudg-
ing the boundary of the building, resulting in poor segmen-
tation effect. However, this phenomenon is not obvious in
LRAD-Net.

In the Fig. 10, LRAD-Net can also perform better segmenta-
tion effect in the face of scenes with no obvious color difference.
It can be seen from scene 1 in Fig. 10 that LRAD-Net can
effectively extract irregular buildings and reduce the occurrence
of misclassification and voids.
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Fig. 9. Examples of the building extraction results by our proposed LRAD-Net, and various models on the WHU satellite image dataset. (a) Image. (b) Label.
(c) Deeplabv3+(Res50). (d) Deeplabv3+(Mbv3). (e) PANet(Res50). (f) U-Net(Res50). (g) PSPNe(R-es50). (h) BiSeNet. (i)BiSeNetV2. (j) LRAD-Net.

Fig. 10. Examples of the building extraction results by our proposed LRAD-Net, and various models on the Inria aerial image dataset. (a) Image. (b) Label.
(c) Deeplabv3+(Res50). (d) Deeplabv3+(Mbv3). (e) PANet(Res50). (f) U-Net(Res50). (g) PS-PNet(Res50). (h) BiSeNet. (i) BiSeNetV2. (j) LRAD-Net.

We can see in scenario 1 in Fig. 11, on the self-annotated
UAV dataset with higher a spatial resolution, PANet(Res50),
PSPNet(Res50), and BiSeNetV2 networks misclassified a large
area of ground into buildings, which is caused by the high spatial
resolution of images and the similarity of spectral informa-
tion between buildings and the ground. LRAD-Net can extract
buildings accurately without obvious misclassification. It can

also be seen from scenes 23 and 4 in Fig. 11 that LRAD-Net
can also extract buildings well on images with different
luminance.

In general, compared with other networks, LRAD-Net has
obvious advantages in extracting medium and large buildings,
and also has certain advantages in identifying small building
groups.
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Fig. 11. Examples of the building extraction results by our proposed LRAD-Net, and various models on self-annotated UAV dataset. (a) Image. (b) Label.
(c) Deeplabv3+(Res50). (d) Deeplabv3+(Mbv3). (e) PANet(Res50). (f) U-Net(Res50). (g) PSPNet(Re-s50). (h) BiSeNet. (i) BiSeNetV2. (j) LRAD-Net.

Fig. 12. Comparison of networks prediction speed.

C. LRAD-Net Network Time Efficiency Experiment

Due to the infer speed of a model on a specific hardware, it is
affected by several factors, such as hardware features, software
implementation, and system environment, in addition to the
parameters and FLOPs. Therefore, to verify the inference speed
of LRAD-Net, we have tested the speed of LRAD-Net against
seven other networks to predict a single three-channel image
(512×512) on an NVIDIA GeoForce RTX 3080. The result is
shown in Fig. 12.

As can be seen from Fig. 12, the speed of BiSeNet,
BiSeNetV2, and LRAD-Net is almost the same. Compared
with U-Net(Res50), Deeplabv3+(Res50), and other networks,
they have obvious advantages in speed, which is of great help
to practical applications. Combined with the accuracy of the

four datasets, LRAD-Net can achieve a good balance between
accuracy and speed.

V. CONCLUSION

Based on encoding/decoding structure, this article proposes a
lightweight building segmentation network LRAD-Net. LRAD-
Net makes best use of the advantages of Reg600 network, SE
module, and proposed DSASPP and LPA module, DSASPP
expands the sensitivity field through parallel sampling with
depthwise separable atrous convolution of multistage sampling
rate, enrich semantic information, and avoids the problem of
segmentation errors caused by falling into local features. SE
attention module can improve the weight of building features
and reduce the interference caused by noise information during
feature fusion of LRAD-Net. The LPA module in decoder can
extract more building information with fewer parameters and
improve the accuracy of building extraction. Compared with
the commonly used semantic segmentation network, LRAD-Net
can achieve a balance between precision and speed, and has
better help for practical applications. Although LRAD-Net per-
forms better than common semantic segmentation networks in
reasoning speed, it is still far from ideal, how to further improve
its reasoning speed will be our future work.
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