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Hypergraph-Enhanced Textual-Visual Matching
Network for Cross-Modal Remote Sensing Image
Retrieval via Dynamic Hypergraph Learning
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and Chibiao Ding

Abstract—Cross-modal remote sensing (RS) image retrieval
aims to retrieve RS images using other modalities (e.g., text) and
vice versa. The relationship between objects in the RS image is
complex, i.e., the distribution of multiple types of objects is uneven,
which makes the matching with query text inaccurate, and then
restricts the performance of remote sensing image retrieval. Previ-
ous methods generally focus on the feature matching between RS
image and text and rarely model the relationships between features
of RS image. Hypergraph (hyperedge connecting multiple vertices)
is an extended structure of a regular graph and has attracted
extensive attention for its superiority in representing high-order
relationships. Inspired by the advantages of the hypergraph, in this
work, a hypergraph-enhanced textual-visual matching network
(HyperMatch) is proposed to circumvent the inaccurate matching
between the RS image and query text. Specifically, a multiscale
RS image hypergraph network is designed to model the complex
relationships between features of the RS image for forming the
valuable and redundant features into different hyperedges. In ad-
dition, a hypergraph construction and update method for an RS
image is designed. For constructing a hypergraph, the features of
an RS image running as vertices and cosine similarity is the metric
to measure the correlation between them. Vertex and hyperedge
attention mechanisms are introduced for the dynamic update of a
hypergraph to realize the alternating update of vertices and hyper-
edges. Quantitative and qualitative experiments on the RSICD and
RSITMD datasets verify the effectiveness of the proposed method
in cross-modal remote sensing image retrieval.

Index Terms—Cross-modal remote sensing (RS) image retrieval,
dynamic hypergraph learning, hypergraph-enhanced textual-
visual matching network (HyperMatch), multiscale RS image
hypergraph.
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I. INTRODUCTION

ITH the development of remote sensing (RS) informa-
W tion acquisition technology, the number of remote sens-
ing images has increased exponentially. The collected remote-
sensing images have diverse scenes and different types of ob-
jects. In addition, the resolution of remote sensing images varies
significantly due to the different standards of sensors. Therefore,
managing massive remote sensing images is complex, and it
is urgent to update remote sensing retrieval technology. Cross-
modal remote sensing image aims to use other modes such as text
as queries to retrieve remote sensing images. With its flexible
form, it has become a research hotspot in the field in recent years.

Previous methods generally generate textual descriptions and
then retrieve remote sensing images by measuring the matching
degrees between query text and the textual descriptions [1], [2],
[3]. These methods are essentially text-to-text retrieval, which
ignores the direct matching between remote sensing image and
query text and are susceptible to the quality of generated textual
description. To avoid the disadvantages of two-stage retrieval,
Yuan et al. [4] propose an end-to-end retrieval method to directly
learn the matching degree between query text and remote sensing
image.

Although the above methods have promoted the development
of cross-modal remote sensing image retrieval and aroused
widespread concern in the industry, they still face the following
three challenges.

1) As shown in Fig. 1, many objects are in the remote
sensing image, including planes, cars, buildings, and other
objects. In addition, the distribution of similar objects
is uneven, and the scale of objects is inconsistent, i.e.,
different objects with various pixels. How to reason-
ably model the relationship between complex objects
in remote sensing images and deal with the multiscale
problem of remote sensing images has become the first
challenge.

2) In addition, the relationship between words in the query
text also needs to be quantified. Different terms have dif-
ferent contributions to other words. The second challenge
is how to accurately quantify the contribution relationship
between words in the query text.

3) There is a corresponding relationship between the object
in the remote sensing image and the entity in the query text.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-4187-9755
https://orcid.org/0000-0002-0038-9816
https://orcid.org/0000-0002-7664-9856
https://orcid.org/0000-0001-9809-5156
mailto:yaofanglong17@mails.ucas.ac.cn
mailto:yaofanglong17@mails.ucas.ac.cn
mailto:sunxian@aircas.ac.cn
mailto:695704204@qq.com
mailto:695704204@qq.com
mailto:tianchangyuan21@mails.ucas.edu.cn
mailto:xuliangyu21@mails.ucas.ac.cn
mailto:huleiyi21@mails.ucas.ac.cn
mailto:cbding@mail.ie.ac.cn

YAO et al.: HYPERGRAPH-ENHANCED TEXTUAL-VISUAL MATCHING NETWORK FOR CROSS-MODAL REMOTE SENSING IMAGE RETRIEVAL

689

(a) Remote Sensing
Image

(c) Relations between
Objects in RS Image

Buildings

Planes Vertice

3

g ’” Hyperedge

W

Cars

(d) Relations between
(b) Query Text Words in Query Text
N
plane
: - and
The zray plane and the V,Vhl,te celass
buildings i
blue plane are separated >
by white buildings. by Joim the
75U blue
separated plane

are

(e) Objects in RS Image matching the Entities in Query Text

&

Buildings

gray plane

-y

white
buildings

SN
ﬁé%
/ \

by

’,’/ “—{blue plane

separated
are

Fig. 1.

Matching process between RS image and query text in cross-modal RS image retrieval. (a) Objects in an remote sensing image are characterized by

many categories, uneven distribution, and different scales. (b) Query text containing various entities. (¢) Hypergraph models the relationships between objects in
RS image, and the objects of the same category are clustered into a hyperedge. Note that objects in an RS image are regarded as vertices, and objects belonging to
the same category are connected by a hyperedge. (d) Undirected fully connected graph quantifies the mutual contribution of words in the query text. (e) Matching

objects in the RS image and entities in the query text.

The third challenge is measuring the correlation between
the query text and the remote sensing image and making
the entity in the query text accurately match the object
in the remote sensing image.

Inrecent years, graph neural network has developed rapidly to
model the relationship between vertices. Inspired by the graph
neural network, we use the undirected fully connected graph
structure to model the relationship between words in the query
text. Words are regarded as the vertices, and edges are used to
quantify the contributions of words to each other.

The relationship between data is not only a simple pairwise
relationship but also a more complex relationship between mul-
tiple vertices. Unlike the ordinary graph structure in which
one edge can only connect two vertices, the hyperedge in the
hypergraph can connect any number of vertices, which makes
the hypergraph naturally suitable for modeling multivertex rela-
tionships. Inspired by the superiority of hypergraph, we choose
to use hypergraph to model the complex relationship between
objects in a remote-sensing image and use the same hyperedge
to connect the objects belonging to the same category, as shown
in Fig. 1(c). To solve the multiscale problem of remote sensing
image, we design high-level and low-level RS image hypergraph
networks to learn the correlation between multiobjects at differ-
ent scales. Specifically, for the high-level RS image hypergraph
network, the high-level RS image features are used as the vertices
of the hypergraph, and the related RS image features are formed
as the hyperedges. The vertices and hyperedges of low-level RS
image are similar to those of high-level RS image hypergraph
network.

In this article, we introduce dynamic hypergraph learning
into cross-modal remote sensing image retrieval. A hypergraph-
enhanced textual-visual matching network (HyperMatch) is

proposed to circumvent the problem of inaccurate RS image and
query text matching. To model the relationships between multi-
ple objects in RS image at different scales, the high-level hyper-
graph network and low-level hypergraph network are designed,
respectively. For the construction of a hypergraph, cosine sim-
ilarity is employed to measure the correlation between objects.
Hypergraph attention is elaborated for the dynamic alternating
update of vertices and hyperedges for hypergraph evolution. In
addition, an undirected fully connected graph network is applied
to quantify the mutual contribution of words in the query text.
Furthermore, the multiscale feature fusion and the image-guided
multimodal fusion are designed to fuse the RS image features at
different scales and extract the valuable text features for accurate
matching with the RS image, respectively.

In summary, the contributions are as follows.

1) This article introduces hypergraph learning into cross-
modal RS image retrieval and correspondingly propose
a HyperMatch to avoid inaccurate matching between RS
image and query text.

2) Aiming at the issue of multiple types, uneven distri-
bution, and multiscale objects in RS images, the high-
level and low-level RS image hypergraph networks are
designed to model the relationship between objects at
different scales, respectively, to cluster the similar ob-
ject features into a hyperedge. Besides, an undirected
fully connected graph network is conceived to quantify
the contribution of words to each other in the query
text.

3) A dynamic hypergraph learning algorithm for RS im-
age is proposed to measure the correlation between ob-
jects and realize the alternated updating of vertices and
hyperedges.
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4) Quantitative and qualitative experiments on the published
RSICD and RSITMD datasets verify the effectiveness of
the proposed method in cross-modal remote sensing image
retrieval.

II. RELATED WORK

In this section, we mainly review the previous work that is
most relevant to our proposed method, including cross-modal
remote sensing image retrieval, text-image matching in natural
scenes, and hypergraph learning.

A. Cross-Modal Remote Sensing Image Retrieval

To address the modality discrepancy caused by imaging mech-
anisms of synthetic aperture radar (SAR) and optical images,
Xiong et al. [5] propose a cross-modality hashing network to
extract the contour and texture shared features from across
modalities. A CNN-RNN framework accompanied by beam
search is exploited in [6] to generate multiple captions for
retrieving RS images. Mao et al. [7] design a deep visual-audio
network to directly capture the correspondence of image and
audio for speech-to-image retrieval. Demir et al. [8] introduce
hashing-based approximate nearest neighbor search to project
high-dimensional image feature vectors into compact binary
hash codes for content-based image retrieval. Hang et al. [9] pro-
pose an unsupervised feature learning model using multimodal
data, hyperspectral, and light detection and ranging (LiDAR).
A multiscale progressive segmentation network is proposed
in [10] to address the issue of simultaneously segmenting objects
with large-scale variations in high-resolution remote sensing
imageries. Hang et al. [11] propose a spectral super-resolution
network guided by the spectral correlation and the projection
properties of hyperspectral imagery. To cope with cross-source
RS image retrieval, Li et al. [12] introduce a source-invariant
hashing convolutional neural network which can be optimized
in an end-to-end manner. To reduce the memory and improve
the retrieval efficiency, Chen et al. [13] propose an image—voice
retrieval network to capture more information on RS data for
generating hash codes with low memory. A cross-source distil-
lation network with a well-designed joint optimization configu-
ration is proposed in [14] to solve the data drift in cross-source
content-based RS image retrieval (CS-CBSIR). Lv et al. [15]
explore an image translation-based framework to address the
data drift in CS-CBSIR by mapping the source domain to
the object domain and keeping the generated images’ content
similar to the origin. To reduce the occupancy and overhead of
cross-modal RS image retrieval algorithm, Yuan etal. [16] come
up with a concise but effective cross-modal retrieval method via
contrast learning and knowledge distillation.

B. Textual-Visual Matching

Wang et al. [17] present a fusion layer-based approach to
extract the relationship between crossmodal features and a
straightforward gradient-updating method to reduce the compu-
tational complexity for textual-visual matching. Li et al. [18]
devise an identity-aware two-stage deep learning framework

to scan incorrect matchings and refine the matching results
with a latent coattention mechanism. Lee et al. [19] present
stacked cross-attention to discover the latent alignments between
image regions and words in the text for inferring image-text
similarity. To learn modality-invariant feature representations, a
text-image modality adversarial matching method incorporating
adversarial learning is introduced in [20]. Liu et al. [21] propose a
graph-structured matching network to construct graph structure
for image and text and exploit graph convolution to propagate
node correspondence for inferring fine-grained phrase corre-
spondence. To learn the matching relations between image and
text, Ma et al. [22] employ convolutional architecture to encode
the image and compose semantic words. Messina et al. [23] in-
troduce a transformer-based relationship-aware network to map
visual and textual modalities into a common abstract concept
space by sharing the weights of self-attentive layers. To capture
the interrelationship of cross-modalities, Nguyen et al. [24]
introduce a local and global scene graph matching model to
extract and learn insightful features of nodes and edges from
image and text graphs. Gu et al. [25] incorporate image-to-text
and text-to-image generative models into cross-modal feature
embedding for learning high-level and local-grounded repre-
sentation.

C. Hypergraph Learning

To uncover complex higher-order interactions in different
applications, Zhang et al. [26] develop a new self-attention-
based graph neural network for handling homogeneous and
heterogeneous hypergraphs with variable hyperedge size. For
the adapting of hypergraph topology, Zhang et al. [27] devise
a hypergraph Laplacian adaptor which adopts a self-attention
mechanism to capture global information and trainable distance
matrix to empower the updating of the topology in an end-to-
end manner. To explore the data distribution’s local structure,
Ma et al. [28] present an approximation algorithm of hyper-
graph p-Laplacian regularization to preserve the geometry of
the probability distribution. Duan et al. [29] present a local
constraint-based sparse manifold hypergraph learning algorithm
to discover the manifold-based light structure and the multivari-
ate discriminant sparse relationship of hyperspectral images.
Wei et al. [30] introduce an information-sharing mechanism
to share the same structural distribution while preserving the
specificity of each low-dimensional representation via adjusting
the view-dependent hyperedge weights. To reduce the dimen-
sion of the hyperspectral image, Luo et al. [31] propose a
sparse-adaptive hypergraph discriminant analysis method for
adaptively revealing the intrinsic structure relationships with
sparse representation.

III. PROBLEM

In this work, we focus on text-based cross-modal RS image
retrieval. Therefore, establishing a text-image matching model
is the primary problem to be solved. RS image possesses the
attributes of multiscale and multiobjective, so how to reasonably
model the relationship between complex objects and deal with
the multiscale issue becomes the first challenge. In addition,
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Overview of HyperMatch Aiming at the issue of multiple types, uneven distribution, and multiscale objects in an RS image, the multiscale RS image

hypergraph networks are designed to model the relationship between objects at different scales by clustering the similar object features into a hyperedge. Besides,
a textual fully connected graph network is conceived to quantify the contribution of words to each other in the query text. In addition, we develop a cross-modal
matching module to grasp the coreference relationship and improve the retrieval accuracy.

the query text is composed of multiple words, and different
terms have different contributions to others. How to accurately
quantify the contributing relationships among words is the sec-
ond challenge. Corresponding relationships exist between the
objects in the RS image and the entities in the query text. The
third challenge is ensuring that the objects match the related
entities.

Main problem (Cross-modal matching): Given an RS image
7 and a query text 7, the goal of cross-modal RS image retrieval
is to build a model F to measure the matching degree S between
them, i.e.,

S=FZ,7) (1)

where S denotes the cross-modal similarity for measuring the
matching degree.

Challenge 1 (Relationships between objects): For an RS im-
age Z, it owns multiple objects at different scales. Thus, it is
necessary to devise a module not only to solve the multiscale
of objects but also to cluster the objects that belong to the same
categories, i.e.,

high high high
Iup?iated =71 J (Z; 97 ) @)
I’zl;;)%ated = ‘F{O’w (I7 ﬁllow)

where IZ;SCIIZte 4 1s the ‘RS image features encoded high-scale
object information, F 1h tgh (+) represents the module to model the
relationships between high-scale objects, and 19]1”9 " stands for

the learnable parameters. The meanings of Z'°% Flow(.),

high high e
low mi ig ig ig
and 97" are similar to Z, %" 5. F1 7" (+), and 9777

Challenge 2 (Relationships between entities): The contribu-
tion of entities to each other in the query text is different, so we
need to build a module to measure the contribution relationships,
ie.,

Tupdatea = F2(T;92) 3)

where Typdateq 18 the updated query text features, Fa(-) rep-
resents modules for learning the contribution relationships be-
tween entities, and )5 stands for the learnable parameters.

Challenge 3 (Objects matching entities): RS images retrieved
through query text usually have a high degree of compatibility,
which is mainly reflected in the correspondence between the
objects of the RS image and the entities in the query text.
Therefore, it is essential to construct a matching method to learn
the correspondence relationships, as follows:

_ high low .
S= F3 (Iupdated7 Iupdated’ 7:1«17dalf€d7 193)

“)

where S denotes the cross-modal similarity for measuring the
matching degree, F3 () refers to the matching method for objects
in RS image and entities in query text.

IV. METHODOLOGY

To accurately retrieve the RS images according to the query
text or find the appropriate descriptions through the RS image,
we construct a hypergraph-enhanced textual-visual matching
network named HyperMatch. As illustrated in Fig. 2, Hyper-
Match contains RS image feature extraction, query text feature
extraction, multiscale RS image hypergraph network, textual
fully connected graph network, and cross-modal matching. In
the following, we will introduce the components in detail.

A. Preliminaries

Hypergraph definition: A hypergraph with n vertices and
m hyperedges can be defined as G = (V, &, W), where V =
{Vitiy, € = {&;}]L, represents the set of vertices and hyper-
edges, respectively. W = diag(wy,ws, . .., w,,) is a diagonal
matrix of hyperedge weights. The structure of a hypergraph can
also be formulated by an incidence matrix H € R™ ", with
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entries defined as
1, if V€&

Hyj = {0, it Vi¢é&;

Dynamic hypergraph learning: According to the characteris-
tics of multiobjective and multicategory in RS image, a well-
designed dynamic hypergraph learning algorithm is introduced
to automatically model the association relationships between
multiple objects and cluster congeneric objects into a same
hyperedge. As demonstrated in Fig. 3, the algorithm consists of
three processes, i.e., hypergraph construction, hyperedge update,
and vertex update.

Hypergraph construction: Given the feature matrix M =
{vi}I, of RS image, each element/vector v; in the matrix is re-
garded as a vertex V;. Toreasonably connect the relevant features
by a hyperedge, for each vertex, cosine distance cosine(v;, v;)
is employed as the measurement metric to cluster its nearest k
vertices into ahyperedge & = v; U{V,, ..., Xm+k-1}. Bythis
way, a hypergraph with n vertices and n hyperedges is formed,
and the incidence matrix H € R™*™ is square that the hyperedge
weight default to 1.

Hyperedge update: After the hypergraph construction, the
hyperedges need to be updated via gathering their connected
vertex information. Based on this, we conceive a hyperedge up-
date mechanism. Whereby the specific structure of hypergraph,
each hyperedge is considered the intermediary of vertex feature
updating. In other words, the update of vertices needs to first
aggregate the information of its connected hyperedges rather
than directly update with adjacent vertices.

With n vertices {Vi}}_, connected by a hyperedge &;, hy-
peredge update aims to emphasis on the significant vertices by
calculating the contribution of the vertices to the hyperedge and
then aggregates them to update the hyperedge feature e;

(&)

1 -1
e, =0 E o Wyvy

Vi Ec‘,‘j

exp (agzk)

Sy ce oxp (al7,)

A =

z = ReLU (W"v| ' + b") (6)

where o is the nonlinearity activation, W,,, W", and ag are
weight parameters, b” denote the learnable bias.

Vertex update: Contrary to the hyperedge update process, ver-
tex update is devised for converging the hyperedge information
to update the connected vertices. Given a set of hyperedges
y=A{--,&n,...,En, -} that are connected to a vertice Vy,
the update process of the vertice feature v can be formalized
as

l l
v, =0 E BkjWeej
Eij

z; = ReLU (W°e}) (7)
where vfc refers to the updated feature of vertex V) that gath-
ers information from all of its connected hyperedges ). W,
We, and a;f are weight parameters, and ag is for the sake of
measuring the significance of the hyperedges to vertex V.

B. Feature Extraction

RS image feature extraction: As for RS images, we resize them
to 256 x 256 pixels, and randomly crop and rotate the images to
extend the training samples.To avoid over-fitting due to the deep
backbone, we apply the ResNet-18 model [32] pretrained on the
ImageNet dataset [33], [34], [35] following [36] to extract last
convolution layer’s feature maps with size 512 x 8 x 8, i.e.,

v? = ResNet(I) (8)

where v9 denotes global feature of RS image.

Although v¥ contains the global information of the RS image,
it still encounters the bottleneck in accurately expressing the
multiscale properties of objects. To solve the above issue, we
follow [4] to up-sampling the feature maps of the first three layers
of ResNet-18 and concatenate these feature maps together as
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low-level RS image features Vlf’“’. In addition, the feature maps
of the last two layers are sampled and connected as high-level
RS image features V79",

Query text feature extraction A query text can be regarded as
aword sequence {z; }"_,. Considering the temporal information
in query text, we ﬁrst exp101t BiGRU [37] as a text encoder to
refine each embedded word e(z;) from forward and backward
directions. Afterward, the generated bidirectional hidden states
are averaged to avoid dimension amplification, as follows:

;= GRU(e(z:), Hyo1)
% = GRU(e(z:), heon)

h, = (B, + h,)/2 ©

where h, refers to the hidden state of word x; containing forward
and reverse query text information. All the hidden states {h; }}_,
compose of the features of query text Vo € R™*%,

C. Multiscale RS Image Hypergraph Networks

To handle the multiscale properties of objects in RS images,
we develop the multiscale RS image hypergraph networks.
Specifically, based on the extracted high-level RS image features
V;”g h containing high-level semantic information, a high-level
RS image hypergraph network is established to capture the rela-
tionships between high-level objects, cluster similar high-level
objects into a hyperedge through dynamic hypergraph learning,
and promote the information interaction between the objects.
Similarly, the low-level RS image hypergraph network is also
constructed to determine the relationships between low-level
objects.

1) High-Level RS Image Hypergraph Network: The ex-
tracted high-level RS image features V™" are taken as the
high-level hypergraph vertices Vh“’h and the hypergraph con-
struction method in IV-A is exp101ted to form the relevant

vertices into hyperedges S?ig h through cosine similarity, and

then the corresponding incidence matrix H}}ig " is calculated

thzgh (thgh7 ghlgh W?igh) HG(thgh) (10)

where HG"9" refers to the constructed high-level RS image
hypergraph, W;”g " is the weight of the hyperedge default to 1,
and HG() is the method of constructing the hypergraph.

The constructed hypergraph models the relationships between
high-level objects without making an object learn knowledge
from other related objects. Thus, dynamic hypergraph learning
in IV-A is adopted for hypergraph iterative updating. Specifi-
cally, the hyperedge update mechanism HyperedgeUpdate(-)
aggregates the relevant object features into their connected
hyperedges following the contribution of these objects to the
hyperedges

E}I”gh = HyperedgeUpdate(V?iQh, H}}igh) (11)
where E}*" is the updated hyperedge features.

Since various hyperedges connect a vertex/object feature, the
hyperedge that gathers relevant high-level object features is
regarded as a relay station further to feedback the hyperedge

Algorithm 1: Multiscale RS Image Hypergraph Networks.

Input: high-level and low-level RS image features
viigh yrlow
VI .

Output: the updated vertex features \Af;”g " and View
that contains all high-level and low-level
object information in RS image, respectively

High-Level RS Image Hypergraph Network.

Step 1. Construction:

Hgfugh (V;Ligh7 g}aigh7 W;Ligh) —
Step 2. Update:

E"" — HyperedgeUpdate(V"*9" H"")

VH9h — VertexUpdate(E"9" HIM)

Low-Level RS Image Hypergraph Network.

Step 1. Construction:

Hglow _ ( low glow Wl]ow) — HG(leow)
Step 2. Update

El" = HyperedgeUpdate(View Hiow)

View = VertexUpdate(El®, Hiew)

HG(V]h)

ORI U R W=

otk
N =

information to the connected vertices

V" — VertexUpdate(E™" H}"™) (12)

where V’IWJ " is the updated vertex features that contains all high-
level object information in RS image. Finally, the above process
is repeated multiple times to obtain sufficient information for
high-level objects.

2) Low-Level RS Image Hypergraph Network: Similar to the
process of high-level RS image hypergraph network, first, the
low-level RS image features V% are considered as the vertices
V}(’“’ of the low-level RS image hypergraph network. There-
after, the hypergraph construction method HG(+) is employed to
cluster the relevant low-level RS objects into hyperedges £/,
and the incidence matrix Hl"w is calculated. Eventually, the
hyperedge HyperedgeUpdate(-) and vertex VertexUpdate(-)
update mechanisms are repeatedly exploited to promote the
iterative interaction of hyperedge and vertex features, to achieve
the fusion of the most relevant information of other objects for
each low-level object. All formulation processes are as follows:

Hglow _( low 5low Wl[ow) — HG(VlIow)
E" = HyperedgeUpdate(View, HYY)
Vv = VertexUpdate(ER™” H™) (13)

where "Hglf’w, Elf“’, and Vllow represent the constructed low-
level RS image hypergraph, the updated hyperedges and vertices,
respectively.!

D. Textual Fully Connected Graph Network

The query text is composed of various words, and different
terms are of varying importance to the retrieval task. For in-
stance, some entities (such as “plane” in Fig. 2) play a decisive

'Noting that the procedure of multiscale RS image hypergraph networks is
summarized in Algorithm 1.
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role in RS image retrieval. In addition, there are internal rela-
tionships between words, e.g., “gray” for modifying “plane.”
Therefore, to model the relationships between arbitrary pairwise
terms and capture the contribution of other words to a word, we
elaborate a textual fully connected graph network.

The text features V extracted by BiGRU are utilized as the
graph’s vertices, and an edge connects arbitrary pairwise vertices
to build the fully connected graph. The mutual contribution of
words determines the weight of the edge. Given a fully connected
graph with n vertices, the significance of an edge/contribution
can be calculated as follows:

T T
Sk =W, mg +w, v+ b

aj = exp(s;)/d 5=y exp(sk) (14)
where v € Vr is a vertex in the fully connected graph, my;, €
V1 is a vertex sharing the same edge with v, and a; represents
the weight of the edge connecting v and my, which is used to
measure the significance of my, to v.

With the weight of each edge in the fully connected
graph, each vertex/word aggregates information from other ver-
tices/words according to their importance

n
vt = a;m;
i 5§11
=1

where V! is the ith vertex feature that converges all the word
information in query text. To make the words learn more fine-
grained information from other words, we repeat the above
process multiple times and receive the query text feature matrix
V= {Vi}L,.

s)

E. Cross-Modal Matching

There is usually a coreference relationship between the ob-
jects in the RS image and the entities in query text, as shown
in Fig. 1, the two planes in the RS image correspond to “grey
plane” and “blue plane” in the query text, respectively. To grasp
the coreference relationship and improve the retrieval accuracy,
we conceive a cross-modal matching method, which is divided
into two modules, i.e., dynamic multiscale feature fusing and
image-induced multimodal fusing, as shown in Figs. 4 and 5
respectively.

1) Dynamic Multiscale Feature Fusing: Given the updated
high-level features V;”g h, low-level features Vll"w, and global
feature v7, the intention of the module is to dynamically fuse
the above three features to solve the multiscale problem of RS
images. Specifically, for the updated high-level features, the
convolution neural network(CNN) with built-in 1 x 1 kernel
Convy 1 (+) is adopted for preliminary encoding and is activated
by ReLu(-). Then, the average pooling Avg(-) is used to reduce
the feature dimension, and finally, the convolutional neural
network is adopted again for deep encoding, as follows:

V19" — Avg(ReLu(Convy . (VF9"))

VI — Convy o (V1) (16)

Updated High-Level
Features

Dynamic Multiscale Feature Fusing

— Conv Conv
— ReLU  Avg
— m 1x1 —/ .A ﬂ 1x1
IE——
Global Feature (ﬁ
[ E— Linear [)D—-l

Updated Low-Level

Features
Conv Conv

ReLU  Avg
ﬂ > 5 I

Fig. 4. Dynamic multiscale feature fusing module. Its purpose is to dynam-
ically fuse the updated high-level, low-level, and global features to solve the
multiscale problem of RS image.

\

Image-Induced Multimodal Fusing

— L.
Bilinear

Similarity
Updated Text Eefinad

Features

Weighted

Sum I

Fig. 5. Image-induced multimodal fusing module. It aims to establish the
feature association between RS image and query text.

. high ..
where v;"9" represents the condensed feature containing large-

scale object information.

The processing of the updated low-level features is consistent
with that of the high-level features. The only difference is that
3 x 3 convolution kernel is utilized instead of 1 X 1 in CNN
to ensure the consistency of feature dimensions and facilitate
subsequent fusion, that is

vl = Avg(ReLu(Convs,s(ViE™)))

- 1 Alow)

v? = Convyyy (V7 17)

where Vi represents the fine-grained feature covering the
information of small-scale objects.

Finally, \'/’I“g h view and v9 are multiplied at the element level
to obtain the final representation v of the RS image.

2) Image-Induced Multimodal Fusing: To establish the fea-
ture association between RS image and query text, we design
an image-induced multimodal fusing module to guide the RS
image feature that integrates the high-level, low-level, and global
features to locate the relevant or significant features in the query
text. First, the updated RS image v; and text features VT =
{vi} | are projected by affine transformation. Afterward, the
bilinear similarity is exploited to measure the correlation be-
tween them. Finally, the features that match the RS image in the
query text are weighted and summed to obtain a new feature.
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This yields

JA—L
S = VZ-WN v+ by

a; = exp(s;)/ Y exp(sk)

k=1
n
o ot
v = E a;v;
Jj=1

where v represents the query text feature condensed according
to the correlation intensity with RS image.

(18)

FE. Triplet Loss

We choose the triplet loss as the loss function following [4]
for increasing the distance between the sample and its corre-
sponding negative samples and making the distance between
the sample and its positive samples as close as possible:

LI, T) = [a— S, T)+ SI,T)+

T

+ Y la— S(.7) + ST.T)+
T

19)

where « represents the margin, [z]+ = max(z,0), and S(I,T)
represent the similarity of the RS image and text.

V. EXPERIMENTS
A. Settings

Datasets: In this article, we select two public datasets (please
refer to Fig. 6), i.e., RSICD and RSITMD datasets, to verify the
model’s effectiveness. RSICD dataset [31] is a large-scale and
diverse RS image caption dataset containing 10 921 images and
30 scenes, and has become the preference for RS image caption
tasks. RSITMD dataset [4] is a fine-grained dataset dedicated
to RS cross-modal text-image retrieval. Some images in this
dataset are selected from the RSICD dataset, while others are
from Google Earth, including 4743 images, 23 715 captions, and
24 scenes.

Settings: All the experiments are performed on pyTorch [41],
running on a Tesla V100 GPU with 32G memory. For the RS
image, the image embedding dimension size is 512. The word
embedding dimension is set to 256, and the hidden layer of the
BiGRU is set to 512. In this manner, the dimension of the RS
image and query text can be kept consistent for the subsequent
feature interactions. In terms of hypergraph construction, for
high-level and low-level RS image hypergraph networks, the
number of vertices connected by a hyperedge is fixed at 6. In
pursuit of a balance of complexity and efficiency, the update
times of textual fully connected graph network and multiscale
RS image hypergraph networks are set to twice. Adam is selected
as the optimizer to train the network up to 50 epochs with the
batch size set to 128. During the training period, the learning
rate was adjusted to le~#, and was decreased by 0.7 every 5
epochs. For evaluation indicators, R@K (K=1, 5, and 10) and
mR are applied to evaluate the performance of the proposed

Captionl: The narrow arch bridge spans a straight river with red boats and three black boats.
Caption2: A red boat is sailing in the river over which is an briage.
Caption3: The bridge crosses the jade green river.
Caption4: A narrow arch bridge spans a straight river with a red boat and three black boats.

Caption5: Some green plants are in two sides of a river with a bridge over it and a red boat in it.

Captionl: Four planes were disappeared at the airport.
Caption2: Four planes were scattered at the airport.
Caption3: Four planes were scattered throughout the airport.

Fig. 6. Illustration of the samples of RSICD and RSITMD datasets. Each RS
image is attached with several descriptions. (a) The example of RSICD dataset.
(b) The example of RSITMD dataset.

model. R@K represents the percentage of ground truth that
appears in topK results. Moreover, to reasonably evaluate the
model’s overall performance, we also use the average of six
recall rates to obtain mR.

B. Baselines

We select several previous state-of-the-art models, which are
specially oriented to image-text matching, as the comparison
baselines to verify the effectiveness of our model, as follows.

VSE++ [42]: In [42], image information and text information
are embedded into the same space by using convolution network
and recursive network, and utilizing triple loss to train image-text
matching model.

SCAN [19]: SCAN, which on the foundation of VSE++,
applies faster RCNN [50] to extract image features and attempts
to align the corresponding objects in the RS image and query
text.

CAMP [43]: CAMP introduces an adaptive message passing
mechanism to control the flow of information transmission
between different modes adaptively and uses the fused features
to calculate the matching degree of image and text.

MTFN [36]: MTFN leverages rank decomposition to con-
struct a multimodal fusion network for calculating the distance
of embedded features.



696

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE I
EXPERIMENTS OF SENTENCE-TO-IMAGE RETRIEVAL AND IMAGE-TO-SENTENCE RETRIEVAL ON RSICD TEST SET

Sentence-to-Image Retrieval Image-to-Sentence Retrieval
RSICD dataset R@1 R@5 R@10 R@I R@5 R@10 mR
VSE++ 3.38 9.51 17.46 2.82 11.32 18.10 10.43
SCAN t2i 4.39 10.90 17.64 391 16.20 26.49 13.25
SCAN i2t 5.85 12.89 19.84 3.71 16.40 26.73 14.23
CAMP-Triplet 5.12 12.89 21.12 4.15 15.23 27.81 14.39
CAMP-BCE 4.20 10.24 15.45 2.72 12.76 22.89 11.38
MTEN 5.02 12.52 19.74 4.90 17.17 29.49 14.81
HyperMatch 7.14 20.04 31.02 6.08 20.37 33.82 19.75
TABLE II
EXPERIMENTS OF SENTENCE-TO-IMAGE RETRIEVAL AND IMAGE-TO-SENTENCE RETRIEVAL ON RSITMD TEST SET
Sentence-to-Image Retrieval Image-to-Sentence Retrieval
RSITMD dataset R@I R@5 R@10 R@1 R@5 R@10 mR
VSE++ 10.38 27.65 39.60 7.79 24.87 38.67 24.83
SCAN t2i 10.18 28.53 38.49 10.10 28.98 43.53 26.64
SCAN i2t 11.06 25.88 39.38 9.82 29.38 42.12 26.28
CAMP-Triplet 11.73 26.99 38.05 8.27 27.79 44.34 26.20
CAMP-BCE 9.07 23.01 33.19 5.22 23.32 38.36 22.03
MTEN 10.40 27.65 36.28 9.96 31.37 45.84 26.92
HyperMatch 11.73 28.10 38.05 9.16 32.31 46.64 27.66

C. Comparisons

Table I summarizes the experimental results of HyperMatch
on the RSICD dataset. It can be seen from Table I that the
proposed HyperMatch achieves significantly improved per-
formance compared with the state-of-the-art models in both
sentence-to-image and image-to-sentence retrieval. In mR met-
ric, HyperMatch outperforms the optimal CAMP-Triplet model
by 5.36%. In using a sentence as a query to retrieve RS im-
ages, HyperMatch improves by 2.02%, 7.15%, and 9.90% in
R@1,R@5, and R@ 10 metrics, respectively. The experimental
results demonstrate that given a query sentence, HyperMatch
can better match RS images related to a sentence. At the
same time, retrieving sentences whereby an RS image improves
performance by 1.93%, 5.14%, and 6.01%, respectively, veri-
fies image-to-sentence retrieval effectiveness. In addition, the
experimental results on the RSITMD dataset (please refer to
Table II) also show that the performance of HyperMatch receives
competitive performance in most indicators, e.g., it exceeds
the MTFN model with the best performance by 0.74% in mR
indicator.

HyperMatch can achieve superior performance on the se-
lected datasets, mainly including the following aspects. On the
one hand, aiming at the situation of multitypes, uneven distribu-
tion, and multiscales of objects in an RS image, the high-level
and low-level RS image hypergraph networks are well-designed
to model the relationships between objects at different scales,

and cluster the features of similar objects into a same hyperedge.
On the other hand, an undirected fully connected graph network
is conceived to quantify the mutual contribution of words in the
query text. Furthermore, the constructed cross-modal matching
module learns the coreference relationships between the objects
in the RS image and the entities in the query text.

D. Ablations

To explore the importance of each pivotal component of the
proposed model, ablation experiments are performed in the
selected two datasets in this section. The results are summarized
in Tables IIT and IV.

From the experimental results in Table III, it can be ob-
served that when the high-level RS image hypergraph network
is eliminated from the model, the performance of in sentence-to-
image retrieval task is decreased by 0.6%, 1.42%, and 1.56%,
respectively on the R@1, R@5, R@10 indicators. In the image-
to-sentence retrieval task, the performance also declined by
0.59%, 0.81%, and 1.5%, respectively. The main reason for
the performance degradation is that the objects in RS images
possess the characteristics of multitype and multiscale. Once
the high-level RS image hypergraph network is removed, the
relationships between large-scale objects will not be modeled,
nor can the similar type of large-scale objects be clustered into
the same hyperedges through dynamic hypergraph learning to
realize the information interaction between objects. In addition,
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TABLE III
ABLATION EXPERIMENTS ON RSICD TEST SET

RSICD dataset

Sentence-to-Image Retrieval Image-to-Sentence Retrieval
Configuration mR

R@1 R@5 R@10 R@1 R@5 R@10
w/o High-Level RS Image Hypergraph Network 6.54 18.62 29.46 5.49 19.56 32.32 18.66
w/o Low-Level RS Image Hypergraph Network 7.77 18.02 27.53 4.99 20.53 33.41 18.71
w/o Textual Fully Connected Graph Network 5.58 17.84 28.45 5.25 18.38 30.77 17.71
w/o Dynamic Multiscale Feature Fusing 6.67 17.93 27.99 5.12 19.46 32.09 18.21
w/o Dynamic Image-Induced Multimodal Fusing 5.94 17.20 27.90 4.92 18.75 30.83 17.59
HyperMatch (full) 7.14 20.04 31.02 6.08 20.37 33.82 19.75

TABLE IV
ABLATION EXPERIMENTS ON RSITMD TEST SET
RSITMD dataset

Sentence-to-Image Retrieval Image-to-Sentence Retrieval
Configuration mR

R@1 R@5 R@10 R@1 R@5 R@10
w/o High-Level RS Image Hypergraph Network 9.40 24.66 36.39 8.67 31.26 47.94 26.39
w/o Low-Level RS Image Hypergraph Network 10.39 26.10 36.50 9.02 31.90 47.61 26.92
w/o Textual Fully Connected Graph Network 9.29 23.78 35.61 8.31 28.45 44.00 2491
w/o Dynamic Multiscale Feature Fusing 12.83 25.66 34.51 9.02 28.27 43.14 25.57
w/o Dynamic Image-Induced Multimodal Fusing 7.96 23.23 34.07 8.62 29.38 42.92 24.36
HyperMatch (full) 11.73 28.10 38.05 9.16 32.31 46.64 27.66

an interesting phenomenon is that the performance degradation
after removing the module is not particularly obvious, mainly
because the low-level RS image hypergraph network, which
can model the relationship between small-scale objects, has not
been eliminated, compensating for the performance degradation
caused by the elimination of high-level RS image hypergraph
network. Analogously, while eliminating the low-level RS image
hypergraph network, the performance on mR metric decreases
by 1.09%, which verifies the ability of the module to model
the relationships between small-scale objects and aggregate
information between objects based on the relationships. Noting
that the improvement brought by low-level hypergraphs is not
as significant as that brought by high-level hypergraphs, espe-
cially on image-to-text retrieval. We attribute it to the fact that
high-level hypergraphs absorb high-level semantic information;
compared with more implicit and localized underlying semantic
information, the relational modeling of high-level information
plays a more important role for the model to recognize global
image information, which is more conducive to be mined by text
features.

The textual fully connected graph network regards words as
vertices and the contribution of words to each other as edges.
By utilizing the self-attention mechanism on the fully connected
graph network, each word can aggregate information according
to the importance of other words. Therefore, when the module

is removed, the performance decreases significantly, e.g., on
the sentence-to-image retrieval task, in terms of R@1, R@5,
R @10 indicators, the performance decreased by 1.56%, 2.2%,
and 2.57%, respectively.

The original intention of the dynamic multiscale feature
fusing module is to combine the large-scale and small-scale
object features learned from high-level and low-level RS im-
age hypergraph networks. Also, the global feature containing
global information of the RS image is dynamically fused to deal
with multiscale problems of objects. Thus, after removing this
module, the performance decreased significantly, e.g., by 1.54%
in mR metric.

To establish feature association between remote sensing im-
age and query text, a dynamic image-induced multimodal fusing
module is designed to guide the positioning of the most rele-
vant or significant features in the query text by integrating the
high-level, low-level, and global features of RS image. After the
module is removed, the performance degrades obviously, e.g.,
in sentence-to-image and image-to-sentence retrieval, R@]I,
R@5, and R@10 decrease by (1.2%, 2.84%, 3.3%) and (1.16%,
1.62%, 2.99%), respectively, which illustrates the importance of
this module for cross-modal remote sensing image retrieval.

Table IV shows the ablation experiment results on the
RSITMD dataset, from which it can be observed that the elimi-
nation of the five vital components aforementioned decreases



698 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

ﬁ)uery: Case 1 \

Three white planes were parked in the gray parking lot.

Results:

Rank 1

-

/ Case 1 \

Results:

Rank 1: A rich pool is between the ring of buildings with red roofs.
Rank 2: The swimming pool is located in the adjacent real estate center.
Rank 3: A swimming pool is located among buildings with red roofs.
Rank 4: Between a beach and a road are standing with swimming pool.
Rank 5: A curly swimming pool in a circle of red roofed buildings.

/

(Query: Case 2 \

Four tanks are near the pipeline and the railway.

Results:

Case 2 \

Rank 1: Two gray boats anchored on either side of the bridge.

Query: Results:

Rank 2: Two small gray boats moored on both sides of the bridge.
Rank 3: The green boat sat quietly by the thin bridge.

Rank 4: Two small white boats floated quietly on the water.

Rank 5: There are two gray boats on the shore and there is a car park.

o /

Fig. 7.

(b)

Examples of selected text-to-image retrieval and image-to-text retrieval. (a) Two cases of retrieving RS images by query text, showing the top five most

relevant retrieval results, of which the green box frames the ground truth. (b) It demonstrates two cases of treating RS images as queries to match relevant captions
and also returns the top five results. The results with green font represent the ground truths. (a) Text-to-image retrieval. (b) Image-to-text retrieval.

the mR metric by 1.27%, 0.74%, 2.75%, 2.09%, and 3.3%,
respectively. The phenomenon and analysis of performance
degradation are the same as those in Table III, and will not be
described here for simplicity. Note that the decline is most signif-
icant when removing the textual fully connected graph network
and dynamic image-induced multimodal fusing, illustrating the
necessity of self-attention-based weighted aggregation of entity
information in text and the effectiveness of learning feature
associations between RS image and query text.

E. Case Study

To intuitively demonstrate the proposed model’s performance
in text-to-image and image-to-text retrieval, we select several
examples (as shown in Fig. 7) for analysis of the two tasks.

Case 1 in Fig. 7(a) shows the retrieved five RS images that
are most relevant to the content of query text, that is, “ T'hree
white planes were parked in the gray parking lot .” From
the retrieved results, we can see that the proposed HyperMatch
can accurately retrieve the best suitable RS image (i.e., Rank
1) consistent with the ground truth according to the query text,
which shows the superior ability of the model in text-image
retrieval. In addition, the remaining retrieved RS images are also
highly related to the content of the query text. In particular, the
objects in the RS images are in accordance with the keywords of
the query text (e.g., “planes” and “parking lot”), which verifies
the rationality of the retrieval results. For the retrieval results of
Case 2, the ground truth is ranked second. Even so, the content
of the Rank 1 is highly similar to that of the ground truth, e.g.,
there are four water tanks in both RS images. The remaining
three retrieved RS images also contain the key entities in the
query text, that is, the ““ tank, ” which further verifies the ability
of the model to retrieve RS images by query text.

Fig. 7(b) illustrates the retrieved relevant captions according
to an RS image. It can be found from Case 1 that all three
ground truths are included in the five top-ranked results retrieved
through an RS image, and the keyword “pool” in the retrieved
nonground-truths, i.e., Rank 2 and Rank 4, is also in keeping with
the object in the RS image. The retrieval situations in Case 2 are
similar to Case 1. On the one hand, all three ground truths are
retrieved. On the other hand, the remaining two captions that are
not within the ground truths are also related to the content of the
RS image, such as “boat” and “bridge” in Rank 3 and “boats”
and “water” in Rank 4. Two cases demonstrate the competitive
performance of the proposed model on image-to-text retrieval.

F. Visualization

To visually show whether the proposed model can accurately
locate critical components (such as object positions) in RS
images according to query text, we verify this capability in the
semantic localization task, which refers to locating the regions
that best match the query text in a large scene. Following the
work proposed in [4], we first use the various sliding win-
dow to cut the large scene image to maintain the multiscale
characteristics of the object. Afterward, the similarity between
each patch obtained after segmentation and the query text is
calculated to form a probability map. After that, the obtained
probability distributions are combined, and the median filter is
utilized to remove the impact noise in the probability map to
ensure that the results are robust. Finally, the probability map
is fused with the original RS image to generate a located image
that can intuitively display the semantic positioning ability of
the model. Fig. 8 illustrates the selected two examples.

Example (a) in Fig. 8 aims to locate football grounds sur-
rounded by cars and houses from a large scene RS image. From
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/

Query Text Segmented Image

The football grounds :
are surrounded by
cars and houses

Probability Map
-

Located Image

(a)

Fig. 8.

/

Query Text Segmented Image

We can see some
playgrounds and
some trees near some
buildings

Probability Map

D

(b)

Visualization of semantic localization results. Either (a) or (b) contains the query text, the segmented RS image, the probability map, and the located RS

image. Among them, the segmented RS image is cut into multiple patches of different scales in various ways according to the method proposed in [4]. Probability
map refers to the probability distribution heat map formed by concatenating the similarity between each patch in the segmented image with the query text. The
located image is generated by “fusing” the probability map with the original RS image, which is convenient for visually discovering the places in the RS image

that are related to the query text.

the located image, we can observe that several football grounds
in the RS image are located. From the probability map, one can
also find that the parts with high probability (coloured in orange
and red) form a “circle” shape, which perfectly corresponds to
the keyword “surrounded” in the query text, demonstrating
that the proposed model can not only locate the objects in the
large scene RS image according to the query text, the spatial
relationships between the objects can also be understood. In
example (b), we attempt to locate the playgrounds and trees
near the buildings. From the located image, it can be found that
the two playgrounds are accurately located. Also, the two play-
grounds are given the highest probability (the deepest colour) in
the probability map, which confirms the model’s capability in
the semantic localization task.

VI. CONCLUSION

Cross-modal RS image retrieval is to retrieve RS images
using other modalities such as text or query other modalities via
RS images. The multiscale and multicategory characteristics of
objects in RS images make it difficult to match the short query
text, further restricting the performance of RS image retrieval.
The hyperedge in a hypergraph can connect the arbitrary number
of vertices and have significant advantages in representing high-
order complex relationships in data. In recent years, hypergraph
learning has attracted extensive attention and developed rapidly.
Therefore, this article introduces it into cross-modal RS image

retrieval and proposes a HyperMatch to realize the accurate
matching between RS image and query text by learning the
spatial relationships between objects in RS image, the con-
tribution relationships between words in query text, and the
corresponding relationships between the objects in RS image
and the entities in query text.

Specifically, high-level and low-level RS image hypergraph
networks are constructed, respectively, to model the relation-
ships between objects of different scales and cluster similar
object features into the same hyperedge. For the construction of a
hypergraph, cosine similarity is utilized as the metric to measure
the correlation of features in the RS image. For the dynamic
update of a hypergraph, vertex attention, and hyperedge attention
are designed to realize the dynamic alternating update of vertices
and hyperedges. Experiments on the published RSICD and
RSITMD datasets verify the effectiveness of HyperMatch in
cross-modal RS image retrieval. In the future, we will explore the
feasibility of applying hypergraph learning to other multimodal
tasks, such as modeling high-order relationships within and
between modalities.
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