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Spectral–Spatial Generative Adversarial Network for
Super-Resolution Land Cover Mapping With

Multispectral Remotely Sensed Imagery
Cheng Shang , Shan Jiang, Feng Ling , Xiaodong Li , Yadong Zhou, and Yun Du

Abstract—Super-resolution mapping (SRM) can effectively pre-
dict the spatial distribution of land cover classes within mixed pixels
at a higher spatial resolution than the original remotely sensed
imagery. The uncertainty of land cover fraction errors within mixed
pixels is one of the most important factors affecting SRM accuracy.
Studies have shown that SRM methods using deep learning tech-
niques have significantly improved land cover mapping accuracy
but have not coped well with spectral–spatial errors. This study pro-
poses an end-to-end SRM model using a spectral–spatial generative
adversarial network (SGS) with the direct input of multispectral re-
motely sensed imagery, which deals with spectral–spatial error. The
proposed SGS comprises the following three parts: first, cube-based
convolution for spectral unmixing is adopted to generate land cover
fraction images. Second, a residual-in-residual dense block fully
and jointly considers spectral and spatial information and reduces
spectral errors. Third, a relativistic average GAN is designed as
a backbone to further improve the super-resolution performance
and reduce spectral–spatial errors. SGS was tested in one synthetic
and two realistic experiments with multi/hyperspectral remotely
sensed imagery as the input, comparing the results with those of
hard classification and several classic SRM methods. The results
showed that SGS performed well at reducing land cover fraction
errors, reconstructing spatial details, removing unpleasant and
unrealistic land cover artifacts, and eliminating false recognition.

Index Terms—Deep learning (DL), generative adversarial
network (GAN), land cover fractions, spectral–spatial errors,
super-resolution mapping (SRM).

NOMENCLAUTURE

HC Hard classification.
DL Deep learning.
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GAN Generative adversarial network.
EIDS End-to-end, Image-based, and DL-based SRM.
RaGAN Relativistic average GAN.
RRDB Residual-in-residual dense block.
MRF Markov Random Field.
GSGS Geneative network of SGS.
StdGAN Standard GAN.
RMSE Root-mean-square error.
SGSU SGS removes CCUL and performs spectral unmixing

individually.
SGSS SGS uses the StdGAN discriminative network as the

backbone.
SRM Super-resolution mapping.
CNN Convolutional neural network.
TFDS Two-step, Fraction-based, and DL-based SRM.
SGS Spectral-spatial GAN for SRM.
CCUL Cube-based convolution unmixing layout.
SRCM Super-Resolution and Conversion Module.
SSI Spectral and spatial Integration-based SRM.
DSGS Discriminative network of SGS.
FID Fréchet inception distances.
OA Overall accuracy.
SGSR SGS does not consider spectral errors without RRDB.
FCLS Fully constrained least squares.

I. INTRODUCTION

LAND cover is a key component of global environmental
information [1], [2], [3]. Satellite sensors are increasingly

available as sources for land cover mapping at varying resolu-
tions [4]. Mixed pixels, which may be composed of multiple
land cover classes, are essential in land cover mapping with
multispectral remotely sensed imagery [5], [6]. Hard classifica-
tion (HC), by which each pixel is assigned exclusively to one
single land cover class, is unsatisfactory, especially when the
image has a relatively low spatial resolution [7], [8]. Spectral
unmixing, which is designed to predict the fraction values of
all land cover classes within each mixed pixel, is viewed as
an alternative and equivalent solution to the problem of mixed
pixels [9], [10]. However, the spatial distribution of land cover
classes within each mixed pixel cannot be correctly predicted
[11], [12], [13].

Super-resolution mapping (SRM), which can be viewed as the
postprocessing of spectral unmixing, aims to generate a fine-
resolution land cover map with the observed remotely sensed
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imagery [14]. SRM has been successfully used in mapping
water [15], [16], [17], urban buildings [18], [19], and forests
[20], [21], [22]. Although SRM has been proven effective in
indicating spatial distributions of land cover at subpixel scale,
the accuracy of SRM is often limited by spectral errors and
spatial errors, which are combined and called spectral–spatial
errors. Spectral–spatial errors are often caused by the problem
of mixed pixels. Within one mixed pixel, many different spectral
signatures and spatial patterns may respond to fine-resolution
land cover classes [23], and this many-to-one relationship may
reduce SRM accuracy. Spectral errors are often caused by spec-
tral unmixing that provides land cover fraction information, and
spatial errors are often caused by spatial dependence models
used to describe the spatial patterns of land cover.

The two-step SRM is commonly used to reduce spectral–
spatial errors, in which land cover fraction images are first
produced, and then input to super-resolution analysis to generate
a fine-resolution land cover map [24], [25], [26]. This kind of
SRM can be interpreted as fraction-based, as its input is the
fraction image generated by spectral unmixing [27]. Although
fraction-based SRM is simple and intuitive, it is constrained
by spectral unmixing. Because accurate land cover fraction
images by spectral unmixing are always unavailable, which is an
open problem [28], [29]. Various classical fraction-based SRM
methods have been proposed to represent spatial dependence,
such as Hopfield neural networks [30], pixel swapping [27], and
spatial dependence [31].

Owing to the excellent learning and generalization perfor-
mance of artificial intelligence, deep learning (DL), such as
convolutional neural networks (CNNs) [32], generative adver-
sarial networks (GANs) [33], and graph convolutional networks
[34], have gained increased attention in the field of SRM. These
DL-based models applied a typical two-step strategy, which
first unmixes the remote sensing image to fraction images and
then inputs them into a super-resolution DL model to map
subpixel land covers. The results showed that these two-step,
fraction-based, and DL-based SRM (TFDS) models performed
better than conventional non-DL-based fraction-based SRMs.

However, limitations of spectral–spatial errors from TFDS
models still exist. In general, these models focus on translating
the SRM to the task of super-resolution CNN for land cover
fraction images, which are not end-to-end. Therefore, only
low- and high-level spatial features for land cover fractions are
concerned with a nonlinear relationship, and the uncertainty of
land cover fraction images determined by spectral signatures of
endmembers and mixed pixels is also not considered. Thus, the
accuracy of TFDS models is still strongly influenced by spectral
errors from land cover fractions [33], [34].

An alternative, image-based SRM method is directly applied
to the observed coarse-resolution multi/hyperspectral remotely
sensed imagery. Unlike SRM models that use land cover fraction
images as input, image-based SRM integrates spectral unmixing,
and super-resolution in a unified model, which may somewhat
reduce the impact of land cover fraction errors on the final SRM
map. In essence, image-based SRM aims to find the global op-
timal solution, which comprises spatial and spectral terms [35],

[36]. However, this regularization optimization is an ill-posed
problem. To convert the ill-posed image-based SRM to well-
posed, examples include the Markov random field [37], fuzzy
c-means [11], [35], and spectral and spatial integration [36].

Considering the advantage of DL in dealing with spectral
information and spatial land cover features, a possible alter-
native to address spectral–spatial errors lies in end-to-end,
image-based, and DL-based SRM (EIDS) models. Attempts
have included CNNs [38], [39], [40], [41], [42], GANs [43],
[44], and deep residual networks [45]. Consequently, EIDSs
avoid spectral errors associated with the production by spectral
unmixing. However, these models also have two shortcomings.

First, most end-to-end, image-based, and DL-based SRM
(EIDS) models, including CNNs [39], [40], [41], GAN [44], and
DRN [45], directly learn the nonlinear relationship between land
cover classes and the reflectance of the remotely sensed imagery,
and view land cover mapping as an image-segmentation task. In
this way, the effect of spatial variability in spectral properties
of land covers in remotely sensed imagery has not been fully
considered. Thus, there is always uncertainty in EIDSs due to the
lack of spatial information about subpixel land cover patterns.

Second, some EIDSs, including CNNs [38], [42] and GAN
[43], separately design spectral unmixing and super-resolution
layouts and simply incorporate the two layouts into one frame-
work. The spectral errors of spectral unmixing layout will be
directly transferred to the super-resolution layout. In turn, the
latter super-resolution layout only considers spatial errors during
the spatial reconstruction process and may not deal with spectral
errors that were passed down along the spectral unmixing lay-
out. Furthermore, the objective functions of these models only
calculate the divergence of final land cover classes, and not that
of land cover fractions from the spectral unmixing procedure. In
practice, these EIDSs are formally considered end-to-end, but
are actually two-step, which does not solve spectral errors from
land cover fraction images.

Thus, it is important to propose an ideal DL-based SRM
model, which deals with spectral unmixing and super-resolution
in parallel. This model allows for the consideration of spectral–
spatial errors by transferring them to the extraction layout,
jointly considering spectral and spatial information, and reduc-
ing spectral–spatial errors.

To address the limitations of current methods, we propose a
spectral–spatial GAN for super-resolution land cover mapping
(SS-GAN-SRM, or SGS), which takes the relativistic aver-
age GAN (RaGAN) as an essential framework, comprising a
cube-based convolution unmixing layout (CCUL), residual-in-
residual dense block (RRDB), and super-resolution and con-
version module (SRCM). The motivation of this work is to
improve the accuracy of resultant subpixel land cover maps
by end-to-end, image-based, and DL-based SRM through the
following.

1) CCUL, which plays a role in spectral unmixing and re-
duces spectral errors from land cover fraction images.

2) RRDB, which jointly considers the complementary in-
formation of spectral signatures and spatial textures by
transferring the errors to the next architecture.
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3) SRCM, which reconstructs more high-frequency spatial
details during the super-resolution procedure for land
cover fractions and further reduces spectral–spatial errors.

The contributions of this work are as follows.
1) A novel end-to-end, image-based, and deep-learning-

based (EIDS) model is proposed to generate subpixel land
cover maps from observed multispectral remotely sensed
imagery. To the best of authors’ knowledge, this is the
first GAN framework of DL to simultaneously deal with
spectral–spatial errors in SRM.

2) Spectral errors for spectral unmixing from land cover
fraction images are reduced by CCUL. Spatial errors for
spatial distributions from land cover patterns are reduced
by SRCM and RaGAN. By reducing these two errors,
the resultant fine resolution land cover maps achieve high
performances than conventional SRM models.

3) Unlike traditional SRMs that consider spectral errors and
spatial errors independently, these two errors are jointly
taken into account under the guidance of RRDB thorough
information interaction. Thus, spectral–spatial errors can
be effectively reduced.

The rest of this article is organized as follows. Section II
introduces the overall network architecture, methodology, de-
tailed structure, loss function, and implementation of the pro-
posed model. Section III compares the performance of the
proposed SGS against HC and three state-of-art SRM meth-
ods using one synthetic and two realistic experiments with
multi/hyperspectral remotely sensed imagery, including spectral
and spatial integration-based (SSI), Markov random field-based
(MRF), and CNN of DL. Section IV describes the compar-
ative analysis, ablation studies, computational efficiency, and
discusses several influencing factors. Section V concludes this
article. For convenience, the list of some important acronyms
and abbreviations throughout this article is presented in the
Nomenclature.

II. METHODOLOGY

A. Related Works

1) Super-Resolution Mapping: Assume coarse-resolution
multispectral remotely sensed imagery I with B bands, and
corresponding coarse-resolution land cover fraction image F
with C land cover classes, where I and F contain i × j pixels
with spatial resolution R. The objective of SRM is to predict
a fine-resolution land cover map M from I or F. By setting
the scale factor s, the output high-spatial resolution land cover
map contains (i×s)×(j×s) pixels with spatial resolution r= R/s,
which divides each mixed pixel into s2 subpixels.

In general, SRM is proving to be a promising method for
predicting the spatial distribution of each land cover class at
subpixel scale. It takes the land cover fraction values yielded
by spectral unmixing and uses these as intermediate input to
retrieve an appropriated spatial location for specific land cover
fractions. The resultant super-resolution land cover maps of-
ten have uncertainty as no information about subpixel patterns
within coarse-resolution pixels is used in the model. Thus, SRM
can generally be formulated as an inverse, underdetermined, and
ill-posed problem. The key issue is to regularize spectral–spatial

errors of the mixed pixel problem by characterizing the spatial
distributions of the land cover within a mixed pixel. EIDS
incorporates the conversion from spectral information to land
cover that performs spectral unmixing (I to F) and coarse-to-fine
enhancement that performs super-resolution (F to M) in one
end-to-end network (I to M). All these operations are conducted
by convolutional layers.

2) GAN for SRM: Among DL techniques, GAN is widely
used to estimate generative models via an adversarial process
[46]. GAN is proposed to realize functional nonlinear map-
ping in an end-to-end manner, achieving superior performance
against previous works. A high correlation of local features and
invariance to location shift of input and output images are two
fundamental properties of GAN. A GAN consists of a generative
network G, and a discriminative network D, which are trained
simultaneously. G is trained to generate data from input, and D
to distinguish references from the outputs of G [46], [47], [48],
[49], [50]. The two networks are trained by playing a two-player
minimax game until a Nash equilibrium [46] is reached

min
G

max
D

V (G,D) = Ex∼Pdata(x)[logD(x)]

+ Ez∼PG(z)[log(1−D(G(z)))] (1)

where x is the real data from true distribution pdata, and z is an
input sampled from distribution pz.

GAN has been found capable of solving the spatial depen-
dence of the ill-posed SRM problem [33]. Therefore, we adopt
a GAN as an essential framework for EIDS.

B. Overview of the Proposed Model

The proposed SGS model includes a generative network GSGS

and discriminative network DSGS, which are simultaneously
implemented by a CNN (see Fig. 1). To implement SGS, it is
assumed that enough pairs of a training dataset can be collected,
each containing a fine-resolution land cover map and corre-
sponding coarse-resolution image. Each pair is used as input
to train GSGS, and the role of GSGS is to learn the relationship
from the coarse spatial resolution remotely sensed imagery to the
fine. DSGS is adversarially trained to output a scalar probability,
and the role of DSGS is to further predict the similarity between
the generated fine spatial resolution generated by GSGS and real
from the training dataset through this scalar probability. After
training, GSGS can be used to generate M from I.

First, spectral unmixing affects the accuracy of land cover
fraction images, because spectral unmixing can be simulated as
a combination of subpixel spectral signatures within one mixed
pixel. From this perspective, it is highly difficult to minimize the
difference between the simulated and actual spectral signatures.
Therefore, CCUL in GSGS has been proposed to meet the many-
to-one nonlinear relationship and reduce spectral errors.

Second, the spatial dependence model is essential to make
SRM results spatially smooth, because the super-resolution task
is inherently underdetermined inverse, of which the solution
is not unique. From this viewpoint, it is a straightforward and
effective way to maximize spatial correlations and extract rich
and high-level features. Therefore, SRCM in GSGS has been
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Fig. 1. Network architecture of the proposed SGS.

proposed to mitigate the ill-posed situation and reduce spatial
errors.

Third, spectral errors of land cover fraction images are fed
directly into super-resolution, meaning that spectral information
cannot be fully exploited when dealing with spatial information.
Therefore, integrating spectral errors and spatial errors into
RRDB and jointly dealing with them can take full advantage
of spectral–spatial information.

Finally, DSGS is proposed to further reduce uncertainty
through adversarial training mechanisms, contributing to pre-
serving the most valuable spatial details.

In brief, the functions of SGS can be formulated as extracting
spectral information, reconstructing spatial details, and reducing
spectral–spatial errors; these three functions are embedded in an
integrated network, further reducing spectral–spatial errors.

C. Generative Network GSGS

The input of GSGS is the observed coarse-resolution remotely
sensed imagery I of size i×j×B, and the output is the coarse-
resolution land cover map M of size (i×s)×(j×s)×1. GSGS is
a 39-layer CNN that consists of CCUL, RRDB, and SRCM,
which realize the interaction of spectral and spatial information
and reduce spectral–spatial errors.

CCUL performs spectral unmixing, which fuzzily classifies
the input multi/hyperspectral bands from remotely sensed im-
agery and outputs land cover fraction images. It includes a 3-D
convolution, two fully connected layers, and the output layer (a
total of seven layers). The 3-D convolution contains four cube-
based convolutional layers as higher level feature extractors with
a kernel size of 16 × 16 and 128 feature maps at the first layer
and halved at each layer. CCUL can automatically utilize the
3-D data cube so as to avoid the curse of dimensionality from
multispectral bands and obtain more representative features
without losing helpful information, as does traditional spectral
unmixing [51]. Compared with the conventional endmember

selection process in spectral unmixing, which only processes
spectral information, the cube-based convolutional layer simul-
taneously handles spectral and spatial information. Hence, it
reduces spectral errors during spectral unmixing and realizes
spectral and spatial information interaction at the beginning,
which makes full use of complementary spectral–spatial feature
information, and thus improves the performance and generality
of the proposed model.

RRDB reduces the spectral errors, and transfers the reduced
errors from spectral unmixing, augmenting network capacity
without increasing complexity. The input is the land cover frac-
tion image with large spectral errors from CCUL, and the output
is still the land cover fraction image but with reduced spectral
errors. RRDB [see Fig. 2(a)] has a multilevel residual-in-residual
structure with dense blocks in the main path, and a residual is
added every two layers in each dense block. Each dense block
contains nine layers, including five 2-D convolutional layers, the
first four of which are followed by the LeakyReLU activation
function. The feature map of each layer in the dense block is
the same as that of the land cover fraction image with a size of
i×j×C. First, the core of RRDB is an autoencoder by which
the hidden layers can capture high-level representations and
eliminate small changes in the input. Thus, it shows a superior
performance in reducing spectral errors. Second, the foundation
of RRDB is the residual, which enables the transfer of spectral
errors from CCUL to SRCM, yielding spectral and spatial infor-
mation interaction by reusing spectral features; hence, the two
kinds of complementary information can be jointly considered
in the proposed model. Third, it is empirically observed that
complex and deep network layers are more likely to limit gen-
eralization ability. Hence, the proposed model is easier to train
and has a high capacity.

SRCM [33] upsamples the land cover fraction feature maps to
size (i×s)×(j×s) and converts them to a land cover categorical
map. This involves five layers, including three convolutional
layers, a pixel-shuffle layer, and one deconvolutional layer. The
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Fig. 2. Input, resultant land cover maps, and references in synthetic experiment. (a1)–(a4) Original and degraded Landsat-8 OLI images (bands 4-3-2, 30m,
120 m, 180 m, 240 m). (b1)–(b4) Land cover maps generated by SVM classifier from (a1) to (a4). Final subpixel land cover maps generated by (c1)–(e1) MRF,
(c2)–(e2) SSI, (c3)–(e3) CNN, (c4)–(e4) proposed SGS. Resultant subpixel land cover maps at scale factor: (c1)–(c4) s=4, (d1)–(d4) s=6, (e1)–(e4) s=8.

pixel-shuffle layer is designed for downscaling [46], enabling
the high-frequency preservation of spatial details. The sizes of
convolutional and deconvolutional layers are the same as that of
the output ((i×s)×(j×s)×1). Combined with three convolutional
layers and a deconvolutional layer, SGS can lead to a more
reasonable conversion from land cover fraction values to a single
land cover class by simultaneously dealing with spectral errors
and spatial uncertainties [33].

The generative network GSGS creates a more robust EIDS
model, as it should be able to jointly extract complementary
spectral and spatial information and simultaneously reduce
spectral–spatial errors.

D. Discriminative Network DSGS

The discriminative network DSGS trains to correctly predict
whether the land cover map to DSGS is synthetic or realistic.
The input is a pair of fine-resolution land cover maps of size
(i×s)×(j×s)×1 from the training dataset and GSGS. The output
is a scalar between 0 and 1, which can guide its training. The
first part of its network architecture is a series of convolutional
mapping layers, where the dimension of feature maps is halved,
and the number of feature map channels is doubled from the
previous layer. The convolutional mapping network consists of
12 convolutional layers and LeakyReLU layers-two for each
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feature (16 × 16 × 1 to 1024 × 1024 × 1). The remaining parts
consist of a dense layer, a sigmoid activation function, and a
minus operation.

The training process of standard GAN (StdGAN) is unstable
because the architecture of the discriminative network is non-
transformed and saturated [46], [52]. RaGAN is an extension of
StdGAN where the discriminative network takes a relativistic
and nonsaturating form [52], [53], [54]. Therefore, rather than
measuring the probability that the input land cover map M is
realistic and generated in StdGAN, RaGAN predicts whether a
land cover map Mr from the training dataset is more realistic
than a fake one, Mf (Mf = G(I)). Hence, its output can be
translated from D(Mr) = σ(DGS(GGS(F))) to DEG(Mr, Mf)
= σ(DEG(Mr)− EMf [DGS(GGS(F))]), where σ is the sigmoid
function, and EMf [·] represents the operation of taking the
average for all fake land cover maps in the mini-batch. This
modification allows RaGAN to benefit from the gradients from
generated and realistic land cover maps in adversarial training,
while in StdGAN only the generated part takes effect.

For an existing EIDS, the sources, properties, and influences
of spectral information and spatial features are utterly different
from those of spectral–spatial errors. Hence, it is difficult to
improve super-resolution accuracy and reduce errors under a
unified framework. Compared with a conventional EIDS, which
only uses a unified GSGS for land cover mapping, DSGS further
reconstructs more spatial details and minimizes spectral–spatial
errors through a dual-level hierarchical analysis. In other words,
the functions of DSGS are reinforcement and strengthening.

E. Loss Function

Based on the idea of SRM and the GAN framework in (1),
the loss function is rewritten as

LSGS = LSpectral + λLG + ηLRaD (2)

where LSpectral is spectral loss, and (λLG+ηLRaD) is spatial loss.
LSpectral and LG are the generative loss trained from GSGS, LRaD

is the relativistic discriminative loss trained from DSGS, and λ

and η are tradeoff coefficients to balance different loss terms.
The spectral loss

L
spectral =

1

Cs2ij

si∑

i=1

sj∑

j=1

C∑

c=1

∥∥∥∥F − M

s2ij

∥∥∥∥
1

(3)

is the L1 norm spectral constraint of land class fractions from
matching the spectral information between the final subpixel
land cover map M and original remotely sensed imagery I, which
is trained by CCUL of GSGS.

The generative loss

L
G =

1

s2ij

si∑

i=1

sj∑

j=1

(M −GSGS(I))−
N∑

n=1

logDSGS(GSGS(I))

(4)
provides a rough training direction from observed coarse-
resolution remotely sensed imagery I in the fine-resolution land
cover map M, which is trained by GSGS.

The relativistic discriminative loss

L
RaD = − log(1−DSGS(M −GSGS(I)))

− log(DSGS(GSGS(I))−M) + γ‖M −GSGS(I)‖1
(5)

is trained by DSGS, where γ is a tradeoff coefficient to bal-
ance the discriminative and the L1 norm terms. It minimizes
the difference between the resultant and reference fine-spatial
resolution land cover maps. Thus, through RaGAN and the
L1 norm, unpleasant or unrealistic land cover artifacts can be
removed, and spatially smooth and sharp edges produced.

F. Model Implementation

Backpropagation [55] is employed to minimize the objective
loss function in (2)–(5). Hyperparameters are set manually.
There are 16 mini-batches and 2000 iterations. The learning rate
is initialized as 2 × 10–3 and halved at [200, 400, 800, 1600]
iterations. The loss function of SGS has three terms Lspectral, LG,
and LRad; Hence, the settings of λ, η, and γ play a vital role. It is
found that the optimal ranges of parameters λ,η, andγ were from
4 × 10−2 to 4 × 10−4, from 0.1 to 0.001, and from 2 × 10−2 to
2 × 10−4, respectively. Finally, the three tradeoff parameters
were measured through empirical and continuous tests, and
remained unchanged, with λ= 4 × 10–3, η = 1 × 10–2, and γ =
2 × 10–2. The model uses the Adam optimizer [56], the Python
programming language, and the PyTorch (version 1.6.0) deep-
learning library. The implementation is done with an Nvidia
RTX 3080Ti GPU (Nvidia Corp., Santa Clara, California, USA).

During each mini-batch iteration, black-box preprocessing is
required to provide the land cover fraction or spectral informa-
tion. First, CCUL in GSGS is pretrained during preprocessing.
The input is the fine-resolution land cover map, and the output is
the corresponding coarse-resolution land cover fraction images.
After pretraining, the spectral loss LSpectral [see (3)] is calculated,
and the weights and biases of CCUL are obtained. Thus, the
coarse-resolution land cover fraction image with large spectral
errors is generated as an intermediate output. Second, GSGS

is trained, and the fine-resolution land cover map with reduced
spectral errors GSGS(I) is produced by GSGS. The generative loss
LG from training is calculated [see (4)], the weights and biases of
CCUL are updated, and the weights and biases of the network are
obtained. Third, the realistic and fake/generated fine-resolution
land cover maps (M/GSGS(I)) are simultaneously fed to DSGS

to estimate the probability that the real land cover map from
the training dataset is more realistic than the fake one. In this
dual-level hierarchical analysis, the relativistic discriminative
loss [see (5)] is calculated. This relativistic adversarial conver-
gence process will emerge as a gradient �, guiding GSGS to
generate more realistic spatial details. The weights and biases of
the network are updated using the Adam optimizer by ascending
�. The optimization process stops if the maximum number of
iterations (2000) is reached, or if no less than 0.01% of the loss
function is changed between two iterations. Once trained, GSGS

of SGS can be used to generate a fine resolution land cover map
with the learned parameters of networks.
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III. EXPERIMENTS AND RESULTS

A. Benchmarks and Indicators

The performance of the proposed SGS is compared with that
of HC and several state-of-art SRM algorithms, including the
MRF [37], SSI [36], and CNN-based (CNN) [38]. MRF and SSI
are implemented in MATLAB (version r2019b) (MathWorks.
Inc, Natick, MA, USA) using an Intel i5-9400 CPU. CNN is
implemented in the Keras framework with TensorFlow as the
back end, using the same hardware as the proposed SGS.

Overall accuracy (OA) at the subpixel scale is adopted to
validate the land cover maps produced by HC and different SRM
methods. The Fréchet inception distances (FID) and training er-
ror (1-accuracy) of the training dataset and the root-mean-square
error (RMSE) of the land cover fraction images are employed
to measure the performance.

B. Synthetic Landsat-8 and National Land Cover Dataset
(NLCD) Pair Dataset

1) Dataset Preparation: Synthetic Landsat-8 operational
land imager (OLI) images and land cover maps from the NLCD
were used to assess the performance of SGS. A subset from
NLCD (version 2016), which has been applied consistently
across the United States at a spatial resolution of 30 m, was used
as the test scenario [see Fig. 2(d2)]. This raster-based 16-class
land cover map was clustered into four primary land cover
classes: developed, forest, water, and planted [33], [34], [57].
The land cover map contained 320 × 320 pixels near the Watts
Bar Nuclear Plant and Spring City (35°37’N and 84°50’W), TN,
USA. The multispectral image was obtained from Landsat-8 OLI
remotely sensed imagery (Path 020, Row 035) on February 28,
2016 [see Fig. 2(a1)]. Synthetic coarse-resolution input images
were generated by downsampling the original Landsat image
with scale factors of s = 4, 8, and 16 [see Fig. 2(a1)–(a3)].

For the training dataset, a subset land cover map of
80 000 × 40 000 pixels (34°13’N–46°6’N and 115°28’W–
87°39’W) was selected and divided into 20 000 subimages
of 400 × 400 pixels. Corresponding coarse-resolution land
cover fraction images in the training dataset were generated
by the NLCD land cover maps by degradation for pretraining.
Coarse-resolution Landsat-8 images from spring and summer
(March–August) 2016 were downloaded from USGS as the
input for the training dataset.

For benchmarks, HC was conducted by an support vector
machine (SVM) classifier, with samples chosen manually and
randomly based on pixel numbers and spatial distributions from
NLCD, containing a total of 10 000 pixels. The parameters,
settings, and selection of endmembers of MRF, SSI, and CNN
were in accordance with previous studies [36], [37], [38]. MRF
and SSI do not need training images; the CNN training dataset
does not include land cover images and has only fine-resolution
subpixel land cover maps and corresponding coarse-resolution
remotely sensed imagery.

2) Results: Fig. 2 shows synthetic coarse-resolution re-
motely sensed imagery as input and resultant fine-resolution
subpixel land cover maps produced by HC, MRF, SSI, CNN, and

TABLE I
OA OF LAND COVER MAPS GENERATED BY HC AND DIFFERENT SRM

METHODS COMPARED WITH NLCD AT DIFFERENT SCALE FACTORS IN THE

SYNTHETIC LANDSAT EXPERIMENT

the proposed SGS. A visual comparison demonstrates that SRM
methods provided more detailed information than traditional
per-pixel HC. In addition, with the increase of scale factors,
land cover spatial patterns were more difficult to reproduce,
because HC can only generate a land cover map at the pixel scale,
and much land cover information within pixels is eliminated.
SRM methods could reconstruct the subpixel land cover spatial
information to a great extent.

For SRM approaches, SGS recovered rich spatial details and
prevailed over MRF, SSI, and CNN, as shown in Fig. 4(c4)–(e4).
It is noticed that MRF and SSI results had many isolated patches,
particularly when s = 16 [see Fig. 2(c4) and (d4)], because
both models adopt the maximal spatial dependence principle to
describe land cover spatial features. Furthermore, linear objects,
especially urban roads in the orange circles, were not correctly
mapped in the MRF results [see Fig. 2(c2)–(e2)]; they were
continuous in the SSI results, but with many fractures [see
Fig. 2(c3)–(e3)]. By contrast, these linear objects as generated
by EIDS (CNN and SGS) were more abundant and smooth [see
Fig. 2(c3)–(e3) and Fig. 2(c4)–(e4)].

For the two EIDSs, the presence of littered plants in the
background [forest, also in the orange circle, Fig. 2(c3)–(e3)]
indicates that CNN may produce some pepper and salt noise.
However, these plaques and noises disappeared in the resultant
land cover map by SGS [see Fig. 2(c4)–(e4)]. This is because the
primary function of RRDB is denoising. The land cover fraction
images, which are generated by CCUL, are approximately the
same as those generated by fine-resolution land cover maps,
with trivial differences, perhaps due to spectral errors. RRDB,
which is a type of autoencoder, is suitable for decreasing spectral
divergence within each pixel and denoising.

This demonstrates that SGS significantly improves the SRM
performance by removing unpleasant and unrealistic land cover
artifacts with fewer noises.

The OA is shown in Table I. OA values decreased with
increasing scale factors for all methods because the uncertainty
increased with the scale factor. Compared with the result gen-
erated from HC, SGS has the highest OA, followed by CNN,
SSI, and MRF. The decrease rates of OA in SGS are only about
7.30% and 11.35%, respectively, when the scale factor changes
from 4 to 8 and 8 to 16, which are lower than those in the other
SRM methods (10.19% and 22.12% in MRF, 9.14% and 14.28%
in SSI, 8.33% and 12.26% in CNN). This indicates that SGS was
less affected than conventional methods by scale factors.
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Fig. 3. Input, resultant land cover maps, and references in realistic Landsat-Sentinel experiment. (a) Landsat-9 image (bands 4-3-2, 30 m, 200 × 200 pixels). (b)
Land cover maps generated by SVM classifier from (a). (c) Sentinel-2 image (bands 4-3-2, 10 m, 600 × 600 pixels). (d) Reference generated by SVM classifier
from (c). Final subpixel land cover maps generated by: (e) MRF, (f) SSI, (g) CNN, (h) proposed SGS.

Fig. 4. Input, resultant land cover maps, and references in realistic EO-1 Hyperion experiment. (a) EO-1 image (bands 8-9-10 as red-green-blue, 30 m, 100 × 100
pixels). (b) Land cover map by SVM classifier from (a). (c) Google Digitized image (5 m, 600 × 600 pixels). (d) Refrence by SVM classifier from (c). Final
subpixel land cover maps generated by: (e) MRF, (f) SSI, (g) CNN, (h) proposed SGS.

C. Realistic Landsat-9 and Sentinel-2 Pair Multispectral
Dataset

1) Dataset Preparation: To further validate the proposed
model in real circumstances, we applied a multispectral Landsat-
9 image, acquired on March 21, 2022, with a spatial resolution of
30 m [37], consisting of 200 × 200 pixels of seven multispectral
bands, covering a portion of the Syracuse University campus
(43°02’N and 76°08’W, New York, USA), characterized mainly
by artificial infrastructures with a clear structural context. A
Sentinel-2 image acquired from the same day and area with a

spatial resolution of 10 m was used to produce the subpixel
land cover map. This reference was generated by the SVM
classifier. The endmembers used in SVM were chosen randomly
and manually from the digitized image from Google Earth
and contained a total of 5000 pixels. The SVM accuracy was
97.17% when compared with the chosen endmembers from a
5-m digitized image. The scale factor was set to 3.

The training dataset was a set of 20 chips from the south-
ern study area (central area 53°35’N and 112°57’W) of the
Boreal Ecosystem-Atmosphere Study of fine-resolution land
cover maps in 2021, called the Esri Sentinel-2 10-meter Land
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Use/Land Cover (Esri Sentinel-2). The Esri Sentinel-2 training
dataset is a nine-class land cover map with a spatial resolution
of 10 m over 2 000 000 Sentinel-2 Earth observations (EOs)
from six spectral bands from 2017 to 2021, and the land cover
was clustered into developed, forest, water, and planted classes.
The coarse resolution land cover fraction images were gener-
ated from Esri Sentinel-2 by degradation. Corresponding coarse
resolution remotely sensed imagery was obtained by Landsat-9
in November and December 2021 from USGS. All land cover
fraction images and corresponding remotely sensed imagery
required geometry and radiographic correction using the land
cover maps from Esri Sentinel-2 as a reference.

The model setups of MRF, SSI, and CNN mimicked the
synthetic experiment and previous studies [36], [37], [38]. CNN
shared the training dataset of SGS except for land cover fraction
images, which CNN did not need.

2) Results: The realistic coarse-resolution Landsat-9 re-
motely sensed imagery was input and the resultant fine-
resolution subpixel land cover maps produced by HC, MRF, SSI,
CNN, and the proposed SGS are shown in Fig. 3. A similar trend
to the Landsat-NLCD experiment could also be observed in this
realistic experiment. As shown in Fig. 3(b), jagged boundaries
appeared in the resultant pixel-level land cover map by HC,
and an amount of detailed spatial information was lost. For the
result of MRF, many land cover patterns were wrongly mapped
or mapped as discontinuous. For example, the lake of southeast
Syracuse in the scenario [see gray box, Fig. 3(c)], which should
be classified as water, was wrongly mapped into developed. For
the SSI result in Fig. 3(d), although the continuity of the resultant
fine-resolution land cover maps could be basically maintained,
numerous indented patches and linear artifacts appeared around
the patch boundaries. Compared with MRF and SSI, many
isolated small-sized patches caused by spatial patterns were
eliminated by CNN and SGS, as shown in Fig. 3(e) and (f).

Visual comparison of the subresults in the purple boxes in
Fig. 3 also shows that SGS was more effective than HC and
other SRMs. Although there were still some minor differences
between the resultant land cover map produced by SGS and the
reference, the improvement was noticeable. For example, the
central land cover (mainly planted) map by SGS in the purple
boxes was more similar to the reference maps than those of
MRF, SSI, and CNN. Furthermore, for two EIDSs, the right part
of the planted was not preserved by CNN in Fig. 3(e), while
it was presented more precisely by SGS in Fig. 3(f). This is
because CCUL utilizes deep CNN and 3-D convolutional layer
as a higher level feature extractor and a data cube across many
data planes comprising multispectral bands. Thus, it can tolerate
shift, scale, and distortion invariance, reducing spectral error. For
conventional CNNs, the loss function can be roughly interpreted
as minimizing the approximate spatial divergence in LG [see (4)].
The spectral divergence LSpectral [see (3)] was also calculated
in SGS, meaning that the joint spectral–spatial errors, rather
than spatial errors alone, were fully considered. As a result, the
proposed model could avoid high dimensionality and extract
more representative spectral–spatial features.

The accuracies of overall and each land cover by different
methods are presented in Table II. The OA and accuracy of each

TABLE II
ACCURACY STATISTICS OF LAND COVER MAPS GENERATED BY HC AND

DIFFERENT SRM METHODS COMPARED WITH REFERENCE IN THE REALISTIC

LANDSAT-SENTINEL EXPERIMENT

land cover of the proposed SGS had the highest values, followed
by CNN, SSI, MRF, and HC. The qualitative and quantitative
results show that the proposed SGS could improve the accuracy
compared with the traditional HC and SRM method directly
applied to the coarse-resolution multispectral remotely sensed
imagery.

D. Realistic EO-1 Hyperion Hyperspectral Dataset

1) Dataset Preparation: In this experiment, the effectiveness
of the proposed SGS was validated by a subset of EO-1 Hyperion
hyperspectral images with a spatial resolution of 30 m on July 2,
2014, located at Indian Pine, AZ, USA (34°4’N and 109°54’W).
A test scenario of 600 × 600 pixels [58] was considered. A
total of 44 channels without radiometric calibration (bands 1–7,
58–76, and 225–242) and 22 noisy or water absorption channels
(bands 77, 78, 121–127, 167–178, and 224) were removed, and
the remaining 186 hyperspectral channels with ample spectral
and spatial information were used. The digitized image from
Google Earth with a spatial resolution of 5 m, which was
assumed to be pure pixels, was used as the ground-truth ref-
erence. The subpixel land cover map as reference was generated
by SVM, where the endmembers were selected randomly and
manually and contained a total of 40 000 pixels. The SVM
accuracy was 95.22% compared with the chosen endmembers
from a 5-m digitized image.

For the training dataset, the fine-resolution land cover maps
were generated from the GF-2 satellite image by SVM. All
Gaofen (GF)-2 images were distributed in the 2019 Remote
Sensing Image Sparse Representation and Intelligence Analysis
Contest (Information Science Department, National Natural Sci-
ence Foundation of China), which were taken from 2015 to 2016
over developed, forest, water, and planted. The classification
samples were selected randomly from Google Earth. Each image
has a size of 600 × 600 pixels with a spatial resolution of 4
m, which was then resampled to 5 m (480 × 480 pixels). The
EO-1 Hyperion remotely sensed imagery as the same scene and
closing time was downloaded from USGS as the training dataset.
The scale factor was set to 6. Corresponding coarse resolution
land cover fraction images were generated by degradation from
fine land cover maps based on GF-2, which were only used in
SGS. The model setup was presented in a manner similar to
the Landsat-NLCD, Landsat-Sentinel experiment, and previous
studies [36], [37], [38].
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TABLE III
ACCURACY STATISTICS OF LAND COVER MAPS GENERATED BY HC AND

DIFFERENT SRM METHODS COMPARED WITH GOOGLE DIGITIZED IMAGE IN

THE REALISTIC EO 1 HYPERION EXPERIMENT

2) Results: Fig. 4 shows the realistic coarse-resolution EO-
1 remotely sensed imagery as input, and the resultant fine-
resolution land cover maps produced by MRF, SSI, CNN, and
SGS, from which it is seen that SRMs [see Fig. 4(c)–(f)] provided
more detailed spatial information than HC [see Fig. 4(b)]. HC
could only generate land cover maps at the pixel scale, losing
a considerable amount of land cover information within pixels,
especially the difference between forest and planted. For MRF,
many developed and forest pixels were not correctly mapped.
It is noticed that in the Indian Pine Restaurant [middle of test
scene, black circle, Fig. 4(c)], developed and planted were
easily misclassified. For SSI, it can be seen clearly that the
main roads and slender linear artificial surface objects with a
single-pixel width almost disappeared. By contrast, the linear
spatial distributions were approximately mapped by two EIDSs.
In addition, for the resultant land cover map by CNN, the
developed-planted boundaries were not sufficiently regular and
smooth, and some planted patches adjacent to the linear road
were wrongly classified as forest, while the SGS results could
effectively reduce these.

The accuracy measures of these approaches are shown in
Table III. Similar to the previous two experiments, the statistical
results indicate the potential of the proposed SGS method in
SRM analysis.

IV. DISCUSSION

A. Comparative Analysis

1) Effectiveness of SRM Beyond HC: In all three experi-
ments, the OA of all used SRM methods yielded at least 5%–10%
improvements over HC. Theoretical studies [7], [9], [29], [30],
[59] indicate that SRM considers the subpixel spatial distribution
of land cover fraction information within and between pixels.
However, pixel-level HC fails to account for the land cover
fraction spatial distribution within the mixed pixel. Hence, SRM
revealed a considerable increase in land cover mapping accuracy
over HC.

2) Effectiveness of Deep-Learning Over Nondeep-Learning:
We analyze additional measures of all three experiments to
demonstrate the effectiveness of two EIDSs in coping with
mixed pixels. Considering that the accuracy of SRM may be
affected by the proportions of pure and mixed pixels in coarse-
resolution remotely sensed imagery, the adjusted OA (AOA)
after removing pure pixels is summarized in Table IV. It can

be observed that the AOA values of all SRM results on all
experiments had a certain degree of reduction after removing
pure pixels; the Landsat-NLCD experiment had the least re-
duction, followed by Landsat-Sentinel and EO-1 experiments.
These reductions may be related to the spatial distribution and
geographic characteristics of the land cover classes in different
datasets. For example, the EO-1 experiment is the most frag-
mented between planted and forest, making the SRM process
more difficult because more complicated land cover must be
distributed. By contrast, the spatial distribution of land cover in
the Landsat-NLCD experiment is the most polymerized, which
can bring a more accurate and straightforward SRM process.
The quantitative gaps between various SRM methods, especially
the DL-based models and conventional nondeep-learning-based
methods, further increased.

When dealing with spectral and spatial information, for MRF,
it is assumed that the super-resolution land cover map has MRF
properties, i.e., adjacent pixels are more likely to belong to the
same land cover class than different classes. Thus, the statistical
correlation of intensity levels among neighboring pixels can
be exploited by maximum likelihood estimation. Moreover, for
each subpixel land cover configuration within a mixed pixel in
the SSI, the spectral signature of the pixel can be simulated as
a combination of the subpixel spectral signatures of its com-
ponents. From this perspective, the SSI task can be formulated
as a multiobject optimization aiming to maximize the spatial
dependence and minimize the spectral signature difference by
the maximum spatial dependence (MSD) model. Consequently,
when no prior information about the spatial distribution of
subpixels within neighbor pixels can be provided, these are con-
sidered to be randomly distributed. Thus, the distance between
the considered subpixel and neighbor pixels, i.e., the spatial
dependence, can be calculated by some artificially designed
spatial pattern. In practice, however, these subpixels are indeed
not distributed randomly, and thus, these artificially designed
spatial patterns (MRF or MSD) are inaccurate.

Instead of conventionally extracting handcrafted features,
EIDSs automatically learn high-level latent features from the
additional training dataset without manual intervention. Further-
more, because the information about the spatial pattern from
the training dataset is prior, the spatial pattern description of
DL-based models is often closer to reality than conventional
SRM methods.

In short, these adjusted experimental results and theoretical
analyzes suggest that two EIDSs (CNN and SGS) are more
capable than the conventional nondeep-learning-based MRF
and SSI of alleviating the mixed pixel problem and accurately
characterizing spatial patterns.

3) Effectiveness of GAN Beyond CNN: Previous studies [33],
[42], [43], [44] have demonstrated that a GAN has advantages
over CNN in reconstructing spatial details. Simple experiments
here confirm this conclusion. The FIDs between the generated
and realistic land cover maps from the training dataset of all
three experiments were calculated during model training, and
are shown in Table V. It can be observed that SGS significantly
improves FID over CNN, by 10%–20%. This corroborates that
the FID values of SGS were lower than those of CNN; thus, SGS
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TABLE IV
AOA OF SUBPIXEL LAND COVER MAPS GENERATED BY DIFFERENT SRM METHODS BY REMOVING PURE PIXELSIN ALL EXPERIMENTS

TABLE V
FIDS FOR COMPARISON BETWEEN SGS AND CNN (LOWER IS BETTER),
CALCULATED USING ALL LAND COVER MAPS FROM TRAINING DATASET

could generate more similar land cover maps than CNN when
training. Hence, GAN exhibited a considerable improvement
over CNN, confirming previous observations.

B. Ablation Analysis

To study the effectiveness of each component in the proposed
SGS, an ablation study was conducted by gradually modifying
the baseline model and comparing the differences. Comparisons
of ablation models are provided as follows.

SGSU (SGS removes CCUL and performs spectral unmixing
individually): spectral unmixing is conducted by fully con-
strained least squares (FCLS), and the ablation network uses
land cover fraction images estimated by FCLS as input.

SRSR (SGS does not consider spectral errors without RRDB):
This model does not use RRDB; alternatively, its main path
does not contain residuals and remains RB. Hence, errors from
spectral unmixing are not transferred to super-resolution.

SGSS (SGS uses the StdGAN discriminative network as the
backbone): the discriminative network is trained to directly
estimate the probability, indicating whether a land cover map
is real or fake.

We conducted three ablation studies on the EO-Google pair
hyperspectral experiment (s = 3) to demonstrate the effective-
ness of CCUL, RRDB, and RaGAN.

1) Effectiveness of CCUL (SGS Versus SGSU): CCUL is
first employed to generate land cover fraction images from the
original remotely sensed imagery.

Fig. 5 shows the resultant land cover maps by SGS and SGSU.
Although their spatial distributions are roughly similar to those
of the reference map, it can be seen from the result by SGSU

[see Fig. 5(b5)] that the integrity of realistic small-patch and
linear spatial features could not be well preserved. SGS retained
more spatial details, especially the narrow linear distributions
[two black circles, Fig. 5(b5) and (c5)]. Fig. 5(a)–(c) compares
spectral unmixing performance by showing the extracted land

TABLE VI
RMSE VALUES OF INTERMEDIATE RESULTANT LAND COVER FRACTION

IMAGES GENERATED BY SGSU AND SGS FROM INPUT EO-1 HYPERSPECTRAL

REMOTELY SENSED IMAGERY

cover fraction images when coding for the two models. The
land cover fraction images by SGSU-FCLS [see Fig. 5(b1)–(b4)]
are very intense looking, spatially sparse and visually binary.
Moreover, there are some obvious errors in the water fraction
[yellow circle, Fig. 5(b3)], yet SGS avoided this error [see
Fig. 5(c3)]. As the tree shadow spectrum of the forest is close
to the water spectrum in magnitude, FCLS cannot effectively
distinguish between tree, tree shadow, and water, so tree shadows
were misclassified as water. This indicates that the proposed
CCUL can correctly extract spectral information and obtain
more accurate land cover fraction images than conventional
spectral unmixing algorithms.

Table VI reports the RMSE values of each land cover fraction
image. Again, consistent with visual perception, the average and
each RMSE value of SGS scored better, nearly 5%–10% lower
than SGSU-FCLS. These experimental results and theoretical
analyzes demonstrate that CCUL effectively utilized spectral–
spatial information and achieved superior spectral unmixing
performance.

2) Effectiveness of RRDB (SGS Versus SGSR): RRDB takes
full advantage of complementary spectral–spatial information
by transferring spectral errors to the super-resolution procedure
and reducing them. RRDB has a residual-in-residual structure
with dense blocks in the main path. The foundation of RRDB is
to realize complementary information interaction. After trans-
ferring, the next module of the network architecture benefits
from the reuse, recalculation, exploitation, and exploration of
spectral–spatial errors, so as to extract superior spectral and
spatial features. Additional residual learning inside dense blocks
was added to augment network capacity without increasing com-
plexity. Accordingly, the total loss [see (5)] incorporates spectral
loss LSpectral [see (3)] that calculates spectral divergences, and
generative loss [see (4)] that calculates spatial divergences, so
as to combine spectral–spatial features in one model.

Experimentally, the proposed SGS and ablation model SGSR

were trained on the training dataset of the EO-Google hyperspec-
tral experiment without manually setting iteration times until the
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Fig. 5. Ablation experiment 1 conducted on realistic EO-1 (s=6) experiment. Land cover fraction images produced by: (a1)–(a4) degradation with subpixel land
cover map, (b1)–(b4) SGSU-FCLS, (c1)–(c4) SGS with input EO-1 hyperspectral remotely sensed imagery. Subpixel land cover maps: (a5) reference, (b5) SGSU,
(c5) SGS.

Fig. 6. Ablation experiment 2 (Effectiveness of RRDB) conducted on realistic
EO-1 (s=6) experiment. Purple and red curves donote training error (%, 1-
accuracy) of SGSR and SGS, respectively.

training error remained constant. Fig. 6 compares the training
errors, and we make four observations.

First, after training, the training error of SGS was lower than
that of CNN (i.e., 5.72% versus 6.86%, respectively), which

means that SGS performs better in reducing errors compared
to CNN. This demonstrates that RDDB enhances the SRM
performance by essentially reducing spectral errors, because
SGSR only calculates spatial divergence in the generative loss
[see (4)], while SGS calculates both the spectral divergence in the
spectral loss [see (3)] and the spatial divergence in the generative
loss [see (4)].

Second, SGS has considerably lower error throughout train-
ing, indicating that the problem of vanishing/exploding gradients
is well addressed.

Third, it is noted that SGS reached the optimal error value
at iteration 2281, while SGSR was still able to find solutions
to reach the optimum after about 100 more iterations (2281 to
2383). This means that RRDB helps the network to converge.

Finally, SGSR attained the optimum after gradient descent
(which is indicated by three yellow circles in Fig. 6). In contrast,
SGS reached the optimum after rapidly gradients descent (which
is indicated by two blue circles in Fig. 6). These studies demon-
strate that SGS reached optimization through faster convergence
at the early stage of training.

These experimental comparisons verify the effectiveness of
RRDB at reducing spectral errors, transferring spectral errors
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TABLE VII
STATISTICS OF RESULTANT LAND COVER MAPS OF EO-1 HYPERION EXPERIMENT AFTER CANNY EDGE DETECTION; Nt= TOTAL NUMBER OF EDGE PIXELS;

Nf=TOTAL NUMBER OF 4-CONNECTED PIXELS; Ne= TOTAL NUMBER OF 8-CONNECTED PIXELS

TABLE VIII
COMPUTATIONAL EFFICIENCY OF BENCHMARKS, THE PROPOSED MODEL AND ITS ABLATION MODELS IN ALL EXPERIMENTS

to the super-resolution procedure to jointly consider spectral–
spatial information, and making training easier.

3) Effectiveness of RaGAN Beyond StdGAN (SGS Versus
SGSS): The standard discriminative network of StdGAN may
produce annoying sharp-shape spatial textures with some un-
pleasant and unrealistic land cover artifacts [33], [46], [60].
Theoretically, this is because if the discriminative network of
StdGAN reaches optimality, the gradient will stop learning what
it means for land cover maps to be real, and the training will focus
entirely on fake land cover maps, completely ignoring real data
[52]. By contrast, for RaGAN, both real and fake land cover
maps from the training dataset equally contribute to the gradient
of loss functions LG and L1. This means that when training,
the discriminative network DSGS from SGS acts more globally
than StdGAN. As a result, spectral–spatial errors are minimized
even more through an RaGAN, which uses both real and fake
land cover maps (i.e., dual-level hierarchical analysis), unlike
StdGAN, which uses only fake land cover maps.

Canny edge detection, which can reflect the spatial pattern
and structural connectivity of land cover, further illustrates why
RaGAN is better than StdGAN. From the experimental results in
Table VII, the ratios of the total numbers of 8-connected/edge
pixels (Ne/Nt) and 8-connected/4-connected pixels (Ne/Nf) of
RaGAN were smaller than those of StdGAN, meaning that the
improvement of SGS over SGSS is mainly embodied in the
connection degree of the edge lines of land covers. The edge
line was the boundary between different land cover classes, and
the boundary was a mixed pixel. If the values of Ne/Nt and Ne/Nf

were low, then the performance in dealing with boundary/mixed
pixels was good.

Thus, it can be concluded that RaGAN of SGS performs
better at reducing spectral–spatial errors within mixed pixels,
with more robust land cover continuity and fewer interruptions.

C. Computational Efficiency

Table VIII reports the processing time by the proposed
method, benchmarks, and the ablation models in all three ex-
periments to evaluate computational efficiency.

Compared to nondeep-learning-based SRM models, deep-
learning-based SRMs were much faster than on testing. This
advantage is because deep-learning-based SRMs mainly con-
duct models on GPU, which may be more appropriate for image
processing, yet nondeep-learning-based SRMs conduct models
on CPU with less computational capability than GPU. The
processing time of SGS is rather time-consuming than CNN
and ablation models (except SGSR) because its network is more
complex. Indeed, we found this sacrifice of 5% to 10% higher
computational costs of SGS to be acceptable, because the pro-
posed models created a significant performance. In addition, the
processing time of SGS is faster than SGSR, proving that RRDB
in the proposed model can reduce computational complexity, as
previously reported in Section IV-B-2.

D. Future Work

While the abovementioned experiments highlight the accu-
racy and overall performance of the proposed SGS compared
with SRM and EIDSs, several works should be addressed in the
future.

1) Scale Factor: The scale factor affects the analysis of re-
motely sensed imagery and is particularly important for SRM.
For example, based on the synthetic Landsat experiment with
scale factors s = 4, 8, and 16, the mapping accuracy gradu-
ally decreased with an increasing scale factor for every SRM
method, as can be observed in Table I. This may be because
the undetermined spatial location of a subpixel land cover may
have multiple solutions with mixed pixels, making the SRM
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process more complicated [61]. However, SGS can perform
better than the others under all scale factors, demonstrating
the generalization and tolerance of the proposed model under
various scales.

2) Spatial Extent and Temporal Coverage: Regarding spatial
extent and except for synthetic Landsat-8 images, the remotely
sensed imagery as input and land cover maps as reference cover
substantially the same ground, but not exactly the same—sensors
from the Landsat-9/Sentinel-2 and the EO-1 Hyperion/Google
Earth have different spatial extents. Regarding temporal cover-
age, there is a slight difference in acquisition time between the
test scene and the reference. Thus, image registration may affect
accuracy. The misregistration of spatial extent and temporal
coverage may decrease the detection accuracy of fractional
unmixing. Subpixel and fully automatic registration approaches
should be further studied.

V. CONCLUSION

We proposed a spectral–spatial RaGAN to solve the ill-posed
super-resolution land cover mapping problem. This end-to-end
DL-based SRM method with multispectral remotely sensed
imagery includes a CCUL, RRDB, and SRCM. In the proposed
model, spectral information and spatial information are incorpo-
rated in a one-objective loss function, and are jointly considered
rather than calculated separately.

The performance of SGS was validated using three
datasets with varying spatial resolutions and different
multi/hyperspectral remotely sensed imagery. Compared with
conventional HC, state-of-art MRF, SSI, CNN of DL, and
ablation models, experimental results demonstrated that SGS
could yield a better SRM performance, both qualitatively and
quantitatively, especially in reconstructing contiguous linear
features, eliminating land cover artifacts, and generating geo-
graphically realistic spatial details. Future research will focus
on the image registration algorithm, parameter value selection,
and improvement of the model.
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