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MVCNN: A Deep Learning-Based Ocean—Land

Waveform Classification Network for
Single-Wavelength LiDAR Bathymetry

Gang Liang“, Xinglei Zhao

Abstract—QOcean-land waveform classification (OLWC) is cru-
cial in airborne LiDAR bathymetry (ALB) data processing and
can be used for ocean-land discrimination and waterline extrac-
tion. However, the accuracy of OLWC for single-wavelength ALB
systems is low given the nature of the green laser waveform in
complex environments. Thus, in this article, a deep learning-based
OLWC method called the multichannel voting convolutional neural
network (MVCNN) is proposed based on the comprehensive utiliza-
tion of multichannel green laser waveforms. First, multiple green
laser waveforms collected in deep and shallow channels are input
into a multichannel input module. Second, a one-dimensional (1-D)
convolutional neural network (CNN) structure is proposed to han-
dle each green channel waveform. Finally, a multichannel voting
module is introduced to perform majority voting on the predicted
categories derived by each 1-D CNN model and output the final
waveform category (i.e., ocean or land waveforms). The proposed
MVCNN is evaluated using the raw green laser waveforms collected
by Optech coastal zone mapping and imaging LiDAR (CZMIL).
Results show that the overall accuracy, kappa coefficient, and
standard deviation of the overall accuracy for the OLWC utilizing
green laser waveforms based on MVCNN can reach 99.41 %, 0.9800,
and 0.03 %, respectively. Results further show that the classification
accuracy of the MVCNN is improved gradually with the increase in
the number of laser channels. The multichannel voting module can
select the correct waveform category from the deep and shallow
channels. The proposed MVCNN is highly accurate and robust,
and it is slightly affected by aquaculture rafts and the merging
effect of green laser waveform in very shallow waters. Thus, the
use of MVCNN in OLWC for single-wavelength ALB systems is
recommended. In addition, this article explores the relationships
between green deep and shallow channel waveforms based on the
analysis of CZMIL waveform data.

Index Terms—Airborne lidar bathymetry, deep learning,
multichannel green laser waveforms, multichannel voting, ocean—
land waveform classification.
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1. INTRODUCTION

IRBORNE LiDAR bathymetry (ALB) uses a scanning,

pulsed, and green laser beam for shallow water measure-
ments, which has the advantages of high efficiency and flexibility
[11, [2], [3], [4], [51, [6], [71, [8], [9]. Apart from depth mea-
surements, ALB has been applied to ocean—land discrimination,
suspended sediment concentration monitoring, habitat mapping,
ocean wave pattern analysis, and seabed classification [9], [10],
[11], [12]. Presently, many advanced and commercial ALB
systems exist, such as Optech coastal zone mapping and imaging
LiDAR (CZMIL), Optech Aquarius, Optech SHOALS series,
AHAB HawkEye III, Fugro LADS-MK3, USGS experimen-
tal advanced airborne research LiDAR (EAARL), and RIEGL
VQ-880-G [13], [14]. Single-wavelength ALB systems, such
as Fugro LADS-MK3, use a single green laser that penetrates
typical waters with the least attenuation to detect the water
surface and bottom [2]. Dual-wavelength ALB systems, such as
Optech CZMIL, emit a green laser to detect the water bottom and
an additional infrared (IR) laser to accurately detect the water
surface and overcome the water surface uncertainty problem of
green lasers [2], [5].

A typical ALB system is equipped with a laser sensor, an
inertial navigation device, a global navigation satellite system
receiver, and an integrated digital camera if necessary [15].
Photomultiplier tubes or avalanche photodiodes in laser sensors
are used to detect return pulses, which are then digitized and
recorded per nanosecond as return laser full waveforms [16].
ALB systems can integrate ocean and land measurements and
receive ocean and land return waveforms. Ocean—land waveform
classification (OLWC) is vital for ALB systems for the following
reasons.

1) OLWCiscrucial in ALB data processing. The components
of ocean and land return waveforms differ from one an-
other. On the one hand, a typical green laser waveform of
land comprises multiple returns reflected from vegetation
and land surfaces. On the other hand, a typical green
laser waveform of oceans with clear water comprises
three returns, namely, water surface, volume backscatter,
and water bottom returns [1], [14]. Waveform processing
purposes, techniques, and methods for land and ocean
waveforms also differ from one another. Thus, ocean and
land waveforms must be properly classified.
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2) OLWC can be used for ocean—land discrimination and wa-
terline extraction by integrating the waveform categories
(ocean or land) derived by OLWC and the corresponding
positions of laser irradiation points [14].

OLWC was performed for the single- and dual-wavelength

ALB systems.

1) Dual-Wavelength ALB Systems: IR and green lasers are
used in dual-wavelength ALB systems; thus, IR and green
laser waveforms can be used for OLWC. OLWC utilizing IR
laser waveforms achieves high accuracy due to the significant
difference in IR laser waveform features of ocean and land [9],
[13]. For example, the amplitudes of IR laser waveforms of land
are typically larger than those of ocean [9], [13], [14]. An IR laser
waveform saturation method was proposed [1] and verified as
an effective OLWC method for the Optech SHOALS series [12].
With the development of ALB systems, full waveforms with a
wide amplitude range can be digitized and recorded [16]; thus,
the IR laser waveform of land is no longer saturated. The dual-
clustering method was proposed to solve the limitation of the
IR laser waveform saturation method by performing K-means
clustering for IR laser waveform amplitudes and density-based
spatial clustering of applications with noise (DBSCAN) for laser
points, achieving an overall accuracy of nearly 100% [9].

Furthermore, features derived from green laser waveforms
can help improve the overall accuracy of OLWC [13], [17],
[18], [19], [20]. Waveform features, such as amplitude, full
width at half maxima (FWHM), area, and amplitude ratio of
IR and green lasers, can be extracted and combined to perform
OLWC by using support vector machines (SVMs) [13], [18],
[19]. A one-dimensional (1-D) convolutional neural network
(CNN) was used to perform OLWC for dual-wavelength ALB
systems by automatically extracting waveform features using
convolutional layers [20].

2) Single-Wavelength ALB Systems: 1deally, OLWC can be
realized using only green laser waveforms [21]. High-accuracy
OLWC utilizing only green laser waveforms without additional
information, such as IR laser waveforms, is extremely important,
especially for single-wavelength ALB systems [14]. Unfortu-
nately, this is not an easy goal to achieve given the nature of green
laser waveforms in complex environments [14], [21]. Water sur-
face, volume backscatter, and water bottom returns in the green
laser waveform of very shallow waters cannot be discriminated
and merged into a single return [22]. This merging effect causes
the green laser waveforms of very shallow waters to be similar
to those of land [14]. Meanwhile, land topography also causes
some green laser waveforms of land to be similar to the green
laser waveforms of oceans [14]. These special waveforms are
misclassified. Currently, OLWC utilizing green laser waveform
features via fuzzy c-means clustering (FCM) [14] or SVM [13]
can achieve an overall accuracy of less than 94%, which is
significantly lower than that using IR laser waveforms.

In summary, OLWC for dual-wavelength ALB systems that
depend on IR and green laser waveforms is reliable and accurate.
However, the accuracy of OLWC for single-wavelength ALB
systems that depends only on green laser waveforms is low and
must be improved. With the development of ALB devices, ALB
can collect multichannel waveforms by segmenting the field of

view (FOV) of receiver telescopes. Different channel waveforms
vary in their responses to the ocean and land environment. The
accuracy of OLWC can be improved if multichannel green wave-
forms are comprehensively used. Thus, this article proposes
a deep learning-based OLWC method called the multichannel
voting CNN (MVCNN), which comprehensively utilizes multi-
channel green laser waveforms by performing majority voting,
to improve the accuracy of OLWC for single-wavelength ALB
systems.

1I. DATA AND METHODS
A. Study Area and Data

The ALB data used in this article were collected using Optech
CZMIL around Qinshan Island of Lianyungang City, Jiangsu
Province, China. The detailed descriptions of the experimen-
tal area can be found in [9]. The nominal parameters of the
CZMIL system for laser pulse repetition rate, scanner frequency,
scan angle, flight altitude, flight velocity, strip width, maximum
measurable depth, and minimum measurable depth are 10 kHz,
27 Hz, 20°, 400 m, 140 kts, 294 m, 4.2/K4 (bottom power
reflectivity > 15%), and 0.15 m, respectively [23]. The CZMIL
system adopts a collinear and synchronous method to emit
green and IR laser pulses with a circular beam scanning pattern
[24], [25]. The CZMIL optical system uses a rotating Fresnel
prism to emit a laser beam and multiple channels to collect
return laser waveforms [16]. CZMIL is a dual-wavelength ALB
system, but it can be treated as a single-wavelength ALB system
when only the green laser waveforms collected in its deep and
shallow channels are used for OLWC. The IR laser waveforms
of the CZMIL system can be used as a highly accurate external
reference for OLWC utilizing green laser waveforms.

Fig. 1(a) shows the location of the study area and the track
line of three strips, i.e., strips C14-C16, with the arrows rep-
resenting the flight directions. Each strip contains ocean and
land waveforms. The C14 strip is selected as the training set to
train the model, the C15 strip is selected as the validation set to
adjust the network structure and parameters, and the C16 strip
is used as the test set to evaluate the model. The CZMIL system
can collect nine laser waveforms by using multiple channels for
each laser shot, and the effective signal length of each waveform
18 320 bins. There are 304322, 286328, and 294654 laser shots in
the training, validation, and test sets, respectively. Typical mul-
tichannel green laser waveforms of the ocean and land collected
by the CZMIL system are shown in Figs. 2 and 3, respectively.
The positions of the laser irradiation points (i.e., longitude,
latitude, and elevation) of the corresponding waveforms can be
calculated by merging the propagation distances of the laser
pulses, the scanning angles of the laser beams, the position and
orientation data of the sensor, and the configuration parameters
for system installation [15]. The locations of the laser irradiation
points of the corresponding typical ocean (blue triangle) and
land (red triangle) waveforms are shown in Fig. 1(a). The color
shaded-relief image obtained using the laser points is shown in
Fig. 1(b).

Traditional machine learning (ML) requires time-consuming
waveform analysis and manual feature extraction, and the fixed
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Fig. 1. Study area. (a) Location of the study area. (b) Color shaded-relief image.
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Fig. 2. Typical green laser waveforms of the ocean collected by (a) deep channel and (b)—(h) shallow 0-6 channels.
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Fig. 3. Typical green laser waveforms of land collected by (a) deep channel and (b)—(h) shallow 0-6 channels.
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and handcrafted features may not be optimal. As the size of
the data increases, the disadvantages of ML gradually become
significant. Deep learning (DL) can automatically extract fea-
tures from numerous raw laser waveforms to maximize the
classification accuracy without the need for prior knowledge,
making it ideal for big ALB data processing. CNN is a well-
known deep learning architecture characterized by a sequence of
convolutional and pooling layers, followed by one or more fully
connected layers. As shown in Fig. 4, our proposed MVCNN
comprises one multichannel input module, multiple 1-D CNN
modules, and one multichannel voting module.

B. Multichannel Input Module

A traditional green laser pulse from the laser emitter of the
ALB system interacts with the environment to produce a return
pulse that is detected by a photomultiplier tube or avalanche
photodiode in the laser sensor. Then, the return pulse is digitized

Overview of the proposed model, MVCNN, for OLWC utilizing single-wavelength ALB systems.

and recorded per nanosecond as areturn laser full waveform. The
green laser waveform can be expressed as

€]

where ay; is the amplitude (digitizer count) of the ith nanosecond
of the green laser waveform A, and n is the waveform length.
The green laser waveform is considered a 1-D time series that
can be input into a 1-D CNN.

Multiple green laser channels are proposed to meet the
challenge of seamless transitions between measurements in
bathymetry and topography modes [16]. ALB systems have
started to adopt multiple green laser channels by segmenting the
FOV of receiver telescopes [14]. Fig. 5 shows a nonscaled illus-
tration of the distributions of the multichannel FOVs of Optech
CZMIL, with the X-axis representing the flight direction. Optech
CZMIL presents one IR channel with 6 mrad, one green deep
channel with 6-40 mrad FOV, and seven green shallow channels
with 1.9 mrad FOV. The MVCNN can use multichannel green

A: {a/tlaatQa-"7ati7"'7atn}
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Fig.5. Distributions of the multichannel FOV's of optech CZMIL (nonscaled).

laser waveforms by setting a multichannel input module in front
of the 1-D CNN module for separately inputting multichannel
green laser waveforms into the corresponding 1D CNN. The
CZMIL system used in this article has eight green laser channels;
thus, the number of channels of the multichannel input module
is set to 8.

C. One-Dimensional CNN Module

Fig. 6 shows the structure of the 1-D CNN module proposed in
this article. The 1-D CNN module mainly comprises four feature
extraction modules, one attention mechanism (AM) module, and
one classification module.

1) Feature Extraction Module: The 1-D convolutional [26]
layer uses a 1-D filter of the preset width to locally convolve
the input data in the order of step size and then outputs the
corresponding features. The convolution is calculated as follows
[27]:

Zi = wi @+ b @)
where z! is the input patch centered at location i of the /th layer,
w! and b}, are the weight matrix and bias term of the kth filter
of the Ith layer, respectively, and z]i is the kth feature map of
the /th layer. The width of the convolution kernels of the four
feature extraction modules is set to 3, and the number is set to 32,
32, 64, and 64. The number of convolution kernels per layer is
equal to the number of feature maps in that convolutional layer
due to the parameter sharing mechanism. Therefore, the shallow
convolutional layer uses fewer convolution kernels to extract
low-level features, and the deep convolutional layer uses more
convolution kernels to extract enriched higher-level features to
reduce the number of parameters and prevent overfitting.

Batch normalization (BN) can dramatically accelerate the
training of deep networks and address the gradients that explode
or vanish, and it also acts as a regularizer [28]. Therefore, a
BN layer is set after the convolutional layer to accelerate the
convergence and improve the robustness of the network. The
nonlinear representation capability of the network is enhanced
by setting a rectified linear unit [29], [30] layer after the BN
layer.

Pooling transforms the joint feature representation into a
new and more usable representation to preserve important in-
formation while discarding irrelevant details [31]. For CNNss,
pooling reduces the input size of the next layer by subsampling
the feature maps, thus lowering the computational burden and
achieving shift invariance [27], [32]. Max pooling selects the
largest element in each pooling region to better preserve the
data texture features; thus, a max pooling layer is set after the
second feature extraction module. Max pooling is calculated as
follows [33]:

Pir = max (ykoq) (3)

(0,p)€Rik

where yj,, is the element at (o, p) within the pooling region
R i, which represents a local neighborhood around position i of
the kth feature map, and p;j is the related output of the pooling
operator. The size and step size of the pooling kernel are set
to 2.

Global max pooling [34] selects the largest element in each
feature map to significantly reduce the parameters of the fully
connected layers in the AM and classification modules, thereby
saving computational resource and time while effectively pre-
venting overfitting. Therefore, a global max pooling layer is
set between the fourth feature extraction module and the AM
module. The global max pooling is calculated as

g = max (yx) “)

where yy, is the activation value of the kth feature map and gy, is
the related output of the pooling operation.

2) AM Module: The feature extraction module extracts var-
ious features from the green laser waveforms. However, differ-
ences exist in the features of green laser waveforms collected
at different times and regions in complex ocean—land environ-
ments. Some features can be used to classify ocean—land wave-
forms, whereas others can interfere with the classification and
reduce the generalization ability and robustness of the model.
Therefore, an AM must be introduced to adaptively weight the
feature maps enabling the model to focus more on features with
important information while suppressing the invalid features.
The AM module comprises a fully connected layer and a sigmoid
layer. The fully connected layer takes all neurons in the previous
layer and connects them to every single neuron of the current
layer to generate global semantic information [27]. The number
of neurons in the fully connected layer of the AM module is the
same as the number of feature maps, which is set to 64. Let the
activation value sequence of each feature map after the global
max pooling operation be G = [g1, ¢, ..., gx] ", and let K be
the number of feature maps. First, the feature sequence is input
to the fully connected layer and activated by sigmoid to obtain
the attention weight S of each feature map. This scheme can be
expressed as

S =6(WG+b)=[s1,52,...,51]" ®)
where W and b are the weight matrix and bias vector of the fully
connected layer, respectively, and §(-) is the sigmoid function.
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Fig. 6.  Structure of the proposed 1-D CNN module.

The sigmoid function is expressed as follows [28]:

1
() = 1+e®
where x is the output of the fully connected layer. After sigmoid
activation, the attention weights take values distributed between
(0,1). Then, the attention weights S and the primitive feature
sequence G are operated as element products to obtain the feature
sequence G’ after the AM screening, which is expressed as

G' = SG. 7

(o)

(6)

3) Classification Module: The feature extraction module
performs deep feature extraction of the green laser waveforms
and adaptively weights the obtained features by using the AM
module to filter out the useful classification feature information.
The feature sequences filtered by AM are input to the classi-
fication module for the classification task. The classification
module comprises a fully connected layer and a softmax layer.
In the classification module, the number of fully connected layer
neurons is the same as the number of waveform classes, which
is set to 2. The last layer of the CNN is an output layer. For the
classification task of CNN, the softmax operator is commonly
used as the last layer [35]. The softmax function is defined as
follows [36]:

e’
——r— (®)
! Z?:l ers
where x; is the output of the ith neuron of the fully connected
layer, i = {1, 2}, and y;, is the activation value (i.e., predicted
scores) corresponding to the probability of the input data of the
CNN affiliated with category i.

Training a CNN is a global optimization problem. The opti-
mum parameters (e.g., weight matrices and bias vectors) can be
determined by minimizing the loss function. The CNN model
in this article is trained using the following binary cross-entropy
loss function [37]:

J=- 1\14 Zj\jzl Z; tmilog(Ymi) 9)

where M is the number of training samples, and t,,; is the
indicator that the mth sample belongs to the ith category. #,,;
is 1 if the sample belongs to the ith category; otherwise, t,,; is
0. yim; is the output for the training sample m for category i of
the softmax function, and J is the value of the loss function.

BN layer IE -| Global max pooling |— E i —)

' Land waveform

D. Multichannel Voting Module

Green laser waveforms of very shallow waters misclassified
as land waveforms and green laser waveforms of special land
topography misclassified as ocean waveforms both reduce the
overall accuracy of OLWC for single-wavelength ALB systems
[14]. The complex environment distinctly affects the OLWC of
different channel waveforms. The responses of lasers in different
channels to the environment are different. The characteristics
of green laser return waveforms collected by multiple channels
with different FOVs for the same laser shot are dissimilar. OLWC
utilizing green laser waveforms collected in the deep channel
with a large FOV is highly influenced by the merging effect
[14]. Green laser waveforms collected in shallow channels with
a small FOV can classify more very shallow waters than those
collected in deep channels. However, green shallow channel
waveforms are largely influenced by noise because of the small
FOVs, which reduce the overall accuracy of the OLWC utilizing
green shallow channel waveforms [14]. For the green laser
waveforms of land with multiple returns, the laser energy is
distributed to multiple returns, thereby reducing the amplitude
of a single return and further resulting in the misclassification
of such special waveforms. Therefore, the overall accuracy is
low when green laser waveforms collected in deep channels or
in shallow channels are used separately. Thus, the multichannel
voting module is proposed to take advantage of the green laser
waveforms collected in deep and shallow channels with different
responses to the environment, hence reducing the influence of
special waveforms on OLWC.

The multichannel voting module votes on the predicted cat-
egories of each channel 1-D CNN module according to the
majority voting rules and selects the category with more than
half of the votes as the final category . The number of ocean and
land category votes may be equal when the number of channels
is even. In this case, the predicted category of the deep channel is
the final category because the deep channel waveform performs
better than the shallow channel waveform for OLWC [14]. This
process can be described as follows:

ocean waveform O>1L
¢ = ¢ land waveform O<L (10)
category of deep channel O = L

where O and L are multiple 1-D CNN module vote numbers
for the waveform of the laser shot belonging to ocean and
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land categories, respectively. The multichannel voting module
ensures that the classification results of each laser shot are jointly
decided by the waveforms of multiple channels, thus avoiding
extreme instances and improving the accuracy and robustness
of the OLWC.

E. Comparison Methods

1) ML Methods: The OLWC of the single-wavelength ALB
is commonly performed by traditional ML methods, including
unsupervised clustering algorithms, such as FCM, or super-
vised classification algorithms, such as SVM. The shape of
the green laser waveform of water differs from that of land.
Thus, ocean—land waveforms can be classified using green laser
waveform amplitudes through FCM [14]. Other features, such
as the FWHM and area of the green laser waveform, can be used
to train the SVM for OLWC [13].

2) DL Methods: Hu et al. [20] constructed a 1-D CNN
(hereafter referred to as Hu’s 1-D CNN) for OLWC utilizing
dual-wavelength ALB systems. Fig. 7 shows the structure of
Hu’s 1-D CNN. This 1-D CNN includes four convolutional
layers, two pooling layers, and one fully connected layer. Un-
like MVCNN, this method inputs three channels of waveform
data into CNN simultaneously for OLWC and has only one
end-to-end 1-D CNN model. Our proposed method inputs each
channel waveform data into one CNN individually, performs
OLWC utilizing the multichannel voting module, and has mul-
tiple end-to-end 1-D CNN models. Hu’s 1-D CNN is oriented
to dual-wavelength ALB systems and cannot be directly applied
to single-wavelength ALB systems. Thus, as shown in Fig. 8,
Hu’s 1-D CNN is modified (hereafter referred to as modified
Hu’s 1-D CNN) by removing the IR laser waveform from the
input layer and increasing the number of green laser channels to
make it suitable for single-wavelength ALB systems.

i|  Softmax layer :
ot |

. Land waveforms

F. Evaluation Methods

1) Reference Method: The dual-clustering OLWC utilizing
IR laser waveforms is robust and highly accurate [9]. The
dual-clustering method has two levels. The first level removes
outliers in the IR laser waveform amplitudes via K-means clus-
tering, while the second level removes geographic outliers by
using DBSCAN to correct the misclassified IR laser waveforms
derived by the first level [9]. This method is used as an external
reference method to evaluate different OLWC methods utilizing
green laser waveforms.

2) Evaluation Metrics: Precision (P), recall (R), F; score
(F1), overall accuracy (OA), and kappa coefficient (Kappa) are
calculated using the reference and prediction categories as a
way of quantifying the classification performance of different
models.

The DL algorithm has a certain randomness, such as the
random initialization of model parameters. If the model is trained
several times using the same training data, then the model param-
eters obtained from the model training are different, resulting
in the different accuracies of the model for the test data. The
standard deviation of OA (SDOA) of the DL models obtained
from each training for the test data is proposed to evaluate the
robustness of the model. SDOA is calculated as

sz‘vzl (OAi - % Z;vzl OAj)2
N -1

SDOA =

an

where N is the number of training and OA; is the overall accuracy
of the ith training model. The smaller the SDOA, the more robust
the model.



LIANG et al.: MVCNN: A DL-BASED OLWC NETWORK FOR SINGLE-WAVELENGTH LIDAR BATHYMETRY

34875t

934872 |

=
cn

O 0.6

34.869 |

'

Membership value

Latitude (d

34.866 |

119.272 119.278 119.284 119.29
Longitude (degree)

(a)

Fig. 9.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experiments of ML Methods

1) FCM Experiment: The waveform amplitude is extracted
from the test set of the deep channel waveforms to conduct
OLWC utilizing FCM. Fig. 9(a) and (b) shows the membership
values of each laser shot belonging to the ocean and land
categories generated by the FCM, respectively. The cluster
centroids for ocean and land waveform amplitudes are 925.57
and 1008.50 digitizer counts, respectively. Fig. 10 presents the
laser point positions (i.e., longitude and latitude of the laser
irradiation points) of the corresponding ocean (blue) and land
(red) waveforms of the test set classified by the FCM. The yellow
curve represents the waterline obtained by the reference method.
A typical misclassified waveform collected by the deep channel
is attached to the right of each position figure. As shown in
the figure, the special green laser waveform of land is wider
than the typical waveform of land and has multiple peaks,
thus reducing the amplitude of each peak, further leading to
misclassification. The misclassified waveforms of the ocean are
mainly induced by the merging effect. In very shallow waters,
the water surface, volume backscatter, and water bottom returns
of the green laser waveform merge into a single return, causing
a large amplitude of the ocean’s green laser waveform and
a misclassification [14].

2) SVM Experiment: The amplitude, FWHM, and area of the
deep channel raw waveforms are calculated. Then, the features
of the training set of the deep channel waveforms are input
into the SVM for training. Finally, the trained SVM is used
for the OLWC test set. Fig. 11 shows the laser point positions
of the corresponding ocean (blue) and land (red) waveforms of
the test set classified by the SVM. The number of misclassi-
fied waveforms obtained by the SVM is less compared with
that obtained by the FCM. The SVM can correctly classify
many land waveforms affected by topography, but it cannot
correctly classify ocean waveforms affected by the merging
effect.
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Membership values belonging to (a) ocean and (b) land categories derived by the FCM.

B. Experiments of DL Methods

1) Network Model Training Environment and Parameters:
Network models are built, trained, and tested using the MAT-
LAB deep learning framework installed on a Windows 10 op-
erating system with an Intel Core i5-7300HQ, 32 GB random
access memory (RAM), and an NVIDIA GeForce GTX 1050 Ti
(4 GB). The training parameters include a learning rate of 0.001,
a batch size of 1024, several batches of 891 (three epochs), a
gradient descent optimizer of Adam, and the training set shuffled
before each epoch round.

2) Modified Hu’s 1-D CNN Experiment: The training sets
of eight-channel raw green laser waveforms are simultaneously
input into the modified Hu’s 1-D CNN. Fig. 12 shows the trends
of accuracy and loss function values of the model during the
training process. The model converges after 891 batches, and
the accuracy and loss are close to 100% and 0, respectively. The
modified Hu’s 1-D CNN model is trained ten times under the
same experimental conditions, and the ten groups of modified
Hu’s 1-D CNN model are obtained and used to classify the
validation and test sets. Fig. 13 exhibits the laser point positions
of the corresponding ocean (blue) and land (red) waveforms of
the test set classified by the modified Hu’s 1-D CNN, with the
OA closest to the averaged OAs of the ten groups. The modified
Hu’s 1-D CNN can correctly classify most of the land waveforms
affected by topography. However, the modified Hu’s 1-D CNN
misclassifies many ocean waveforms because of the presence of
aquaculture rafts and the merging effect in very shallow waters.
The merging effect causes the green laser waveforms of very
shallow waters to be similar to those of land [14]. Multiple
peaks tend to appear when green laser irradiates the rafts and
water, resulting in similarity with land waveforms with multiple
returns, further leading to misclassification [9].

3) MVCNN Experiment: The multichannel input module is
used to input the training set of the eight-channel raw green laser
waveforms to the eight 1-D CNNs for training. Fig. 14 shows
the training process of the proposed 1-D CNN. The accuracy
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Fig. 10.

Classification results obtained from the FCM for the test data. Positions of laser irradiation points of the corresponding (a) ocean and (c) land waveforms

classified by the FCM, (b) a typical land waveform of the deep channel misclassified as an ocean waveform, and (d) a typical ocean waveform of the deep channel

misclassified as a land waveform.

and loss of the model converge after 891 batches. Then, the
categories of the validation and test sets are obtained using the
multichannel voting module. The MVCNN is trained ten times
under the same experimental conditions, and the ten groups
of MVCNNSs are obtained and used to classify the validation
and test sets. Fig. 15 shows the laser irradiation point positions
of the corresponding ocean (blue) and land (red) waveforms
of the test set classified by the MVCNN, with the OA closest
to the averaged OAs of the ten groups. The MVCNN has the
highest boundary consistency with the reference waterline and
the fewest misclassified waveforms compared with the other
three methods.

C. Results of the Accuracy Evaluation

The test set is not involved in the training adjustment of an
OLWC model, and the generalization ability of the model can
be tested. Table I shows the accuracy evaluation results of the
FCM, SVM, modified Hu’s 1-D CNN, and MVCNN on the test
set, in which the optimal metrics are bolded, and all metrics
for the CNN models are averaged except for SDOA. Fig. 16
shows the confusion matrix of all methods. The number of green

TABLE I
ACCURACY EVALUATION RESULTS OF THE FCM, SVM, MODIFIED HU’s 1-D
CNN, AND MVCNN

. Modified Hu’s

Metrics FCM SVM 1D CNN MVCNN
P (%) 96.97 98.53 99.71 99.58
Ocean R (%) 97.61 99.33 98.52 99.70
Fi (%)  97.29 98.92 99.11 99.64
P (%) 88.90 96.83 93.77 98.62
Land R (%) 86.26 93.28 98.71 98.11
Fi (%)  87.56 95.03 96.15 98.36
OA (%) 95.55 98.23 98.56 99.41
Kappa (x100) 84.85 93.95 95.27 98.00
SDOA (%) — — 0.51 0.03

laser waveforms of the test set used by SVM is less than that of
the other three methods because the FWHM features cannot
be extracted from 202 laser waveforms. Table I and Fig. 16
demonstrate that the MVCNN has obvious advantages over the
other methods in terms of accuracy and robustness, as shown
by the better F;, OA, Kappa, and SDOA than those of the other
methods.
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Trends of accuracy and loss in training the modified Hu’s 1-D CNN.

Loss

Figs. 10, 11, 13, and 15 show the inability of the manually
extracted features to accurately classify the ocean waveforms
affected by the merging effect and the land waveforms affected
by topography. By contrast, the features automatically extracted
by the DL methods can well identify the special land waveforms
from ocean waveforms. As shown in Fig. 13(c), many ocean
waveforms are misclassified as land waveforms by the modified
Hu’s 1-D CNN, taking the waterline obtained by dual-clustering
of IR laser waveforms as the reference. These misclassified
ocean waveforms are concentrated in the areas of very shal-
low waters and aquaculture rafts, indicating that the modified
Hu’s 1-D CNN is significantly affected by the aquaculture rafts
and the merging effect of the green laser waveform in very
shallow waters. As shown in Fig. 15(c), the MVCNN is slightly
affected by the merging effect and the aquaculture rafts.
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Fig. 13.  Classification results obtained from the modified Hu’s 1-D CNN for the test data. Positions of laser irradiation points of the corresponding (a) ocean and
(c) land waveforms classified by the modified Hu’s 1-D CNN, (b) a typical land waveform of deep channel misclassified as an ocean waveform, and (d) a typical
ocean waveform of deep channel misclassified as a land waveform.

100 245 the modified Hu’s 1-D CNN (blue) and the MVCNN (red).
r‘ The classification accuracy of each model on the validation set
30 P (Groups 1 and 2) is high and fluctuates slightly, indicating that

each model fits well on the validation set. On the test set (Groups
3 and 4), the MVCNN remains robust, but the modified Hu’s
1-D CNN fluctuates immensely. Although the accuracy of the
validation set meets expectations, the result of the test set has
great uncertainty, indicating the weak generalization ability of
the model. By contrast, the MVCNN has strong generalization
20 05 ability and robustness, which is important for model design,
training, and practical applications.
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Fig. 14.  Trends of accuracy and loss in training the proposed 1-D CNN.
This section provides a comprehensive comparison of the

FCM, SVM, modified Hu’s 1-D CNN, and MVCNN for practical

applications. The results are shown in Table II. FCM does not

The box plot can reflect the robustness of the OLWC model. need sample data, and its classification accuracy is the lowest.
The narrower the box, the smaller the OA floating range and The feature extraction in the DL methods is automatic, whereas
the more robust the model. Fig. 17 shows the box plot of that of the FCM and SVM methods is manual. MVCNN does
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(d

Classification results obtained from the MVCNN for the test data. Positions of laser irradiation points of the corresponding (a) ocean and (c¢) land

waveforms classified by the MVCNN, (b) a typical land waveform of the deep channel misclassified as an ocean waveform, and (d) a typical ocean waveform of

the deep channel misclassified as a land waveform.

not need to manually extract waveform features and is easy to
use. MVCNN can achieve an OA of 99.41% in the experimental
area and has the highest OA among the existing OLWC methods
for single-wavelength ALB systems. In the experimental area,
MVCNN can correctly identify 2500-11366 more ocean/land
laser waveforms than the other methods, which is beneficial for
subsequent data processing, such as depth extraction from ocean
waveforms and waterline identification by using ocean/land laser
points.

The RAMs required for the normal operation of the methods
during training and classification and the time required for
classifying test sets by using the model are listed in Table II.
The RAM consumption of FCM, which requires 0.7 GB, mainly
lies in the feature extraction process. SVM requires | GB RAM
to train the model. CNN consumes minimal RAM for training
and classification but requires a sizable RAM to convert the
raw data into a specific format. The input of the modified Hu’s

1-D CNN for training takes the form of big data (320 bins x
304332 laser pulses x eight channels), which consume 6.3 GB
of RAM. The input of each 1-D CNN of MVCNN takes the form
of small data (320 bins x 304332 laser pulses x one channel),
which require only 1.4 GB of RAM. The modified Hu’s 1-D
CNN must simultaneously process eight-channel waveforms
and therefore requires a large amount of RAM. Conducting
modified Hu’s 1-D CNN method on a large test set with large
pulse numbers is difficult due to the hardware constraints.
MVCNN can process single-channel waveforms and, therefore,
requires relatively lower RAM (roughly 22% of modified Hu’s
1-D CNN) and can be applied to a large test set. The classification
time of the ML methods is less than that of the DL methods.
Although MVCNN requires the maximum time among the
four methods, it can classify approximately 3466 pulse wave-
forms per second, which can meet the efficiency requirements
of OLWC.
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Fig. 16.  Confusion matrix of the test data based on the prediction of each method.

TABLE II
COMPREHENSIVE COMPARISON OF OLWC USING FCM, SVM, MODIFIED HU’S 1-D CNN, AND MVCNN FOR PRACTICAL APPLICATION

Method Sample data Features Key parameters OA RAM Time Reference
Waveforms amplitudes Fuzzy index and number of cluster o Zhao et al,
of green deep channel centroids are set to 2. 95.55%  0.7GB 2s 2021

FCM Not required

Waveform amplitudes, Gaussian kernel function, kernel parameter
SVM Required FWHMs, and areas of o is set to 1.7, and penalty coefficient is set ~ 98.23% 1.0 GB 13s
green deep channel to 1.

Zhao et al,
2019

One 1D CNN with four convolutional
layers. The width and number of
convolution kernels of the first and second
Modified Hu’s Required Automatically extracted convolutional layers are 3 and 64,
1D CNN equire features respectively. The width and number of
convolution kernels of the third and fourth
convolutional layers are 3 and 128,
respectively.

Huetal,

98.56% 6.3 GB 21s 2019

One multichannel input module, multiple
1D CNNs, and one multichannel voting
module. Each 1D CNN has four
convolutional layers and one AM module.
The width and number of convolution
kernels of the first and second 99.41% 1.4 GB 85s —
convolutional layers are 3 and 32,
respectively. The width and number of
convolution kernels of the third and fourth
convolutional layers are 3 and 64,
respectively.

Automatically extracted

MVCNN Required features

IV. DISCUSSION different channel waveforms are analyzed, and the reasons for

The advantages of using MVCNN for green laser OLWC the amplitude difference between the different channels are
have been demonstrated in Section III. In this section, the given.
effectiveness of the three submodules of MVCNN, i.e., mul-
tichannel input module, 1-D CNN module, and multichannel ~A. Multichannel Input Module Evaluation

voting module, are separately discussed to demonstrate their The proposed 1-D CNN trained by the raw laser waveforms
contributions to MVCNN. In addition, the relationships of  of different channels are used to classify the test set. Then,



LIANG et al.: MVCNN: A DL-BASED OLWC NETWORK FOR SINGLE-WAVELENGTH LIDAR BATHYMETRY

669

TABLE III
PERFORMANCE METRICS OF THE PROPOSED 1-D CNN FOR THE TEST SET COLLECTED BY EIGHT CHANNELS

Metrics Deep Shallow-0 Shallow-1 Shallow-2 Shallow-3 Shallow-4 Shallow-5 Shallow-6
P (%) 99.25 96.79 98.75 98.64 98.85 97.88 97.80 98.45
Ocean R (%) 99.60 99.70 99.75 99.72 99.58 99.48 99.48 99.65
Fy (%) 99.43 98.23 99.25 99.18 99.21 98.67 98.63 99.05
P (%) 98.19 98.46 98.85 98.70 98.05 97.50 97.46 98.34
Land R (%) 96.60 85.12 94.31 93.80 94.77 90.24 89.89 92.94
F (%) 97.39 91.30 96.52 96.17 96.37 93.67 93.50 95.56
OA (%) 99.06 97.05 98.77 98.65 98.71 97.80 97.74 98.43
Kappa (x100) 96.81 89.53 95.77 95.35 95.58 92.35 92.13 94.61
SDOA (%) 0.14 0.20 0.16 0.39 0.29 0.55 0.34 0.22
995 ; TABLE IV
== PERFORMANCE METRICS OF THE 1-D CNN STRUCTURE OF MODIFIED HU’S
——— 1-D CNN AND MVCNN
g : Metrics Hli‘,qs"ld]‘)ﬁé‘;m MVCNN
g P (%) 99.49 99.25
E] Ocean R (%) 98.82 99.60
g A3 Fi (%) 99.15 99.43
= P (%) 94.93 98.19
5 Land R (%) 97.71 96.60
3 o8 | . Fi (%) 96.26 97.39
! OA (%) 98.62 99.06
—_ Kappa (x100) 95.42 96.81
SDOA (%) 0.45 0.14
97.5 : : : :
Groupl Group2 Group3 Group4
of green laser waveforms collected in the different shallow
Fig. 17. Box plot of the modified Hu’s 1-D CNN (blue) and the MVCNN  channels is dissimilar. The central shallow channel (shallow-0

(red). (Groups 1 and 2 are the validation set, and groups 3 and 4 are the test set).
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Fig. 18.
channels.

Trends of the overall accuracy with the increase in the number of

the performance metrics of each channel model are derived
to analyze the effect of the multichannel input module for the
MVCNN and the OLWC ability of different channel waveforms.
As shown in Table III, the OLWC ability of the green laser
waveforms collected in the different green laser channels is
dissimilar. The model trained by the deep channel waveforms
has higher accuracy and better robustness than that trained by
the shallow channel waveforms. The advantage of using the
deep channel waveform is especially obvious in the performance
of classifying land waveforms. In addition, the OLWC ability

channel) is significantly poorer than the other shallow channel,
especially for classifying land waveforms. Subsequently, deep
channel and shallow 0—6 channel waveforms are added gradually
to the MVCNN, and the results are shown in Fig. 18. The
classification accuracy is improved gradually with the increase
in the number of channels, indicating that the multichannel input
module plays a crucial role in the accuracy improvement of the
MVCNN.

B. One-Dimensional CNN Module Evaluation

The MVCNN with only deep channel waveforms and the
modified Hu’s 1-D CNN with only deep channel waveforms
are used for OLWC to compare the performance of the different
1-D CNN structures. The results are shown in Table IV. The 1-D
CNN structure of MVCNN is better than that of the modified
Hu’s 1-D CNN. Moreover, the OLWC accuracy improvement by
using MVCNN can be attributed to not only the multichannel
input and voting modules but also the improvement of the 1-D
CNN structure.

Then, the classification capability of the proposed 1-D CNN
is further investigated by performing an ablation experiment and
feature visualization.

1) AM Module Evaluation: Aiming to investigate whether
the AM can improve the classification ability of the proposed
1-D CNN, an ablation experiment is designed to compare and
analyze the OLWC ability of the CNN model with and without
the AM for deep channel waveforms. Table V shows the per-
formance metrics of the 1-D CNN without and with AM for
the test set. The model with AM has higher OLWC accuracy
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Feature visualization using the proposed network. (a) Raw green laser waveforms. (b) Fourth convolutional layer. (c) Final fully connected layer. The

blue and orange colors are waveform features representing ocean and land, respectively.
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TABLE V
PERFORMANCE METRICS OF THE 1-D CNN WITHOUT AND WITH AM FOR THE
TEST SET
Metrics Without AM With AM
P (%) 98.83 99.25
Ocean R (%) 99.69 99.60
Fy (%) 99.26 99.43
P (%) 98.55 98.19
Land R (%) 94.68 96.60
Fy (%) 96.56 97.39
OA (%) 98.78 99.06
Kappa (x100) 95.82 96.81
SDOA (%) 0.27 0.14

and stronger robustness than the model without AM. The AM
improves the OLWC ability of the 1-D CNN for green laser
waveforms.

2) Convolutional and Fully Connected Layer Evaluation:
The effects of the convolutional and fully connected layers of
the proposed 1-D CNN are demonstrated by randomly selecting
10 000 ocean and land deep channel waveforms of the test set
and then inputting them to the model trained by the deep channel
waveforms. The high-level semantic features are reduced to a
2-D space with a t-distributed stochastic neighbor embedding
algorithm [38]. The waveform features from the raw green laser
waveforms, fourth convolutional layer, and final fully connected
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TABLE VI
PERFORMANCE METRICS OF THE CONTRAST MODEL AND MVCNN

Metrics . 1D CNN with MVCNN
eight-channel waveforms

P (%) 98.80 99.58
Ocean R (%) 99.78 99.70
Fi (%) 99.29 99.64
P (%) 99.00 98.62
Land R (%) 94.55 98.11
F1 (%) 96.70 98.36
OA (%) 98.83 99.41
Kappa (x100) 95.99 98.00
SDOA (%) 0.34 0.03

layer are shown in Fig. 19(a)—(c). The blue and orange parts are
the waveform features representing ocean and land, respectively.
As shown in Fig. 19, the features of the raw green laser ocean
and land waveforms are scattered and intertwined. After four
convolution operations, the waveform features of ocean and land
remain linearly indistinguishable, but each of them is gathered
and no longer appear intertwined. Finally, the ocean and land
waveform features are completely separated by the global in-
tegration of the fully connected layers. Overall, when the 1-D
CNN entails four convolutional layers and one fully connected
layer, it exhibits a strong nonlinear representation of the green
laser waveform and can achieve the task of OLWC.

C. Multichannel Voting Module Evaluation

Fig. 20 shows the removal of the multichannel voting module
from the MVCNN to form a new model (i.e., the proposed
1-D CNN with eight-channel waveforms). In this manner, the
effects of the multichannel voting module of the MVCNN
can be evaluated. The eight-channel waveforms (i.e., one deep
channel and seven shallow channels) are simultaneously input
into the 1-D CNN for training, and the trained model is used
to classify the test set. The performance metrics of the 1-D
CNN with eight-channel waveforms but without a multichannel
voting module and the MVCNN are shown in Table VI. As
shown in Tables III and VI, the overall accuracies of the OLWC
utilizing 1-D CNN with deep channel waveforms, 1-D CNN with
shallow-1 channel waveforms, 1-D CNN with eight-channel

waveforms, and MVCNN are 99.06%, 98.77%, 98.83%, and
99.41%, respectively.

Fig. 21 presents the positions of the laser irradiation points
of the corresponding ocean (blue) and land (red) waveforms
classified by the 1-D CNN with deep channel waveforms, 1-D
CNN with shallow-1 channel waveforms, 1-D CNN with eight-
channel waveforms, and MVCNN. As shown in Fig. 21(a)—(d),
the proposed 1-D CNN with the deep channel waveform or
shallow-1 channel can correctly classify most of the ocean
waveforms, even for the deep channel waveforms affected by the
merging effect, but it misclassified numerous land waveforms
affected by topography. Fig. 21(e) and (f) reveals the tendency
of the 1-D CNN with eight-channel waveforms but without a
multichannel voting module to superimpose false categories
derived by deep and shallow channels, leading to more confusing
classification results. By contrast, Fig. 21(g) and (h) shows the
ability of the multichannel voting module of MVCNN to pick
out the correct waveform category from the eight channels, thus
improving the classification accuracy.

In summary, the multichannel voting module can take ad-
vantage of the green laser waveforms collected in the deep and
shallow channels with different responses to the environment,
which is a determinant of the MVCNN for achieving a highly
accurate and robust OLWC.

D. Analysis of the Relationships of Multichannel Green
Waveforms

Figs. 2 and 3 shows the multichannel waveforms of the
two laser pulses. The amplitudes of the green laser waveforms
collected by each channel are significantly different. The am-
plitudes of the multichannel waveforms of 294654 laser pulses
in strip C16 are averaged separately according to the ocean and
land categories as a means of analyzing the multichannel laser
waveforms. The results are shown in Fig. 22. The waveform
amplitudes of the different channels significantly differ from
one another in terms of both ocean and land waveforms, and
the multichannel waveform amplitude curves also show varying
patterns.

The factors affecting the intensity of the return waveform
are mainly the environmental and equipment parameters. Land
has a strong reflection effect on the green laser; meanwhile, the
green laser penetrates the ocean, and energy is absorbed by the
ocean. Hence, the amplitudes of the ocean waveforms of each
channel are smaller than those of the land waveforms. As the
return waveforms of different channels are reflected from the
same target, the environmental parameters (i.e., wave pattern and
turbidity) have a slight influence on the amplitude differences
between the different channels. The equipment parameters (i.e.,
FOV, aircraft attitude, beam scanning pattern, and transmitted
laser pulse) are the main influencing factors of the amplitude
difference of multichannel waveforms. The larger the FOV of
the channel, the higher the energy of the received laser pulse
and the greater the return waveform intensity. Thus, the deep
channel (6-40 mrad) has a greater waveform intensity than the
shallow channel (1.9 mrad).



672 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

1000

y=-0.3839%x + 442

800

600

400

Amplitude (digitizer count)

200

¥

-3 -2 -1 0 1
Roll angle (degree)

@

&)
w

10008y = 1.719%x + 407.6
800

600

400

Amplitude (digitizer count)

200

15 16 17 18 19 20
Nadir scanning angle (degree)

(©)

21 22 23

Fig. 23.

Laser emission point O ¢ X‘

Horizontal scanning angle f

Divergence angle y

Nadir scanning angle a

'\ Laser ray

Laser spot
P P

Fig.24.  Schematic diagram of the nadir and horizontal beam scanning angles.

Notably, FOV is not the reason for the amplitude difference
of shallow channels because each shallow channel has the same
FOV. Fig. 23 shows the scatter plots and fitted lines of the am-
plitude difference between the shallow-1 channel and shallow-4
channel of the ocean waveforms varying with roll angle, pitch
angle, nadir scanning angle, and horizontal scanning angle.
Fig. 24 shows a schematic diagram of the nadir and horizontal
beam scanning angles, with the X-axis representing the flight
direction and the Z-axis representing the vertical direction. As
shown in Fig. 23, the roll angle, pitch angle, and nadir scanning
angle have a slight effect on the amplitude difference, and the
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Fig. 25. Estimated spot center in shallow channel FOVs.

horizontal scanning angle has a quadratic function relationship
with the amplitude difference. As previously shown in Fig. 22,
the amplitude difference between the shallow-1 channel and
shallow-4 channel is greater than 400 digitizer counts, whereas
the effect of the horizontal scanning angle on the amplitude
difference is less than 100 digitizer counts. Hence, the horizontal
scanning angle is not the main factor of the return waveform
intensity difference of the shallow channels.

The energy distribution in the laser spot, which is nonuniform
because of the laser beam divergence, has a great impact on the
return waveform intensity of each shallow channel. The shallow
channel FOV near the spot center receives more energy and
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has a greater return waveform intensity than that positioned
far away from the spot center. Figs. 5 and 22 have previously
demonstrated that the return waveform intensity of the shallow-1
channel is the highest among all shallow channels. Furthermore,
the closer the channel to the shallow-1 channel, the higher the
waveform intensity of this shallow channel. Hence, the actual
spot center is not likely in the FOV center of the shallow-0
channel but in the FOV of the shallow-1 channel. Subsequently,
the actual spot center is estimated by defining the coordinate
system (see Fig. 25) and setting the coordinates of the FOV
center of the shallow-0 channel to (0,0). Assuming that the laser
energy is linearly inverse to the distance from the spot center,
the following mathematical equation can be obtained:

k
V@ =20 + (s — )

where k is the scale factor, (xg, yg) represents the coordinates
of the spot center, (x, y) represents the coordinates of the FOV
center of the shallow channel, and E is the waveform amplitude
of the shallow channel. The FOV center coordinates and the
averaged waveform amplitudes of shallow 0-2 channels are
substituted into (12). The three unknown variables in (12) can
be obtained as xo = 1.31, yo = 0.66, and £k = 500.96. The
location of the estimated spot center is shown in Fig. 25, which
is shifted by approximately 1.47 mrad from the FOV center
of the shallow-0 channel. In summary, FOV is the main factor
affecting the amplitude difference between deep and shallow
channels, and spot center offset is the main influencing factor
for the amplitude difference between the shallow channels.

E = (12)

V. CONCLUSION

In this article, an MVCNN comprising one multichannel input
module, multiple 1-D CNN modules, and one multichannel
voting module is proposed to perform OLWC utilizing mul-
tichannel green laser waveforms for single-wavelength ALB
systems. First, multiple green laser waveforms collected in the
deep and shallow channels are separately input into a multichan-
nel input module. Second, the proposed 1-D CNN structure,
which comprises four feature extraction modules, one attention
mechanism module, and one classification module, is used to
handle each green channel waveform. Finally, the proposed
multichannel voting module is used to perform majority voting
on the predicted categories derived by each 1-D CNN model and
output the final waveform categories.

The effectiveness of the proposed MVCNN is evaluated using
a dataset collected by Optech CZMIL in a study area located
in the coastal waters of Lianyungang City, China. Then, the
proposed MVCNN is compared with three well-known state-
of-the-art methods for OLWC utilizing single-wavelength ALB
systems. The results indicate that MVCNN can achieve an OA,
Kappa, and SDOA of 99.41%, 0.9800, and 0.03%, respectively,
which are better than those of the other methods. MVCNN is
slightly affected by aquaculture rafts and the merging effect
of the green laser waveform in very shallow waters. An in-
depth evaluation of the different submodules of the MVCNN

is conducted using various comparison, quantitative, and visual
experiments.

1) The multichannel input module plays a crucial role in
improving the accuracy of the MVCNN. Experimentally,
the OLWC ability of the green laser waveforms collected
in different green laser channels is dissimilar, and the clas-
sification accuracy of the MVCNN is improved gradually
with the increase in the number of channels.

2) Compared with the previous 1-D CNN structure, the pro-
posed 1-D CNN structure is more suitable for OLWC
utilizing green laser. This configuration is an essential
factor for the excellent performance of the MVCNN.

3) The multichannel voting module is the critical structure
of the MVCNN, as it can take advantage of multichannel
green laser waveforms by selecting the correct waveform
category from deep and shallow channels with different
responses to the environment.

The proposed MVCNN outperforms all well-known methods

and is recommended for OLWC utilizing single-wavelength
ALB systems.
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