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Abstract—The hyperspectral image (HSI) is easily contaminated
by various kinds of mixed noise (such as Gaussian noise, impulse
noise, stripes, and deadlines) during the process of data acquisition
and conversion, which significantly affect the quality and applica-
tions of HSI. As an important and effective scheme for the quality
improvement of HSI, the HSI restoration problem aims to recover
a clean HSI from the noisy HSI with mixed noise. Thus, based on
the tensor modeling of HSI, we propose a novel tensor-based HSI
restoration model with low-rank modeling in gradient domains in
a unified tensor representation framework in this article. First,
for the spectral low-rank modeling of HSI in spectral gradient
domain, we particularly exploit the low-rank property of spectral
gradient, and propose the spectral gradient-based weighted nuclear
norm low-rank prior term. Second, for the spatial-mode low-rank
modeling of HSI in spatial gradient domain, we particularly exploit
the low-rank property of spatial gradient tensors via the discrete
Fourier transform, and propose the spatial gradient-based tensor
nuclear norm low-rank prior term. Then, we use the alternative
direction method of multipliers to solve the proposed model. Fi-
nally, the restoration results on both the simulated and real HSI
datasets demonstrate that the proposed method is superior to many
state-of-the-art methods in the aspects of visual and quantitative
comparisons.

Index Terms—Hyperspectral image restoration, low-rank
priors, spectral and spatial gradient domain, tensor nuclear norm
(TNN).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain hundreds of
bands and rich spectral information, so they are widely

used in various fields of feature extraction, classification, unmix-
ing, target detection, super resolution, and fusion [1], [2], [3], [4],
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[5], [6]. However, due to the influence of acquisition equipment
and external environment, HSIs are usually contaminated by
various kinds of mixed noise (such as, Gaussian noise, impulse
noise, deadlines, and stripes), which not only affects the image
quality, but also limits the later processing and applications of
HSI. Therefore, HSI restoration, which is recently an important
scheme to remove the mixed noise so as to improve the image
quality of HSI, has very important research and application
significance. Specifically, as an effective way to remove the
noise, the core of image priors-based HSI restoration model is to
make full use of the effective spectral and spatial priors of HSI,
such as, nonlocal self-similarity, spatial-spectral smoothness,
and low-rank priors [7], [8], [9].

As we know, the nonlocal self-similarity was earlier used
for grayscale image denoising, which assumed that a grayscale
image contained lots of similar 2-D blocks (i.e., patches) at
different positions of the image. Then, many traditional methods
using spatial nonlocal self-similarity were generalized to denoise
HSI band by band, such as block matching and 3-D filtering
(BM3D) [10], dictionary learning [11], and nonlocal means
filter [12], [13]. However, these methods treated each band of
HSI as a grayscale image, which did not consider the important
correlation between spectral bands, so the restoration perfor-
mance was not very ideal and could be further improved. To
solve this problem, scholars investigated the spatial and spectral
nonlocal self-similarity-based restoration methods using similar
3-D cubes to replace the common 2-D blocks, such as MSPCA-
BM3D [14], BM4D [15], 3-D nonlocal sparse (3DNLS) [16],
and nonlocal tensor dictionary learning [17].

More clearly, the methods based on low-rank priors have been
extensively studied and achieved great success in the field of
HSI restoration. Specifically, inspired by the robust principal
component analysis (RPCA) model [18], which modeled the
observed data as the sum of a low-rank matrix and a sparse ma-
trix, Zhang et al. [19] proposed the low-rank matrix restoration
(LRMR) model. Moreover, Chen et al. [20] proposed a noncon-
vex low-rank matrix approximation (NonLRMA) model, which
used a nonconvex regularizer to replace the traditional nuclear
norm, so the rank function can be better approximated. Although
LRMR can effectively remove the mixed noise in HSI, it does
not impose any spatial constraints on the neighboring pixels
of HSI. To solve this problem, Zhu et al. [21] considered both
spectral and spatial constraints to preserve the fine structure of
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HSI, and proposed the spectral nonlocal low-rank model. Based
on the LRMR model, He et al. [22] proposed the noise-adjusted
iterative low-rank matrix approximation (NAILRMA) method,
which considered the different noise in different bands and can
well remove the noise from HSI. However, when the local noise
is larger, the denoising performance will become worse. To
address this shortcoming, Wang et al. [23] proposed the group
low-rank representation model, where the local similarity within
patches and the nonlocal similarity between groups of patches
were both used to preserve the HSI image features and remove
the noise. What is more, Fan et al. [24] proposed the superpixel
segmentation and low-rank representation (SSLRR) model to
remove different types of noise.

Moreover, since the total variation (TV) regularization
method [25] can effectively preserve shape edges and enhance
piecewise smoothness, then various TV-based spatial-spectral
smoothness prior models are also proposed for HSI restora-
tion, such as cubic TV (CTV) [26], spectral-spatial adaptive
hyperspectral TV (SSAHTV) [27], spectrally adaptive multi-
dimensional nonlocal total variation (SAMNLTV) [28], and
spatio-spectral TV (SSTV) [29]. Although these methods fully
use the local spatial and spectral information of HSI, they ignore
the low-rank characteristics of HSI. Based on this, He et al.
[30] proposed the TV-regularized low-rank matrix factorization
(LRTV) model, which introduced the band-by-band TV regular-
ization term and the low-rank prior together for HSI restoration.
However, LRTV considered the TV model separately for each
spectral band, ignoring the spectral smoothness of HSI. To
overcome this drawback, Wang et al. [31] used the SSTV [29] to
model the spatial-spectral smoothness of HSI, and proposed the
low-rank constraint and spatial spectral total variation (LSSTV)
model, which can effectively remove the mixed noise and pre-
serve the edge structure. Moreover, He et al. [32] further used the
anisotropic spatial-spectral TV to model the global spatial and
spectral smoothness and consistency of HSI, and proposed the
local low-rank matrix recovery and global spatial-spectral TV
(LLRSSTV) model, which can effectively separate the sparse
noise.

However, these above low rank-based methods usually need
to rearrange the HSI cube into the matrix for low-rank modeling,
it is easy to destroy the correlation between spectral bands. To
overcome these drawbacks, treating HSI as a third-order tensor
had been recently and widely studied to maintain the cube struc-
ture of HSI. Thus, many tensor low-rank-based HSI restoration
methods had been proposed, such as the low-rank tensor ap-
proximation (LRTA) model [33], TV regularized low-rank ten-
sor decomposition (LRTDTV) [34], double-factor-regularized
low-rank tensor factorization (LRTFDFR) [35], low-rank tensor
dictionary learning denoising method [36], weighted tensor low-
rank restoration (WLRTR) model [37], global spatial-spectral
TV regularized nonconvex local low-rank tensor approximation
(LLxRGTV) [38], etc.

Among the tensor decomposition-based HSI denoising
methods, the Tucker decomposition [39] and CANDE-
COMP/PARAFAC (CP) decomposition [40] schemes are com-
monly used to model the low-rank property of tensors, such as
rank-1 tensor decomposition (R1TD) [41], nonlocal low-rank

regularized R1TD (NLR-R1TD) [42], nonlocal similarity-based
nonnegative Tucker decomposition [43], PARAFAC model [44],
and nonlocal low-rank regularized tensor CP decomposition
[45]. However, these two decompositions cannot give the best
approximation to the tensor, Chen et al. [46] further proposed
the nonlocal tensor-ring (TR) approximation, and exploited the
nonlocal self-similarity and global spectral correlation of HSI
at the same time to improve the restoration performance. More
specifically, different from CP decomposition and Tucker de-
composition, Kilmer et al. [47] defined tube rank and multirank
of tensor based on tensor singular value decomposition (t-SVD),
which can better describe the low-rank property of tensor. On
this basis, by applying the discrete Fourier transform (DFT)
along the mode-3 of the tensor, Zhang et al. [48] then defined
the tensor nuclear norm (TNN) as the sum of singular values
of all the frontal slices as the convex approximation of tensor
rank function. However, TNN only describes the low rankness
of spectral mode, but ignores the spatial modes. To model the
low rankness of the spectral and spatial modes of HSI at the
same time, Zheng et al. [49] extended t-SVD to mode-k t-SVD,
then exploited the tensor low-rank property of HSI via the DFT
along spectral and spatial modes, and particularly proposed the
tensor fiber rank model and its convex relaxation model, namely,
the 3-D tensor nuclear norm (3DTNN) model. Furthermore,
some HSI restoration methods based on low-rank modeling
in the transformed domain are also proposed, such as the
framelet-based three-modal tensor nuclear norm (F-3MTNN)
model [50] and the factor group sparsity-regularized nonconvex
low-rank approximation (FGSLR) model [51]. What is more,
some new low-rank tensor representation models are recently
proposed for HSI restoration especially for HSI completion
and cloud removal, such as the multilayer sparsity-based tensor
decomposition (MLSTD) model [52], the parametric tensor
sparsity model based on Laplacian scale mixture modeling via
three-layer transform (LSM-TLT) [53], and the multimodal core
tensor factorization (MCTF) model [54].

More recently, the deep learning-based HSI restoration ap-
proaches have attracted more attention and became more popu-
lar, such as the convolutional neural network (CNN)-based HSI
denoising method (HSI-DeNet) [55], which modeled HSIs as
tensors and well treated various noise simultaneously, and the
HSI denoising with spatial-spectral deep residual CNN method
(HSID-CNN) [56], which used spatial-spectral multiscale fea-
ture extraction and deep CNN-based residual learning to obtain
a nonlinear mapping between the clean and noisy HSIs.

More clearly, the tensor construction and its tensor low-rank
property modeling of HSI are the core of the tensor low-rank
prior-based HSI restoration methods. Thus, we also focus on
the tensor low-rank-based prior methods for HSI restoration,
and particularly aim to investigate more effective scheme for
the tensor construction and tensor low-rank modeling of spectral
and spatial modes in this article.

To the best of our knowledge, there are some methods based
on the gradient-based low-rank modeling for image processing.
For example, the enhanced 3DTV (E-3DTV) model [57] has
exploited the low-rankness of unfolded spatial gradients, i.e.,
the matrix-based low-rank property, not in the tensor form, and
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Fig. 1. Flowchart of low-rank modeling in gradient domains.

the gradient-based low-rank approximation (Grad-LR) model
[58] just exploits the nonlocal 2-D patched-based low rankness
of the spatial gradients for 2-D image inpainting, not in the
tensor form either. More clearly, there are no relative works to
investigate the spatial gradient tensors based low-rank properties
in the tensor form for the HSI restoration recently. Thus, the
low-rank modeling of HSI in the spatial gradient domain in the
tensor form is highly valuable to be exploited for spatial-spectral
structure preservation.

Moreover, by comparing with the strong tensor fiber low-
rank property of spatial mode, the tensor fiber low-rank property
of spectral mode are relatively unsuitable for spectral low-rank
modeling of HSI in the 3DTNN method [49], owing to the HSI
clearly shows strong spectral low-rank property of spectral mode
in the original domain [19], [30]. Thus, the spectral low-rank
property of spectral mode of HSI needs to be suitably modeled.

Based on the above analysis, instead of directly treating
the HSI as a third-order tensor for tensor low-rank modeling
in the original domain, we thus construct the spatial gradient
tensors and the spectral gradient tensor for HSI, and particularly
investigate the low-rank properties of HSI in gradient domains
in this article. Specifically, the main contributions of this article
are described as follows:

1) For the HSI, we first obtain its spatial horizontal gradient
tensor and spatial vertical gradient tensor in spatial gradient
domain, and the spectral gradient tensor in spectral gradient
domain. Then, for the spectral low-rank prior modeling of
HSI in spectral gradient domain, we particularly investigate the
low-rank property of the spectral gradient of HSI to establish the
spectral gradient-based weighted nuclear norm low-rank prior
term (see Fig. 1), which can effectively remove the structural
noise, such as stripes and deadlines.

2) For the spatial low-rank prior modeling of HSI in spatial
gradient domain, we consider to use the DFT along the spatial

mode-1 of spatial horizontal gradient tensor and the spatial
mode-2 of spatial vertical gradient tensor of HSI, and obtain the
spatial mode-1 gradient frequency tensor and the spatial mode-2
gradient frequency tensor, respectively. Furthermore, the low-
rank property of the spatial mode-1 gradient frequency tensor
and the spatial mode-2 gradient frequency tensor is modeled by
the unified spatial gradient-based TNN low-rank prior term (see
Fig. 1).

3) Consequently, based on the spectral gradient-based
weighted nuclear norm low-rank prior term and the spatial
gradient-based TNN low-rank prior, we propose a novel unified
tensor-based HSI restoration model with low-rank modeling in
gradient domains in this article.

The rest part of the article are listed as follows. We proposed
the unified tensor-based HSI restoration model with low-rank
modeling in gradient domains in Section II, and solved the
proposed model in Section III. Section IV showed the overall
experimental results and analysis. Section V provided the dis-
cussion in detail. Finally, the conclusion was given in Section
VI.

II. PROPOSED MODEL

In this section, a unified tensor-based HSI restoration model
with low-rank modeling in gradient domains will be proposed.
For better modeling and analyzing, we first give some important
symbols in Table I.

A. Formulation of HSI Restoration Problem

In fact, HSI is a cube data, which can be modeled as a
third-order tensor. More clearly, let X ∈ �n1×n2×n3 to be the
original clean HSI, andY ∈ �n1×n2×n3 to be the noisy HSI with
Gaussian noise and sparse noise (such as impulse noise, stripes,
and deadlines), where n1 × n2 is the size of spatial dimension,
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TABLE I
DEFINITIONS OF SYMBOLS

and n3 is the number of spectral bands. Therefore, the HSI with
Gaussian noise and sparse noise contaminated can be expressed
as

Y=X+N+S (1)

where N ∈ �n1×n2×n3 and S ∈ �n1×n2×n3 are the Gaussian
noise and sparse noise, respectively.

The goal of HSI restoration is to restore the clean HSI X from
the noisy HSI Y . By imposing the effective prior knowledge
of the clean HSI X and the sparse noise S , thus, the image
prior-based HSI restoration model can be expressed as

min
X ,S

1

2
‖Y − X − S‖2F +λ1R (S)+βJ (X ) (2)

where 1
2‖Y − X − S‖2F is the fidelity term modeling the Gaus-

sian noise N , R (S)= ‖S‖1 is the sparse prior regularization
term modeling the sparse noise S , J(X ) is the prior regulariza-
tion term modeling the spatial and spectral properties of the clean
HSI X , λ1 and β are the tradeoff parameters used to balance the
two prior regularization terms.

B. Low-Rank Modeling in Spectral Gradient Domain

1) Motivation: Clearly, we know that the common idea for
spectral low-rank modeling used in the previous methods is
that the spectra of HSI X ∈ �n1×n2×n3 is low rank, namely,
the matrix unfold3(X ) ∈ �n3×n1n2 is low rank [19], [30], and
then the nuclear norm-based spectral low-rank prior is usually
enforced as

J1(X ) = ‖unfold3(X )‖∗. (3)

Moreover, we also considered that the previous spatial-
spectral smoothness-based methods usually used the spectral
gradient-based term ‖∇3X‖1 to enforce the sparsity of spectral
gradient for spectral information preserving, where ∇3 is the
spectral gradient operator. Thus, we mainly investigate the low-
rank prior modeling of HSI in spectral gradient domain in this
article.

Inspired by them, we mainly aim to model the spectral
smoothness and spectral low-rankness of HSI in the spectral
gradient domain at the same time in this article. To this end,
we particularly investigate the low-rank prior modeling of the
spectral gradient of HSI and establish the spectral gradient-based
weighted nuclear norm low-rank prior model.

2) Spectral Gradient-Based Weighted Nuclear Norm Low-
Rank Prior Term: Specifically, ∇3 represents the spectral gra-
dient operator along the mode-3 spectral dimension of HSI X ,
then the spectral gradient of HSI X is expressed as

∇3X (i1, i2, i3) = X (i1, i2, i3+1)−X (i1, i2, i3) . (4)

As clearly shown in Fig. 1, for HSI X ∈ �n1×n2×n3 , we can
obtain its spectral gradient tensor ∇3X ∈ �n1×n2×n3 . Then, by
arranging ∇3X into a matrix unfold3(∇3X ) ∈ �n3×n1n2 via
the mode-3 unfolding operation, and performing singular value
decomposition (SVD) on unfold3(∇3X ), we can clearly obtain
the low-rank property of unfold3(∇3X ) in Fig. 1. Therefore, the
low-rank property of unfold3(∇3X ) is particularly modeled by
the following spectral gradient-based weighted nuclear norm
low-rank prior term, which is formulated as

J2(X ) = λ2‖unfold3(∇3X )‖w,∗ (5)

where t = min{n3, n1n2}, w = (w1, . . . , wt)
T ∈ �t is the

vector of the weights with wj = 1/(σj(unfold3(∇3X )) + ε),
j = 1, . . . , t, ε is a very small positive scalar, and λ2 ≥ 0.

C. Low-Rank Modeling in Spatial Gradient Domain

1) Motivation: First, we considered that the 3DTNN method
[49] exploited the tensor low-rank property of HSI in original
domain by applying the DFT along each mode of HSI X to form
the DFT-based HSIs X̂1 = fft(X , [ ], 1), X̂2 = fft(X , [ ], 2), and
X̂3 = fft(X , [ ], 3), and obtained that the slices of each mode of
the DFT-based HSIs are low rank. Clearly, the 3DTNN prior
term was proposed as

‖X‖3DTNN =
3∑

k=1

ξk‖X‖TNNk
(6)

where ξk ≥ 0 such that
∑3

k=1 ξk = 1, and ‖X‖TNNk
is the DFT-

based mode-k TNN of X , which is defined as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖X‖TNN1
=

n1∑
i=1

∥∥∥X̂1 (i, :, :)
∥∥∥
∗

‖X‖TNN2
=

n2∑
i=1

∥∥∥X̂2 (:, i, :)
∥∥∥
∗

‖X‖TNN3
=

n3∑
i=1

∥∥∥X̂3 (:, :, i)
∥∥∥
∗
.

(7)

Moreover, we also considered that the previous spatial-
spectral smoothness-based methods usually used the spatial
gradients-based prior term

∑2
i ρi‖∇iX‖1 to enforce the sparsity

of spatial gradients, where ∇1 and ∇2 are the spatial hori-
zontal and vertical gradient operators. Specifically, as Section
I mentioned, the enhanced 3DTV (E-3DTV) model [57] has
exploited the low rankness of unfolded spatial gradients, i.e., the
matrix-based low-rank property, not in the tensor form, and the
gradient-based low-rank approximation (Grad-LR) model [58]
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just exploits the nonlocal 2-D patched-based low rankness of the
spatial gradients for 2-D image inpainting, not in the tensor form
either. More clearly, there are no relative works to investigate
the spatial gradient tensors-based low-rank properties in the
tensor form for HSI restoration recently. Thus, the low-rank
modeling of HSI in the spatial gradient domain in the tensor form
is highly valuable to be exploited for spatial-spectral structure
preservation.

Thus, for the spatial-mode low-rank modeling, instead of
directly treating the HSI as a third-order tensor for tensor low-
rank modeling of 3DTNN method [49] in the original domain,
we mainly investigate the spatial gradient tensors and tensor
low-rank priors of HSI in the spatial gradient domain in this
article. Specifically, inspired by the 3DTNN method, we still
apply the DFT but to the spatial gradients of HSI, and obtain that
the spatial gradient tensors in the DFT domain are also low rank,
and particularly propose the following spatial gradient-based
TNN low-rank prior term.

2) Spatial Gradient-Based TNN Low-Rank Prior Term:
Thus, for the tensor construction, we first apply the spatial
horizontal gradient operator ∇1 and the spatial vertical gradient
operator ∇2 to the HSI X ∈ �n1×n2×n3 , and obtain its spatial
horizontal gradient tensor ∇1X ∈ �n1×n2×n3 and spatial verti-
cal gradient tensor ∇2X ∈ �n1×n2×n3 , which are defined as{∇1X (i1, i2, i3) = X (i1+1, i2, i3)−X (i1, i2, i3)

∇2X (i1, i2, i3) = X (i1, i2+1, i3)−X (i1, i2, i3) .
(8)

Then, we use the DFT along the spatial mode-1 of spatial
horizontal gradient tensor ∇1X and the spatial mode-2 of
spatial vertical gradient tensor ∇2X , respectively. Thus, we
obtain the spatial mode-1 horizontal gradient frequency tensor
̂∇1X 1 = fft(∇1X , [ ], 1) ∈ �n1×n2×n3 and the spatial mode-2

vertical gradient frequency tensor ̂∇2X 2 = fft(∇2X , [ ], 2) ∈
�n1×n2×n3 , respectively. Finally, we particularly exploit the
tensor low-rank property of ̂∇1X 1 and ̂∇2X 2 in Fig. 1.

As clearly shown in Fig. 1, the slices of ̂∇1X 1 along mode-1
and the slices of ̂∇2X 2 along mode-2 are low rank, respectively.
Thus, the low rankness of the spatial mode-1 horizontal gradient
frequency tensor ̂∇1X 1 and the spatial mode-2 vertical gradient
frequency tensor ̂∇2X 2 is modeled by the mode-1 and mode-2
TNNs, respectively. Furthermore, we propose the unified spatial
gradient-based TNN low-rank (SGTNNLR) prior term, which
is formulated as

J3(X ) = α1‖∇1X‖TNN1
+α2‖∇2X‖TNN2

=
2∑

k=1

αk‖∇kX‖TNNk

(9)

where α1 ≥ 0, α2 ≥ 0, and ‖∇kX‖TNNk
is the DFT-based

mode-k TNN of ∇kX , which is defined as⎧⎪⎪⎨
⎪⎪⎩
‖∇1X‖TNN1

=
n1∑
i=1

∥∥∥̂∇1X 1 (i, :, :)
∥∥∥
∗

‖∇2X‖TNN2
=

n2∑
i=1

∥∥∥̂∇2X 2 (:, i, :)
∥∥∥
∗

(10)

where ̂∇1X 1(i, :, :) and ̂∇2X 2(:, i, :) are the ith mode-1 slice
of ̂∇1X 1 and ith mode-2 slice of ̂∇2X 2, respectively.

D. Proposed Model

Based on above model (2), we combine the spectral gradient-
based weighted nuclear norm low-rank prior term (5) and the
spatial gradient-based TNN low-rank prior term (9), and propose
the unified tensor-based HSI restoration model with low-rank
modeling in gradient domains as

min
X ,S

1
2 ‖Y − X − S‖2F +λ1‖S‖1
+λ2‖unfold3(∇3X )‖w,∗ +

2∑
k=1

αk‖∇kX‖TNNk
.

(11)

III. ALGORITHM

Clearly, we here apply the ADMM method to solve the
proposed model (11). By setting three auxiliary variables L,
W1, and W2, the model (11) is equivalently transformed into
the following form:

min
X ,S,Wk,L

1
2 ‖Y − X − S‖2F +λ1‖S‖1
+λ2‖unfold3(L)‖w,∗ +

2∑
k=1

αk‖Wk‖TNNk

s.t. L = ∇3X , W1 = ∇1X , W2 = ∇2X .

(12)

Then, its augmented Lagrange function is expressed as

min
X ,S,Wk,L

1
2 ‖Y − X − S‖2F +λ1‖S‖1

+λ2‖unfold3(L)‖w,∗ +
2∑

k=1

αk‖Wk‖TNNk

+η
2 ‖L −∇3X − U‖2F +

2∑
k=1

μk

2 ‖Wk −∇kX −Hk‖2F
(13)

where η, μ1, and μ2 are the penalty parameters and U , H1, and
H2 are the Lagrange multipliers.

Thus, by initializing X (0), S(0), L(0), U (0), W(0)
k , H(0)

k ,
(k = 1, 2) and using the iterative procedure, the optimization
of (13) is decomposed into the optimization of the following
four subproblems under the ADMM framework.

1) Optimization of S: The subproblem of S(i+1) is given as

min
S

1

2

∥∥∥Y − X (i) − S
∥∥∥2
F
+λ1‖S‖1 (14)

which can be efficiently solved by the soft-thresholding method
as

S(i+1) = shrink
(
Y − X (i), λ1

)
(15)

where shrink(Q, δ)= sign(Q) max(0, |Q| − δ) is the soft-
thresholding operator with threshold value δ.

2) Optimization of L: The subproblem of L(i+1) is given as

min
L

η

2

∥∥∥L −∇3X (i) − U (i)
∥∥∥2
F
+ λ2‖unfold3(L)‖w(i),∗ (16)

where the weight vector w(i) = (w
(i)
1 , . . . , w

(i)
t )T ∈ �t con-

sists of each element w
(i)
j = 1/(σj(unfold3(∇zX (i))) + ε),

j = 1, . . . , t and t = min{n3, n1n2}.
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By using the mode-3 unfolding operation,L(i+1) subproblem
is equivalent to the following form of unfold3(L(i+1)) subprob-
lem:

min
unfold3(L)

η
2

∥∥unfold3(L)− unfold3(∇3X (i) + U (i))
∥∥2
F

+λ2‖unfold3(L)‖w(i),∗.
(17)

Thus, the weighted singular value soft-thresholding method
[59] is used to solve the unfold3(L(i+1)) subproblem (17) as

unfold3(L(i+1))=Dw(i),λ2/η

(
unfold3(∇3X (i) + U (i))

)
(18)

where Dw(i),τ (·) is the generalized soft-thresholding operator
with weight vector w(i) and defined as

Dw(i),τ (E) = ADw(i),τ (Σ)B

= A diag
{

max
(
0, δj − τw

(i)
j

)}
B (19)

and E = AΣB denotes the SVD of E ∈ �n3×n1n2 , and δj
denotes the jth singular value of E.

Thus, we can further obtain L(i+1) by the mode-3 folding
operation as

L(i+1)= fold3

(
unfold3(L(i+1))

)
. (20)

3) Optimization of Wk, (k = 1, 2): The subproblem of
W(i+1)

k , (k = 1, 2) is given as

min
Wk

μk

2

∥∥∥Wk −∇kX (i) −H(i)
k

∥∥∥2
F
+ αk‖Wk‖TNNk

. (21)

According to [49], by using the mode-k TNN-based tensor
singular value thresholding (t-SVT) method, the W(i+1)

k sub-
problem can be efficiently solved by

W(i+1)
k = Dαk/μk

TNNk

(
∇kX (i)+H(i)

k

)
. (22)

4) Optimization of X : The subproblem of X (i+1) is given as

min
X

1
2

∥∥Y − X − S(i+1)
∥∥2
F
+ η

2

∥∥L(i+1) −∇3X − U (i)
∥∥2
F

+
2∑

k=1

μk

2

∥∥∥W(i+1)
k −∇kX −H(i)

k

∥∥∥2
F
.

(23)
Specifically,X (i+1) subproblem (23) can be efficiently solved

by the fast Fourier transform (FFT) as

X (i+1)=F−1

×

⎛
⎜⎜⎝
F(A)+

2∑
k=1

μkF(∇k)
HF(B)+ηF(∇3)

HF(C)

1+
2∑

k=1

μkF(∇k)
HF(∇k)+ηF(∇3)

HF(∇3)

⎞
⎟⎟⎠

(24)

where A = Y − S(i+1), B = W(i+1)
k −H(i)

k , C = L(i+1)

− U (i),F(·), andF−1(·) are the FFT and inverse FFT operators,
respectively, and (·)H denotes the complex conjugate operator.

Algorithm 1: Algorithm for Tensor-Based HSI Restoration
Model With Low-Rank Modeling in Gradient Domains.

1: Input: noisy HSI Y ∈ �n1×n2×n3 , and parameters
λ1, λ2, η, α1, α2, μ1, μ2,MaxIter.

2: Initialization: i = 0,
X (0) = S(0) = L(0) = U (0) = 0,
W(0)

1 = W(0)
2 = H(0)

1 = H(0)
2 = 0.

3: Iterations:
4: For i = 0 to MaxIter−1 Do
5: Solve S(i+1) via (15);
6: Solve L(i+1) via (18) and (20);
7: Solve W(i+1)

1 and W(i+1)
2 via (22);

8: Solve X (i+1) via (24);
9: Update U (i+1), H(i+1)

1 and H(i+1)
2 via (25);

10: End For
11: Output: the restored HSI X (MaxIter).

5) Update U and Hk, (k = 1, 2): Finally, the Lagrange mul-
tipliers U and Hk, (k = 1, 2) are updated as{U (i+1) = U (i) +∇3X (i+1) − L(i+1)

H(i+1)
k = H(i)

k +∇kX (i+1) −W(i+1)
k .

(25)

Thus, the whole optimization of the proposed tensor-based
HSI restoration model with low-rank modeling in gradient do-
mains (11) is given in Algorithm 1.

IV. EXPERIMENTS

A. Experiment Setting

In order to verify the effectiveness of our proposed tensor-
based HSI restoration method with low-rank modeling in gradi-
ent domains, we have carried out many denoising experiments
on various simulated and real HSI datasets by comparing with
some state-of-the-art methods. In this article, two simulated
datasets and three real datasets are used for the HSI denoising
experiments.

Moreover, we clearly compared the proposed method with
some state-of-the-art denoising methods, such as LRMR [19],
LRTV [30], LRTDTV [34], 3DTNN [49], LRTFDFR [35],
intrinsic tensor sparsity regularization (ITSR) [60], nonlocal
meets global (NG-meet) [61], FGSLR1/2 [51], and HSID-CNN
[56]. In order to comprehensively evaluate the performance of
different denoising methods, visual comparison and quantitative
comparison are both analyzed.

All the experiments are carried out on Windows 11 and
MATLAB(R2016a), which uses Intel Core i5-10210 U 1.6 GHz
and 16 GB RAM.

B. Experiments With Simulated Datasets

In this section, the visually and quantitatively experimental
results of simulated HSI datasets are clearly given.

1) Description of the Simulated Datasets: For the simulated
HSI datasets, we apply a subcube with size 200× 200× 80
of Pavia City Center (PaviaC) dataset and a subcube with
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Fig. 2. Denoising results of different methods on different bands of the simulated PaviaC dataset under different noise cases. (From Top-row to Bottom-row):
Results of band 41 under Case 1, Results of band 49 under Case 2, Results of band 1 under Case 4, Results of band 30 under Case 6. (From Left-column to
Right-column): Results of Original HSI, Noisy HSI, LRMR, LRTV, LRTDTV, 3DTNN, LRTFDFR, ITSR, NG-meet, FGSLR1/2, and Proposed.

size 256× 256× 191 of Washington DC Mall (WDC) dataset.
Then, three quantitative image quality indexes, namely, the mean
peak signal-to-noise ratio (MPSNR), mean structural similarity
(MSSIM), and spectral angle mapper (SAM) are used to evaluate
the quality of denoised HSIs.

Specifically, we add six cases of different noise to the clean
HSI to generate the simulated PaviaC and WDC datasets, which
are the following six cases.

Case 1: (Gaussian Noise) Zero-mean Gaussian noise with
different signal-to-noise ratio randomly selected between 10 and
20 dB is added to each band of the PaviaC and WDC dataset.

Case 2: (Gaussian Noise + Salt and Pepper) Gaussian noise
is added in the same way as Case 1, and then the salt and pepper
noise with a density of 20 is randomly added to 20 bands.

Case 3: (Gaussian Noise + Deadlines) Add Gaussian noise
in the same way as Case 1, and then randomly select 10 bands
to add the deadlines.

Case 4: (Gaussian Noise + Stripes) Gaussian noise is added in
the same way as Case 1, and then 20 bands are randomly selected
to add the stripes, where the number of stripes added in each band
is randomly selected from the integer set of {6, 7, . . . , 14, 15}.

Case 5: (Gaussian Noise + Salt and Pepper + Deadlines)
Gaussian noise and salt and pepper noise are added in the same
way as Case 2, and then the deadlines are added into the ten
bands, where five bands are randomly selected from the 20 bands
containing salt and pepper noise, and the rest five bands are
randomly selected from the other bands.

Case 6: (Gaussian Noise + Salt and Pepper + Deadlines +
Stripes) Gaussian noise, impulse noise, and deadlines are added
in the same way as Case 5, and then the stripes are added in
20 bands containing salt and pepper noise, where the number of
stripes added in each band is randomly selected from the integer
set of {6, 7, . . . , 14, 15}.

2) Comparisons With Different Methods: More clearly, for
the simulated data experiments, the representative results of

Case 1, Case 2, Case 4, and Case 6 are selected to evaluate
the visual performance of different denoising methods. Thus,
Figs. 2 and 3 showed the visual denoising results of different
methods on different bands of the two simulated PaviaC and
WDC datasets under the above four noise cases, respectively.
Meanwhile, in order to better observe and compare the local
details of the images in Figs. 2 and 3, the area depicted by the
red rectangle in the local area is enlarged in the right-bottom
area.

Specifically, Fig. 2 shows the denoising results of all methods
on the given band 41, band 49, band 1, and band 30 of the
simulated PaviaC dataset under Case 1, Case 2, Case 4, and
Case 6, respectively.

As shown in the top-row of Fig. 2, i.e., band 41 of the simulated
PaviaC dataset under Case 1 with Gaussian noise, all the methods
can effectively remove the Gaussian noise, but LRMR, LRTV,
LRTDTV, 3DTNN, LRTFDFR, ITSR, and NG-meet methods
more or less blur the details of the image. Moreover, FGSLR1/2

and the proposed method restore the original clean image to
the greatest extent while better preserving the image details and
structures.

As shown in the second-row of Fig. 2, i.e., band 49 of the
simulated PaviaC dataset under Case 2 with Gaussian and Salt
and Pepper Noise, we can clearly see that ITSR can not effec-
tively remove the noise, and LRMR still has a small amount
of noise. LRTV, LRTDTV, 3DTNN, LRTFDFR, NG-meet, and
FGSLR1/2 can well remove the noise, but still have some
shortcomings in preserving the image details, which slightly blur
few details of the image at different degrees. By contrast, the
proposed method shows better denoising performance, which
can better remove the noise and at the same time restore the
image texture structure and details finer.

As shown in the third-row of Fig. 2, i.e., band 1 of the
simulated PaviaC dataset under Case 4 with Gaussian Noise
and Stripes, LRMR, 3DTNN, ITSR, and NG-meet can not
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Fig. 3. Denoising results of different methods on different bands of the simulated WDC dataset under different noise cases. (From Top-row to Bottom-row):
Results of band 43 under Case 1, Results of band 31 under Case 2, Results of band 22 under Case 4, Results of band 37 under Case 6. (From Left-column to
Right-column): Results of original HSI, Noisy HSI, LRMR, LRTV, LRTDTV, 3DTNN, LRTFDFR, ITSR, NG-meet, FGSLR1/2, and proposed.

effectively remove the stripe noise, whereas LRTV, LRTDTV,
and LRTFDFR can well remove the stripe noise, but still blur
some image details at different degrees. The denoising result of
FGSLR1/2 is satisfactory, but a few local details are not well
preserved in the enlarged region. What is more, the proposed
method performs much better results in removing stripe noise
and preserving image details.

As shown in the bottom-row of Fig. 2, i.e., band 30 of the
simulated PaviaC dataset under Case 6 with Gaussian noise, salt
and pepper, deadlines, and stripes, four kinds of mixed noise
are added to the original image to generate the simulated noisy
image. However, the mixed noise can not be effectively removed
by LRMR, 3DTNN, ITSR, and NG-meet, and their restored
results are not satisfactory. Specifically, LRMR, 3DTNN, ITSR,
and NG-meet can not well remove the stripe and deadline noise.
LRTV, LRTDTV, and LRTFDFR can well remove the stripe and
deadline noise, and they also have some information loss and
blur artifacts at different degrees. FGSLR1/2 can obtain very
satisfactory restored result. Compared with other methods, the
proposed method achieves the best visual performance, which
can best remove the stripe and deadline noise, and also preserve
the image details finest.

Furthermore, Fig. 3 shows the denoising results on the given
band 43, band 31, band 22, and band 37 of the simulated WDC
dataset under Case 1, Case 2, Case 4, and Case 6, respectively.

As shown in the top-row of Fig. 3, i.e., band 43 of the simulated
WDC dataset under Case 1 with Gaussian noise, all the methods
can well remove the Gaussian noise. Meanwhile, the results of
LRTV, LRTDTV, and ITSR are too smooth. LRMR, 3DTNN,
LRTFDFR, NG-meet, and FGSLR1/2 all have the problem of
loss of image details in different degrees. The proposed method
can better preserve the global and local details of the image, and
has the best visual effect.

As shown in the second-row of Fig. 3, i.e., band 31 of the
simulated WDC dataset under Case 2 with Gaussian and Salt

and Pepper Noise, the image restored by ITSR still contains a
small amount of noise. LRTV and LRTDTV blur more details
of image, LRMR, 3DTNN, LRTFDFR, and NG-meet blur less
details of image. The denoising result of FGSLR1/2 is satisfac-
tory, but it can be seen from the enlarged region that the details
of the image are also slightly blurred. Moreover, the proposed
method shows better results in removing noise and preserving
details.

As shown in the third-row of Fig. 3, i.e., band 22 of the
simulated WDC dataset under Case 4 with Gaussian Noise and
Stripes, 3DTNN and ITSR can not well remove the stripes, and
the denoising results of LRTV and LRTDTV are not very ideal,
thus losing some image details. LRMR, LRTFDFR, NG-meet,
FGSLR1/2 and the proposed method show good performance in
removing the stripes, and the image recovered by the proposed
method is the closest to the original HSI.

As shown in the bottom-row of Fig. 3, i.e., band 37 of the
simulated WDC dataset under Case 6 with Gaussian noise, salt
and pepper, deadlines, and stripes, ITSR only removes a small
portion of the noise. Moreover, ITSR and 3DTNN can not well
remove the deadlines, and stripes, and LRMR and NG-meet can
remove some deadlines and stripes but also remain few stripes in
the denoised images with a much closer look. LRTV, LRTDTV,
LRTFDFR, and FGSLR1/2 can well remove the deadlines and
stripes, thus showing satisfactory results. Clearly, the visual per-
formance of the proposed method is the most satisfactory, which
can best remove the stripe and deadline noise, and preserve
image details at the same time.

In summary, for above visual comparisons of different cases of
two simulated PaviaC and WDC datasets, the denoising results
of our proposed method are still excellent. In all cases, it can well
remove the mixed noise, restore the clean image, and preserve
the original information of the image. With the variety of mixed
noise added, the superiority of the proposed method is more
obvious and robust in removing the deadlines and stripes.
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TABLE II
MPSNR, MSSIM, AND SAM VALUES OF DIFFERENT METHODS ON THE SIMULATED PAVIAC DATASET

TABLE III
MPSNR, MSSIM, AND SAM VALUES OF DIFFERENT METHODS ON THE SIMULATED WDC DATASET

Clearly, for the quantitative evaluation of different methods,
Tables II and III give the quantitative MPSNR, MSSIM, and
SAM results of different methods on the simulated PaviaC
and WDC datasets under different noise cases, respectively.
Moreover, in Tables II and III, the best results of each quality
index are shown in bold, and the second best results are shown
in underline.

As shown in Table II, the MPSNR, MSSIM, and SAM values
of the proposed method are the best for all these six cases, which

thus show that the proposed method achieves the best denoising
results on the simulated PaviaC dataset.

As shown in Table III, the proposed method achieves the best
results for most of the cases. Clearly, the proposed method gives
the best MPSNR and MSSIM results for Case 1, Case 2, and Case
4, and the second best SAM result for Case 4, where 3DTNN
gives the best SAM results for Case 1 and Case 2, and FGSLR1/2

gives the best SAM result for Case 4. What is more, the proposed
method consistently gives the best MPSNR, MSSIM, and SAM
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Fig. 4. PSNR and SSIM values in each band of different methods on the simulated PaviaC dataset under different noise cases. (a) PSNR under Case 1. (b) SSIM
under Case 1. (c) PSNR under Case 2. (d) SSIM under Case 2. (e) PSNR under Case 4. (f) SSIM under Case 4. (g) PSNR under Case 6. (h) SSIM under Case 6.

Fig. 5. PSNR and SSIM values in each band of different methods on the simulated WDC dataset under different noise cases. (a) PSNR under Case 1. (b) SSIM
under Case 1. (c) PSNR under Case 2. (d) SSIM under Case 2. (e) PSNR under Case 4. (f) SSIM under Case 4. (g) PSNR under Case 6. (h) SSIM under Case 6.

results for the rest Case 3, Case 5, and Case 6. Moreover, in
most cases of the simulated WDC dataset, the proposed method
is much better than the other compared methods.

More specifically, Figs. 4 and 5 show the PSNR and SSIM
values of each band of different methods on the simulated PaviaC
and WDC datasets under Case 1, Case 2, Case 4, and Case 6,
respectively. It can be seen from Figs. 4 and 5 that the proposed

method achieves the best PSNR and SSIM values in most bands
of the simulated PaviaC and WDC datasets. It is worth noting
that the curves of PSNR and SSIM of the proposed method
are smooth and stable, while the other methods cause the large
fluctuations owing to the deadlines or stripes noise at these bands
are not well removed. Therefore, the proposed method has better
denoising ability to remove deadlines and stripes in mixed noise.
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Fig. 6. Comparisons of the spectrum of different methods on the simulated PaviaC dataset under Case 2 at spatial position (10,69), where the blue color denotes
the spectrum of Original HSI. (a) Noisy HSI. (b) LRMR. (c) LRTV. (d) LRTDTV. (e) 3DTNN. (f) LRTFDFR. (g) ITSR. (h) NG-meet. (i) FGSLR1/2. (j) Proposed.

Fig. 7. Comparisons of the spectrum of different methods on the simulated WDC dataset under Case 6 at spatial position (30,30), where the blue color denotes
the spectrum of Original HSI. (a) Noisy HSI. (b) LRMR. (c) LRTV. (d) LRTDTV. (e) 3DTNN. (f) LRTFDFR. (g) ITSR. (h) NG-meet. (i) FGSLR1/2. (j) Proposed.

Fig. 8. Comparisons of the sparse noise S of different methods on band 37 of the simulated PaviaC dataset under Case 6. (From Left to Right): Results of the
sparse noise S of Noisy HSI, LRMR, LRTV, LRTDTV, 3DTNN, LRTFDFR, ITSR, NG-meet, FGSLR1/2, and proposed.

In general, by comparing with the other methods on the
simulated PaviaC and WDC datasets, the proposed method has
advantages in both visual evaluation and quantitative evaluation.
Thus, it further proves that the proposed method is more effective
and feasible for removing mixed noise of HSI.

3) Comparisons of Spectrum Preserving of Different Meth-
ods: Moreover, we further compare the results of preserving
the spectrum of HSI of different methods. Thus, Figs. 6 and 7
particularly show the restored spectrum of different methods on
the simulated PaviaC dataset under Case 2 at spatial position

(10,69), and the simulated WDC dataset under Case 6 at spatial
position (30,30), respectively. As clearly displayed in Figs. 6
and 7, the proposed method can best restore and preserve the
spectrum of original HSI, which are closest to the spectrum of
original HSI marked by the blue curve.

4) Comparisons of the Sparse Noise S Restored by Different
Methods: Furthermore, we also analyze the results of sparse
noise S restored by different methods. To this end, Figs. 8 and
9 particularly display the results of sparse noise S restored by
different methods on the band 37 of simulated PaviaC dataset
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Fig. 9. Comparisons of the sparse noise S of different methods on band 49 of the simulated WDC dataset under Case 4. (From Left to Right): Results of the
sparse noise S of noisy HSI, LRMR, LRTV, LRTDTV, 3DTNN, LRTFDFR, ITSR, NG-meet, FGSLR1/2, and proposed.

TABLE IV
MPSNR, MSSIM, AND SAM VALUES OF HSID-CNN AND THE PROPOSED

METHOD ON THE SIMULATED PAVIAC DATASET WITH THE GAUSSIAN NOISE OF

DIFFERENT LEVELS

under Case 6, and the band 49 of simulated WDC dataset under
Case 4, respectively. As clearly displayed in Figs. 8 and 9,
by comparing with the sparse noise S of noisy HSI, (i.e., the
original sparse noise S as reference), the proposed method can
best restore the sparse noise S among these compared methods.

5) Comparison With Deep Learning Method: Moreover, to
further illustrate the effectiveness of the proposed method
against the deep learning method, we also compare our pro-
posed method with the HSID-CNN method [56]. As we clearly
know, the HSID-CNN method is just proposed for the additive
Gaussian noise removal from HSIs [56]. Thus, to make the
comparison more fair, we particularly use the aforementioned
simulated PaviaC dataset of size 200× 200× 80 with the addi-
tive Gaussian noise of five different variances σ2

n, i.e., σn = 5,
σn = 25, σn = 50, σn = 75, and σn = 100, which are the same
as the simulated experiments conducted by the HSID-CNN
method. In this sense, we give the correspondingly quantitative
results in Table IV. Clearly, our proposed method gives better
MPSNR, MSSIM, and SAM results than those of HSID-CNN
for most of the cases, which shows that our proposed method can
give better denoising performance than HSID-CNN generally.

C. Experiments With Real Datasets

In this section, the experimental results of real HSI datasets
are also given.

For the real HSI datasets, we apply a subcube with size
207× 207× 210 of HYDICE Urban (Urban) dataset, a subcube

with size 200× 200× 166 of EO-1 Hyperion (EO-1) dataset
[19],[30], and the Pavia University (PaviaU) dataset with size
610× 340× 103.

Moreover, the denoising results of different methods on the
real Urban, EO-1, and PaviaU datasets are shown in Figs. 10–12,
respectively.

As shown in Fig. 10, i.e., band 108 of the real Urban dataset,
it is obvious that the original band 108 of Urban is very blurred
after being polluted by the noise. From the whole parts and the
red enlarged parts of the denoised images, we can clearly see
that LRMR and LRTFDFR have only removed a little amount
of noise, and their denoised images are still blurred. LRTV,
LRTDTV, 3DTNN, ITSR, NG-meet, and FGSLR1/2 remove
more of the noise, and the objects in the red box become also
visible. However, compared with the proposed method, the re-
stored results of the LRTV, LRTDTV, 3DTNN, ITSR, NG-meet,
and FGSLR1/2 methods are still not satisfied, which also lose
many image details. More clearly, the proposed method can
best remove the noise and preserve image details. Therefore, the
proposed method shows the best visual denoising performance
on the real Urban dataset.

Then, Fig. 11 shows the denoising results of the band 95 of
the real EO-1 dataset. From the whole parts and the enlarged
red box of the images, we can clearly see that the denoising
performance of LRMR, LRTV, and LRTFDFR on the real EO-1
dataset is not ideal, and their restored images are still blurred
and noisy. LRTDTV, 3DTNN, ITSR, NG-meet, and FGSLR1/2

can remove more of the noise. However, by comparing with
the proposed method, LRTDTV, 3DTNN, ITSR, NG-meet, and
FGSLR1/2 can not well preserve the details of the image, which
are also some blurred and are not as fine as the restored image
of the proposed method. Clearly, the proposed method can best
remove the noise and preserve image details finest. Therefore,
the denoising performance of the proposed method on the real
EO-1 dataset is the best.

Moreover, Fig. 12 shows the denoising results of the band 3
of the real PaviaU dataset, where the denoising performance of
each method is similar with the cases of real Urban and EO-1
datasets.

Meanwhile, we use the no-reference HSI quality assess-
ment (NHSIQA) index [62] for quantitatively assessing the
real data denoising experiments. Then, Table V gives the
NHSIQA results of different approaches on the real Ur-
ban, EO-1, and PaviaU datasets, where the smaller NHSIQA
stands for the higher quality of HSI. As given in Ta-
ble V, the proposed approach consistently gives the small-
est NHSIQA results, i.e., the highest quality of restored
HSI.
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Fig. 10. Denoising results of different methods on band 108 of the real Urban dataset. (From left to Right): Results of Noisy HSI, LRMR, LRTV, LRTDTV,
3DTNN, LRTFDFR, ITSR, NG-meet, FGSLR1/2, and proposed.

Fig. 11. Denoising results of different methods on band 95 of the real EO-1 dataset. (From Left to Right): Results of Noisy HSI, LRMR, LRTV, LRTDTV,
3DTNN, LRTFDFR, ITSR, NG-meet, FGSLR1/2, and proposed.

Fig. 12. Denoising results of different methods on band 3 of the real PaviaU dataset. (From Left to Right): Results of noisy HSI, LRMR, LRTV, LRTDTV,
3DTNN, LRTFDFR, ITSR, NG-meet, FGSLR1/2, and proposed.

TABLE V
NO-REFERENCE HSI QUALITY ASSESSMENT (NHSIQA) VALUES OF DIFFERENT METHODS ON THE REAL HSI DATASETS

In conclusion, for these results on the real Urban, EO-1, and
PaviaU datasets, the proposed method shows the best visual and
quantitative denoising performance.

V. DISCUSSION

A. Parameter Analysis

As we know, the results of the prior-based denoising models
are usually influenced by the model parameters, and choosing
the appropriate parameters also has very important influence to
the final denoising results.

Clearly, the proposed model (11) has four important pa-
rameters, namely, α1, α2, λ1, and λ2. In addition, in our
experiments, we set the penalty parameters μ1 = α1 × 10−2,
μ2 = α2 × 10−2, and η = 0.5. Moreover, the maximum num-
ber of iterations MaxIter is selected empirically as 90. More
specifically, the sensitivity of parameters α1, α2, λ1, and λ2 is
discussed for the proposed method as follows.

Thus, Fig. 13 shows the sensitivity analysis of the proposed
method by studying the MPSNR and MSSIM results versus
parameters α1, α2, λ1, and λ2 particularly on the simulated
PaviaC dataset under Case 6. It can be clearly seen from Fig. 13
that the different setting of parameters α1, α2, λ1, and λ2 can
affect the MPSNR and MSSIM results of the proposed method.
Based on this, for the setting of parameters α1, α2, λ1, and λ2

in our experiments, it is suggested that the values of α1, α2,
λ1, and λ2 should be selected in the intervals of [0.001, 0.01],
[0.001, 0.01], [0.01, 0.1] and [1, 10], respectively.

B. Influence of Proposed SGTNNLR Prior Term (9) With
Different Setting of α1 and α2

Moreover, we also discuss the influence of the proposed
spatial gradient-based TNN low-rank (SGTNNLR) prior term
(9) with different setting of α1 and α2 on the simulated PaviaC
dataset under Case 6, which aims to analyze how the spatial
horizontal gradient-based tensor low-rank term ‖∇1X‖TNN1
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Fig. 13. Sensitivity analysis of parameters α1, α2, λ1, and λ2 of the proposed method on the simulated PaviaC dataset under Case 6. (a) MPSNR versus α1

and λ1. (b) SSIM versus α1 and λ1. (c) MPSNR versus α1 and λ2. (d) SSIM versus α1 and λ2. (e) MPSNR versus α2 and λ1. (f) SSIM versus α2 and λ1. (g)
MPSNR versus α2 and λ2. (h) SSIM versus α2 and λ2.

TABLE VI
ANALYSIS OF PROPOSED SGTNNLR PRIOR TERM (9) WITH DIFFERENT

SETTING OF α1 AND α2 ON THE SIMULATED PAVIAC DATASET UNDER CASE 6

and the spatial vertical gradient-based tensor low-rank term
‖∇2X‖TNN2

affect the denoising performance separately.
Thus, we consider the following three methods:
i) SGTNNLR with only ‖∇1X‖TNN1

, i.e., SGTNNLR with
α2 = 0,

ii) SGTNNLR with only ‖∇2X‖TNN2
, i.e., SGTNNLR with

α1 = 0,
iii) SGTNNLR with both ‖∇1X‖TNN1

and ‖∇2X‖TNN2
,

i.e., SGTNNLR with α1 �= 0 and α2 �= 0.
As we can see from the results of the above three methods on

the simulated PaviaC dataset under Case 6 given in Table VI,
the SGTNNLR term with both spatial horizontal and vertical
gradients-based tensor low-rank terms (i.e., SGTNNLR with

TABLE VII
ANALYSIS OF PROPOSED MODEL (11) WITH DIFFERENT SPECTRAL AND

SPATIAL GRADIENT TRANSFORMS ON THE SIMULATED PAVIAC DATASET

UNDER CASE 6

TABLE VIII
ANALYSIS OF INFLUENCE OF THE DFT OF THE PROPOSED SGTNNLR PRIOR

TERM (9) ON THE SIMULATED PAVIAC DATASET UNDER CASE 6

α1 �= 0 and α2 �= 0) gives the best results, and the spatial hor-
izontal gradient-based tensor low-rank term (i.e., SGTNNLR
with α2 = 0) and the spatial vertical gradient-based tensor low-
rank term (i.e., SGTNNLR with α1 = 0) can both affect the
denoising performance at different degrees, which both play
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TABLE IX
COMPARISONS OF CPU TIME (IN SECONDS) ON DIFFERENT HSI DATASETS

important roles in the proposed SGTNNLR prior term (9) for
HSI restoration.

C. Influence of the Spectral and Spatial Gradient Transforms
of the Proposed Model

Clearly, the low-rank modeling of proposed model is inves-
tigated in the spectral and spatial gradient domains. Thus, we
further discuss the influence of spectral and spatial gradient
transforms of the proposed model (11) on the simulated PaviaC
dataset under Case 6.

Thus, we consider the following three models:
Model 1: Proposed model (11) without the spectral gradient

transform, i.e., Term (5) without the spectral gradient transform
as λ2‖unfold3(X )‖w,∗.

Model 2: Proposed model (11) without the spatial gradient
transform, i.e., Term (9) without the spatial gradient transform
as

∑2
k=1 αk‖X‖TNNk

.
Model 3: Proposed model (11) with both the spectral and

spatial gradient transforms in Term (5) and Term (9).
As clearly given in Table VII, Model 3, i.e., the proposed

model (11) with both the spectral and spatial gradient transforms,
gives the best results, and the spectral and spatial gradient
transforms can both affect the performance at different degrees,
which shows than the spectral and spatial gradient transforms
both play important roles in the proposed model (11) for the HSI
restoration.

D. Influence of the DFT of Proposed SGTNNLR Prior Term (9)

Moreover, we discuss the influence of DFT of the proposed
SGTNNLR prior term (9) on the simulated PaviaC dataset under
Case 6, where the following two methods are considered: i)
SGTNNLR without DFT, and ii) SGTNNLR with DFT.

As clearly provided in Table VIII, SGTNNLR with DFT give
better results than those of SGTNNLR without DFT, which thus
shows that the DFT also plays an important role in the proposed
SGTNNLR prior term (9) for HSI restoration.

E. Convergence Analysis

Moreover, the convergence of the proposed method is also
analyzed. To this end, the MPSNR and MSSIM results versus
iterations on the simulated PaviaC and WDC datasets under Case
6 are representatively provided in Fig. 14 for the convergence
analysis.

As obviously shown in Fig. 14, the values of MPSNR and
MSSIM first increase with the increase of iterations, and then

Fig. 14. Convergence curves of MPSNR and MSSIM versus iterations of the
proposed method on the simulated PaviaC and WDC datasets under Case 6. (a)
MPSNR versus iterations. (b) MSSIM versus iterations.

reach a relatively stable state, which is convergent finally. There-
fore, the convergence of the proposed method can be further
validated.

F. Analysis of Computational Complexity

Furthermore, the computational complexity of our proposed
Algorithm 1 is also analyzed, which can be separately analyzed
by the following five subproblems:

1) For the solution of S(i+1) subproblem via (15), it has the
complexity of O(n1n2n3) for each iteration.

2) For the solution of L(i+1) via (18) and (20), it has the
complexity of O(n1n2n

2
3) for each iteration.

3) For the solution of W(i+1)
1 and W(i+1)

2 via (22),
they both have the complexity of O(n1n2n3(log(n1n2n3) +
min(n1, n2) + min(n2, n3) + min(n3, n1))) for each iteration.

4) For the solution of X (i+1) via (24), it has the complexity
of O(n1n2n3log(n1n2n3)) for each iteration.

5) For the updating of H(i+1)
1 , H(i+1)

2 , and U (i+1) via (25),
they all have the complexity of O(n1n2n3) for each iteration.

Thus, the total computational complexity of our Algorithm 1
is O(MaxIter(n1n2n3(log(n1n2n3)+min(n1, n2)+min(n2,
n3) + min(n3, n1)) + n1n2n

2
3 + n1n2n3log(n1n2n3) +

n1n2n3)), where MaxIter denotes the number of iterations.

G. Comparisons of CPU Time

Finally, the detailed comparisons of CPU time of different
approaches on different HSI datasets are given in Table IX. As
given in Table IX, LRMR always spends the shortest CPU time,
whereas ISTR always spends the longest CPU time. Clearly,
since the proposed model is much more complex than LRMR,
then the proposed method spends much more CPU time than
LRMR, but much less than ISTR, which shows some competi-
tiveness with the other approaches.
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VI. CONCLUSION

In this article, we have proposed a novel and effective tensor-
based HSI restoration model with low-rank modeling in gra-
dient domains by using the tensor modeling theory. Clearly,
we propose the spectral gradient-based weighted nuclear norm
low-rank prior term for the spectral low-rank modeling of HSI
in spectral gradient domain. More specifically, we particularly
propose the spatial gradient-based TNN low-rank prior term
for the spatial low-rank modeling of HSI in spatial gradient
domain. Moreover, the proposed model is effectively optimized
by the ADMM method. Finally, a lot of denoising results on
both simulated and real HSI datasets clearly demonstrate that the
proposed method is superior to many state-of-the-art denoising
methods in the aspects of visual and quantitative comparisons.
More importantly, the proposed method is much more effective
and robust for the removal of the stripes and deadlines.
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