
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 1057

A Lightweight Multitask Learning Model With
Adaptive Loss Balance for Tropical Cyclone

Intensity and Size Estimation
Wei Tian , Xinxin Zhou , Xianhua Niu, Linhong Lai, Yonghong Zhang, and Kenny Thiam Choy Lim Kam Sian

Abstract—Accurate tropical cyclone (TC) intensity and size es-
timation are key in disaster management and prevention. While
great breakthroughs have been made in TC intensity estimation
research, there is currently a lack of research on TC size reflecting
TC influence radius. Therefore, we propose a lightweight multi-task
learning model (TC-MTLNet) with adaptive loss balance to simul-
taneously estimate TC intensity and size. Adaptive loss balance is
utilized to solve the problem of inconsistent convergence speed of
TC intensity and size estimation tasks. The model based on four
2-D convolutions, four 3-D convolutions and three fully connected
layers takes up less computational and storage space and improves
the accuracy of TC intensity and size estimation by sharing knowl-
edge among multiple tasks. In addition, due to the imbalanced
distribution of TC samples, with significantly few low-intensity and
high-intensity TC satellite data, this phenomenon poses a great
challenge to TC intensity and size estimation. So, we utilize the
influence of nearby samples to calibrate the sample density to
weight the loss function to enable the model to be generalized to all
samples. The result shows that the root-mean-square error (RMSE)
of TC intensity estimation is 8.40 kts, which is 33.5% lower than
that of the Advanced Dvorak Technique (ADT) and 11.4% lower
than that of the deep learning method (3DAttentionTCNet). The
mean absolute error (MAE) of the TC size estimation is 20.89 nmi,
which is a 16% reduction compared to the Multi-Platform Tropical
Cyclone Surface Winds Analysis (MTCSWA).

Index Terms—Balanced data distribution, dual attention,
lightweight multitask learning model, tropical cyclone (TC)
intensity, TC size.

I. INTRODUCTION

TROPICAL cyclones (TCs) are phenomena with extremely
low central pressure, forming over the tropical ocean and
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eventually dissipating at sea or after moving over land. Land-
falling TCs are accompanied by severe weather such as strong
wind, rainstorms, and storm surges, which can cause significant
loss of life and property [1], [2]. TC intensity is defined as the
maximum average wind speed near the TC center. It is an impor-
tant parameter that measures the destructive power of TC and is
used in TC warning, prevention, and management. Accurate TC
intensity estimation also helps to predict the rapid intensification
of TC intensity. TC size indicates the radius of TC influence.
TC size is usually measured by several wind radii provided
by the forecast centers, including the gale-radius (35 kts, R35),
storm-radius (50 kts, R50), hurricane-radius (64 kts, R64) and
the radius of maximum wind (RMW) [3], [4], [5], [6], [7]. R35
represents the potential impact area of a TC and is one of the most
widely used parameters to predict TC influence and mitigate TC
impact. Thus, the present study conducts TC size estimations
based on R35.

Obtaining TC observations is difficult because TCs spend
most of their lifetime over the ocean, where deploying obser-
vation equipment is challenging. Therefore, aircraft and ships
are used to obtain TC observations at sea. However, these ob-
servational methods are very expensive. With the development
of artificial intelligence, satellite imagery has become the main
source of information for TC intensity estimation. Although
satellite imagery cannot directly measure TC intensity, it can be
estimated indirectly through the captured cloud structure [8], [9].
For example, infrared satellite imagery provides the temperature
distribution of radiation surfaces, water vapor satellite imagery
provides information on the water vapor in the clouds, and
microwave satellite imagery provides information such as the
TC eye, eyewall and spiral rainbands. TC intensity estimation
using satellite imagery is based on the fact that TCs of sim-
ilar intensities have similar cloud structures. In meteorology,
the main TC intensity estimation methods include the Dvorak
technique [10], the advanced Dvorak technique (ADT) [11], the
deviation angle variance technique (DAV) [12], and the satellite
consensus technique (SATCON) [13], [14], [15]. These methods
rely on artificial experience or various algorithms to obtain
features related to TC intensity and then use regression models
to obtain TC intensity. However, the cloud structure features
related to TC intensity determined by humans are subjective.
In addition, the design of feature extraction algorithms requires
expertise, which greatly limits TC intensity estimation. With the
development of deep learning technology, intensity estimation
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technology has gradually improved. However, there are still
challenges in TC intensity estimation based on convolutional
neural network (CNN) [16], [17], [18], [19], [20], [21], [22].
For example, the dependence of spatial information and the
correlation of channel information fail to take into account. Due
to the lack of low-intensity and high-intensity TC observation
data, low-intensity TCs are overestimated and high-intensity
TCs are underestimated. At present, TC intensity estimation
methods focus more on improving accuracy and ignoring the
study of model interpretability.

Obtaining in-situ measurements during TC events is diffi-
cult. Therefore, other observation methods are used for TC
size estimation, such as satellite [23], [24], [25], [26], [27],
scatterometer [28] and microwave sounder [29]. There is no
technology as widely used as the Dvorak method for TC size
estimation because the physical environment information in-
volved in TC size estimation is very complex. Recently, more
and more researchers have started applying deep learning to
estimate TC size. However, obtaining accurate estimations is still
a challenge due to the complexity of the physical relationship
between convection and wind field.

Currently, there is a lack of studies that simultaneously esti-
mate TC intensity and size. We design a lightweight multitask
learning model (TC-MTLNet) with parallel dual attention to
estimate TC intensity and size intensity simultaneously. We
employ 2-D convolution and 3-D convolution, respectively, to
extract features from the infrared channel and multichannel
satellite imagery. Before the fusion of spatial features and chan-
nel features, the position attention module (PAM) and channel
attention module (CAM) are applied to the spatial dimension and
channel dimension, respectively. This dual attention considers
the dependency between the feature map pixels and the corre-
lation between the adjacent channels and allows local features
and global dependencies to be effectively integrated to improve
the accuracy of TC intensity and size estimation. Then, we
incorporate environmental factors into the fully connected layer
after the spatial and channel features are fused and flattened into
one dimension, which effectively provides features related to TC
intensity and size. Subsequently, we use two branches to learn
TC intensity and size separately, while using minimum sea-level
pressure (MSLP) as an auxiliary task to provide additional
feature information for TC intensity and size estimation. Our
main contributions are as follows.

1) Before the two branches are combined, we apply dual
attention to improve feature representation, thus improv-
ing the model’s performance. The PAM represents the
interdependence between spatial features on the feature
maps, and the CAM focuses on the correlation of channels.

2) Adaptive loss balance method is utilized to solve inconsis-
tent TC intensity and size convergence speed in multi-task
learning. The method automatically balances the training
speed of multiple tasks by dynamically adjusting the gra-
dients. This method enables multiple tasks to learn at a
similar speed to avoid multi-task learning being dominated
by one task.

3) Concerning the overestimation and underestimation of TC
intensity and size due to unevenly distributed TC samples,
we employ the label distribution smoothing method, which

convolves the symmetric kernel with the empirical density
distribution to acquire the effective label density distri-
bution that reflects the real sample unevenness. Finally,
the loss function is designed based on the effective label
density to alleviate the problem of overestimation and
underestimation.

4) We explore model interpretability by deep learning vi-
sualization techniques. First of all, by visualizing the
feature maps, we can understand the features learned by
the convolution kernels. Then, we use the deconvolution
technique to visualize the feature maps generated by the
filters to understand the role of the filter. Finally, by
visualizing the high-dimensional features through Grad-
CAM++ technology, we can understand the contribution
of each part in the satellite imagery to the intensity and
size estimation.

The rest of this paper is organized as follows. The next section
presents the research status of TC intensity and size estimation
based on traditional and deep learning methods. Section III
introduces the data, data preprocessing and the architectural
details of the model used. The experimental results are discussed
in Sections IV and V summarizes the research.

II. RELATED WORK

A. TC Intensity Estimation Based on Traditional
Meteorological Methods

The Dvorak technique is based on infrared satellite imagery to
estimate TC intensity. This approach correlates TC intensity with
its inner core, vertical motion patterns and outer cloud structures,
assuming that TCs with similar cloud structures have the same
intensity. However, the Dvorak technique is highly subjective as
meteorologists estimate TC intensity by manually analyzing the
TC cloud structure from satellite imagery. The ADT has been
developed to overcome the limitations of the Dvorak technique.
This method eliminates subjectivity in intensity estimation by
using the objective storm center determination scheme and
cloud pattern determination logic. The DAV technique takes the
organizational level of infrared TC cloud features as an indirect
measurement of TC intensity. This method applies the DAV to
quantify the degree of symmetry of cloud clusters and considers
that similar intensity TCs have a similar degree of cloud clusters
symmetry. However, this method requires a prior TC center,
and errors in the location may lead to inaccurate TC intensity
estimation. The Advanced Microwave Sounding Unit (AMSU)
is based on the relationship between the brightness temperature
of each channel with TC intensity. The SATCON technique is a
weighted estimation scheme that sums up the ADT and several
TC intensity estimation methods to minimize the weaknesses of
each method.

B. TC Intensity Estimation Based on Deep Learning Methods

With the development of artificial intelligence, TC intensity
estimation based on deep learning has been increasingly ap-
plied. Pradhan et al. [30] were the first to apply deep learn-
ing to estimate TC intensity. However, they manually deleted
the satellite imagery of poor quality, so the designed network



TIAN et al.: LIGHTWEIGHT MULTITASK LEARNING MODEL WITH ADAPTIVE LOSS BALANCE 1059

lacked applicability. Chen et al. [31] designed a novel CNN
model, which proposed and verified the rotational invariance of
TC. Chen et al. [32] proposed TC intensity estimation model
based on multi-channel satellite imagery, and integrated basin
information and location information into the network. Lee
et al. [33] designed a multi-dimensional CNN to estimate TC
intensity from geostationary satellite data and analyzed extracted
intensity features from multispectral infrared imagery through
heat maps. Zhuo et al. [34] proposed a network for TC intensity
and size estimation based on physical enhancement. With the
augmentation of auxiliary physical information and tasks, the
network achieved good performance. Tian et al. [35] designed
a 3D CNN to extract TC features from multi-channel satellite
imagery, which improved the model’s ability to focus on features
related to TC intensity by CBAM. Sun et al. [36], [37] proposed
novel image retrieval methods, which can mine similar TCs to
further improve the accuracy of TC intensity estimation. Duan
et al. [38], [39] proposed a self-supervised learning method to
learn the deep neural network from unlabelled hyperspectral
data and a novel hyperspectral image classification framework
using the fusion of dual spatial information. These methods he
proposed can enhance the extraction of TC intensity and size
features, which can further improve the accuracy of TC intensity
and size estimation. Tan et al. [40] designed a model incorporat-
ing a residual learning mechanism and an attention mechanism.
However, these methods for TC intensity estimation still suffer
shortcomings. For example, the dependence of spatial feature
information and the correlation of channel feature information
is not considered. Due to the lack of observation data of low-
and high-intensity TC, low-intensity TC is overestimated and
high-intensity TC is underestimated. In addition, intensity esti-
mation methods focus more on improving accuracy but ignore
the study of interpretability of models.

C. TC Size Estimation Based on Traditional
Meteorological Methods

Demuth et al. [41] employed parameters derived from the
AMSU data to measure TC intensity (maximum sustained winds
and MSLP) and size (34 kts, 50 kts and 64 kts wind radius).
However, the resolution of these data is too low to adequately
reflect the TC structure. In order to overcome the limitations of
this technique, many methods (e.g. [6], [42]) based on satellite
imagery are designed to estimate TC size. Knaff et al. [3] devel-
oped an automated, objective, MultipleSatellite-Platform Trop-
ical Cyclone Surface Wind Analysis (MTCSWA) [3] method
for TC size estimation that allows variable data weights to be
applied to the input data. The combination of overall quality
control and weighted variational analysis yielded smaller errors
in TC size estimation.

D. TC Size Estimation Based on Deep Learning Methods

At present, deep learning has entered many research fields.
Motivated by the positive progress of deep learning in TC
intensity estimation [30], [31], [32], [33], [34], [35], [40], recent
studies have begun to explore the application of deep learning to
TC size estimation. Zhuo et al. [34] were the first to estimate TC
size using deep learning. They designed a physics-augmented

TABLE I
DETAILS OF THE IR, WV, PMW CHANNEL SATELLITE IMAGERY

multi-task learning model to estimate TC size and found that
learning multiple wind radius tasks and auxiliary intensity es-
timation tasks simultaneously yielded more accurate TC size
estimation. Baek et al. [43] developed a novel multi-task learning
model (tc-sem) in the western north pacific for TC size estima-
tion, which improved the accuracy of TC size estimation through
knowledge sharing among multiple related tasks.

III. DATA AND METHODOLOGY

A. Data and Data Preprocessing

1) Data: The TCIR [31] dataset from 2003 to 2017 is used in
our study. This dataset provides infrared (IR), water vapor (WV),
visible (VIS) and passive microwave rain rate (PMW) channel
satellite imagery. Since the visible channel is very noisy at night,
this study is based on IR, WV and PMW channels. The details of
the satellite imagery are shown in Table I. The spatial resolution
of the IR and WV channels is 0.07◦ × 0.07◦, and the spatial
resolution of the PMW channel is 0.25◦ × 0.25◦. Therefore,
the PMW channel is enlarged by about 4 times using linear
interpolation to have uniform channel sizes. All imageries are
201× 201 pixels, and the distance between the two data points is
4 km. In addition, the TCIR dataset provides TC center location,
intensity size and minimum sea-level pressure (MSLP). The data
from 2003 to 2016 is used for training, testing, and validation,
and the data from 2017 is used to evaluate the performance of
the best-optimized model. Due to the rotation characteristic of
TC, we rotate satellite imagery 10 times (0◦, 36◦, 72◦, 108◦,
etc.) during testing and validation, and then take the average
estimated value of 10 satellite imageries as the TC estimated
value to achieve the more stable performance of the model.

2) Data Preprocessing: In order to improve generalization,
we design three data enhancement methods.

1) To retain the TC wind eye and the TC cloud structure and
omit irrelevant features in the outer region, we cut the
satellite imagery in the center area from 201 × 201 to 141
× 141, which has been proved to be the most effective
area for TC intensity and size estimation.

2) We apply the z-score standardized method to TC data.
The data are uniformly converted to the same magnitude
by subtracting the mean and dividing by the standard
deviation to improve the comparability of the data.

3) Given the rotation invariance of TC, the satellite imagery
is randomly rotated, which is helpful to improve the gen-
eralization ability of our model.

B. Methodology

In this section, we first give an overview of the model and
then give a detailed introduction to each module.
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Fig. 1. Network architecture of TC-MTLNet for TC intensity and size estimation. The TC-MTLNet contains 5 modules: spatial feature extraction module,
channel feature extraction module, PAM, CAM, and multi-task branch module.

We design a parallel dual-attention TC intensity and size
estimation network (TC-MTLNet) based on multitask learning.
The overall network architecture is shown in Fig. 1. The IR
channel and IR-WV-PMW three-channel combination are en-
tered into the spatial and channel feature extraction module,
respectively. The spatial feature extraction module uses four
2-D convolutions, while the channel feature extraction module
uses four 3-D convolutions. The features obtained from the
spatial feature extraction module are then fed into the PAM,
and the features from the CAM are fed into the CAM. After the
extracted spatial and channel features are fused and flattened,
environmental factors are introduced into the fully connected
layer. Subsequently, we employ two branches to study features
related to TC intensity and size, and an auxiliary task branch to
provide additional useful information for TC intensity and size
estimation.

1) Spatial Feature Extraction: The spatial feature extraction
module uses four 2-D convolutions. The size of the input IR
channel imagery is 141 × 141, the convolution kernel of the first
convolution block (2conv1) is 4× 4, and the convolution kernels
of 2conv2, 2conv3, and 2conv4 are 3 × 3. The step is 2 and the
fill is 0. Rectified linear unit (ReLU) activation functions are
introduced into the model after each convolution. The detailed
network structure is shown in Fig. 1.

2) Channel Feature Extraction: Channel feature extraction:
2-D convolution slides only spatially, and its output is a cube
made up of many faces, where the channel information com-
pletely overlaps. Unlike the 2-D convolution, 3-D convolution
slides both in the spatial and channel dimensions. It outputs
a large cube stacked with many cubes and retains channel
information well. Therefore, for the channel feature extraction
module, we employ four 3-D convolutions with the following
convolution kernels sizes: 1 × 4 × 4 for 3conv1, 1 × 3 × 3
for 3conv2, 2 × 3 × 3 for 3conv3 and 3conv4. The number of
convolution kernels are 16, 32, 64, and 128, respectively. Strides

Fig. 2. Detailed structure of the PAM.

are set to 1 × 2 × 2, 1 × 3 × 3, 2 × 2 × 2 and 2 × 2 × 2,
respectively, and the padding is 0.

3) Positional Attention Module: In the spatial feature ex-
traction module, we adopt 3 × 3 and 4 × 4 convolution
kernels, which only consider local receptive fields, while TC
intensity and size estimation should take more global features
into account. In order to capture the global dependence be-
tween different locations in the feature maps, we introduce the
location attention module. Next, we elaborate the process of
learning global features in the location attention module. The
detailed structures are shown in Fig. 2. Extracted spatial features
Fp ∈ RC×H×W is first fed into three convolution layers to gen-
erate three new feature maps F1 ∈ RC1×H×W, F2 ∈ RCl×H×W

and F3 ∈ RC×H×W. Next, F1 and F2 then are reshaped to
f1 ∈ RC1×N and f2 ∈ RC1×N, where N is equal to H × W. Then,
we feed the result of multiplying the transpose of f1 by f2 into the
softmax function. The softmax function normalizes the result
to obtain the location attention map Apam ∈ R(H×W )×(H×W ).
Therefore, the aij on the location attention map Apam represents
the relationship between the ith and jth location. F3 is reshaped
to f3 and f3 ∈ RC×N is multiplied by the spatial attention map
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Fig. 3. Detailed structure of the CAM.

Apam to obtain F4 ∈ RC×N. The element f11 on F4 represents
the relationship between position 1 and all positions in channel
1. Finally, F4 is reshaped to f4 ∈ RC×H×W. The final output
Fpam ∈ RC×H×W is obtained by adding f4 and the original
feature Fp.

aji =
exp (f1i · f2j)∑N
i=1 exp (f1i · f2j)

. (1)

4) Channel Attention Module: The IR channel provides in-
formation about water vapor content in the upper atmosphere,
the WV channel provides information about water vapor com-
position in the middle atmosphere, and the PMW channel can
penetrate clouds to detect rain. It is found that three channels
are correlated. For example, previous studies have shown that
features extracted from the IR and WV channels are similar,
and features extracted from IR and PMW channels are com-
plementary. In order to better extract the correlation between
the channels more fully, we directly process the feature maps
Fc ∈ RC×H×W extracted by the channel feature extraction mod-
ule to get the channel attention mapsAcam ∈ RC×C. As shown in
Fig. 3, we first multiply the reshape of Fc with the transpose of
the reshape of Fc, and then normalize the results by the softmax
function to obtain the channel attention map Acam. Therefore,
the element aij on the channel attention mapAcam represents the
relationship between the ith and jth channel. We then multiply
Acam by the reshape of Fc to get F4 ∈ RC×N. The element f11
on F4 represents the relationship between position 1 on channel
1 and position 1 on the other channels. Finally, F4 is reshaped
to f4 ∈ RC×H×W, and f4 is added to the original feature map Fc

to obtain the final output Fcam ∈ RC×H×W.
5) Multitask Learning: In order to simultaneously estimate

TC intensity and size, we design a multitask learning model
(see Fig. 1). The convolution layer parameters of the model
are shared, and the parameters of the full connection layer are
learned independently by three tasks. In the fully connected
layers, we utilize two branches independently to learn features
associated with TC intensity and size from satellite imagery.
In addition, a branch of auxiliary tasks helps to learn features
related to TC intensity and size by providing additional useful
information. The underlying shared parameters of multitask
learning are equivalent to data augmentation. For example,
when a TC intensity estimation task encounters features that are
difficult to learn, the TC size task or auxiliary task can easily

learn these features. The TC intensity estimation task learns
these hard-to-learn features because the underlying parameters
of multiple tasks are shared.

IV. MODEL TRAINING

Our model is trained on GeForce RTX 2080ti 11 GB GPU
based on the pytorch framework. The CPU environment is
Inter Core i9-9900 K. During the training, we adopt the adam
optimizer with a learning rate of 0.0005. We define the multitask
loss function as L(t), which is achieved through a weighted sum
of losses for different tasks. The detailed expression is as follows
(2). Li(t) is the loss function of task i, and wi(t) is the weight of
the loss function Li(t). wi(t) and Li(t) are dynamically updated
with the number of iteration steps t

L(t) =
∑
i

wi(t)xLi(t). (2)

A. Update wi(t) by Optimizing Lgrad (t; wi(t))

Since the gradient magnitude and convergence speed of dif-
ferent tasks are different, it is necessary to prevent multitask
learning from being dominated by one task, which negatively
affecting the effect of other tasks. Lgrad (t; wi(t)) is a function
of the weightwi(t), which is shown in (3). We update the weight
parameters wi(t) of multiple task loss functions Li(t) through
Lgrad (t; wi(t))

Lgrad (t; wi(t)) =
∑
i

∣∣Gi
w(t)−Gw(t)

∣∣× [ri(t)]
∝ (3)

The following formulas are the core of Lgrad (t;Wi(t)). First,
we define a formula to measure the loss magnitude of a task,
which is expressed in detail as follows:

Gi
w(t) = ‖∇Wwi(t)× Li(t)‖2 (4)

The W is the multitask learning network parameter of the
share section’s last layer. Gi

w(t) is the L2 norm of the gradient
for parameter w based on the result of multiplying the loss Li(t)
of task i by the weightwi(t) of the lossLi(t).Gi

w(t) can measure
the magnitude of the loss of a task. The larger the Gi

w(t), the
larger the magnitude of the loss. Gw(t) is the average of Gi

w(t)
of all tasks. The formula is as follows:

Gw(t) = Etask

[
Gi

w(t)
]
. (5)

Then, we adopt two formulas to measure the learning speed
for multiple tasks, which are expressed in detail as follows:

L̃i(t) =
Li(t)

Li(0)
(6)

ri(t) =
L̃i(t)

Etask

[
L̃i(t)

] . (7)

Li(t) and Li(0) are the losses of steps t+1 and steps 1 of
task i. L̃i(t) reflects the reverse training speed of task i. The
larger the L̃i(t), the slower the loss decreases. Etask [L̃i(t)] is
the average of the L̃i(t) of all tasks. ri(t) represents the relative
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Fig. 4. (a) Empirical label density distribution. (b) Effective label density distribution considering label continuity is obtained by convoluting the symmetric
kernel with the empirical label density distribution.

reverse training speed of task i. The larger ri(t), the slower task
i is trained in all tasks.

It can be seen fromLgrad (t;Wi(t)) that when the loss of a task
is too large or too small, |Gi

w(t)−GW(t)| becomes so large that
Lgrad (t;Wi(t)) increases. When the training speed of a task is
too slow, ri(t) becomes larger, soLgrad (t;Wi(t)) also increases.
The process of optimizing Lgrad (t;Wi(t)) is to force the model
to select an appropriate loss function weight wi(t) so that the
gradient magnitude and convergence speed remain roughly the
same for multiple tasks.

B. Design Li(t) Based on Label Distribution Smoothing

The TC observation data displays a long-tail distribution with
significantly less low-intensity and high-intensity TC data. Most
current methods are based on empirical label density to solve
overestimation and underestimation (Density is the number of
samples.). However, for continuous labels, the empirical label
density fails to reflect the real imbalance seen by the network. For
example, labels t1 and t2 both have a small amount of data [see
Fig. 4(a)]. t1 is in the neighborhood of the high-density samples
(i.e., there are many samples in the range [t1−Δ, t1 + Δ],
while t2 is in the neighborhood of the low-density samples (i.e.,
there are few samples in the range [t2−Δ, t2 + Δ]). In this
case, t1 does not have the same degree of unevenness as t2
for continuous labels because of the dependence between data
samples on nearby labels. In order to alleviate the problem of
overestimation and underestimation due to the unevenly dis-
tributed data, we adopt a label distribution smoothing approach.
The idea of label distribution smoothing is to convolve the
symmetric kernel with the empirical label density to obtain the
effective label density distribution reflecting the real imbalance
by using the similarity between nearby objects. Fig. 4(b) shows
the effective label density distribution obtained by smoothing
the label distribution, which effectively reflects the imbalance
observed by the neural network. lk is the density of samples
labeled k. Eden is the average of the reciprocal of the effective
label density of all labels. The detailed expression is shown as

follows:

Eden =
1

m

m∑
k=1

1

lk
. (8)

We define the weight parameter of each sample loss as pj ,
which is achieved through dividing 1

lk
by Eden

pj =
1

lkEden
(9)

We obtain Li(t) by multiplying the loss (ŷj − yj)
2 for each

sample by the weight parameterpj to address the problem caused
by imbalanced TC samples. (see (9))

Li(t) =

√
1

m

∑m

j=1
pj(ŷj − yj)2. (10)

V. EXPERIMENT AND RESULTS

In this section, we first conduct module ablation experiments
to verify the effectiveness of our model. Second, we verify the
superiority of multitask learning compared to single-task learn-
ing, and the superiority of the automatic weighting method of
loss function based on gradient normalization in multitask learn-
ing. Third, we verify the effect of label distribution smoothing
method on the TC intensity overestimation and underestimation.
We then apply visualization techniques to understand the fea-
tures learning process and the important features for TC intensity
and size estimation. Finally, we validate the effectiveness of
our optimal model by scatter diagrams and lifecycle sequence
diagrams, and compare the TC-MTLNet with traditional and
deep learning methods.

A. Validation of Model Structure Design

In order to verify the validity of the model structure, we
design 5 model experiments (M1, M2, M3, M4, M5) by grad-
ually increasing the structure of the model. The evaluation and
analysis of the experimental results are shown in Table II and
Fig. 5. Considering that IR satellite imagery provides the most
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TABLE II
NETWORK CONFIGURATION AND EXPERIMENTAL RESULTS OF M1, M2, M3, M4, AND M5

Fig. 5. Learning curve of the RMSE of TC intensity estimation for model M1,
M2, M3, M4, and M5.

useful features for TC intensity estimation, we design a 2-D
convolution model (M1) based on IR satellite imagery to extract
spatial features. The details of the model parameters are shown
in Table II. Then, we design a 3-D convolution model (M2)
to extract the 3-D features of TC from the IR, WV, and PMW
channels. M3 is a fusion of M1 and M2. It designs two branches
to extract features from the IR channel and the multichannel
satellite imagery using 2-D and 3-D convolutions, respectively.
The root-mean-square error (RMSE) of M1, M2, and M3 are
9.33 kts, 8.88 kts, and 8.76 kts, respectively. The experimental
results show that the combination of the two branches produces
a lower error, which may be because the combination of spatial

and channel features extracted by M3 obtains richer TC features.
Next, M4 adds PAM and CAM to the spatial feature extrac-
tion module and the channel feature extraction module based
on M3. The RMSE generated by this model is 8.69 kts. The
experimental results show that the dual attention module pays
better attention to the dependence of spatial features and the
correlation of channel features. The last model M5 introduces
location environment information (longitude, latitude) before
the fully connected layer. The intensity estimation error is further
reduced by model M5, which proves the validity of environmen-
tal information. Therefore, M5 is selected as the backbone of the
TC-MTLNet.

B. Single-Task and Multitask Comparative Experiments

Multitask learning can learn useful information from related
tasks, which can help improve individual performances. Fig. 6(a)
shows that there is a significant positive correlation between TC
intensity and size (r = 0.66). With the increase of TC intensity,
the TC size increases. Fig. 6(b) shows a significant negative
correlation between TC intensity and MSLP r =−0.95), which
means that MSLP decreases with the increase in TC intensity.
Fig. 6(c) shows a negative correlation between TC size and
MSLP (r = −0.72). Therefore, we design a multitask learning
model which shares parameters in the convolution layers. We
utilize two branches to independently learn TC intensity and
size features in the fully connected layers and adopt an auxiliary
task (MSLP) branch to learn other useful information for TC
intensity and size estimation.

In order to verify the effectiveness of the multitask learning
model, we conduct two single-task experiments and four
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Fig. 6. (a) Correlation between best-track intensity and size. (b) Correlation between best-track intensity and MSLP. (c) Correlation between best-track size and
MSLP. The colors indicate different data densities. The correlation coefficients are shown in the figure.

TABLE III
RMSE, MAE, AND BIAS OF TC INTENSITY AND SIZE ESTIMATION FOR SINGLE-TASK AND MULTITASK LEARNING

Fig. 7. (a) The RMSE and MAE of TC intensity estimation in single-task and multi-task learning. (b) The RMSE and MAE of TC size estimation in single-task
and multitask learning.

multitask experiments. The experimental results are shown in
Table III and Fig. 7. The TC intensity estimation RMSE, mean
absolute error (MAE) and bias in the single-task experiment are
8.57 kts, 7.04 kts, and −1.01 kts, respectively. The single-task
experiment for TC size estimation has an RMSE of 23.93 nmi,
a MAE of 21.83 nmi, and a bias of −4.7 nmi. In multitask
learning, the multitask1 directly adds three tasks and averages
them. The experimental results are shown in Table III. The
intensity estimation RMSE, MAE, and bias are 8.85 kts,
7.41 kts, and −1.3 kts, respectively. The size estimation RMSE,
MAE, and bias of the size estimation are 23.94 nmi, 21.58 nmi

and −4.53 nmi, respectively. It is obvious that the loss of TC
intensity is higher than that of single-task learning. Because the
magnitude of loss for different tasks may be different. The way
in which the losses are directly added may lead to the learning
of multiple tasks being dominated by one task. In other words,
the multitask1 model tends to fit the TC size estimation task,
which leads to a negative impact on the performance of the TC
intensity estimation task. Therefore, the effect of the TC intensity
estimation is worse. Compared with single-task learning, the
accuracy of TC intensity and size estimation is improved in
multitask2 and multitask3. However, fixed weights do not
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TABLE IV
COMPARISON OF RMSE, MAE, AND BIAS OF 8 TC CATEGORIES AFTER LABEL SMOOTH DISTRIBUTION PROCESSING AND UNPROCESSED DATA

Fig. 8. Box plot of the bias between the estimated intensity and best-track
intensity of TC for different categories.

change during training. If the task of size estimation converges,
but the task of intensity estimation does not converge. If the
training continues until the intensity estimation task converges,
the size estimation task will be overfitted. If the size estimation
task is not trained at this time, the task of intensity estimation
will not converge. Finally, we design a model multitask4 based
on gradient normalization to dynamically update loss function
weight. The experimental results show that multitask4 yields
minimal TC intensity and size estimation errors. As shown in
Fig. 7, the RMSE and MAE of the intensity estimation and size
estimation in multitask4 are the smallest (RMSE: 8.40 kts and
23.01 nmi, MAE : 6.90 kts and 20.89 nmi, respectively).

C. Optimized Versions of Overestimated and Underestimated
Model

In this study, TCs are classified into eight categories based
on the Saffir-Simpson Hurricane Wind Scale (SSHWS) (T1-
T5) [30], Tropical Storm (TS), Tropical Depression (TD), and
No Category (NC).

TC observation data present a long-tailed distribution, in
which TD and TS samples account for 29.3% and 37.7%,
whereas NC, H1, H2, H3, H4, and H5 samples account for
8.8%, 9.9%, 5.1%, 3.9%, 4%, and 0.8%. We validate the model’s

performance using independent data in 2017 based on the opti-
mal Mul_task4 configuration introduced in the previous section.
As shown in Fig. 8, for NC (intensity < 20 kts) category, the
bias of most samples is greater than 0, that is, these samples
are significantly overestimated. For H1, H2, H3, H4, and H5
categories (intensity > 63 kts), approximately three-quarters of
the samples are underestimated.

We utilize the label distribution smoothing method based on
the similarity of nearby objects to deal with the overestimation
and underestimation problems. The detailed experimental re-
sults are shown in Table IV. For the NC category, the RMSE of
TC intensity estimation without data balancing is 7.12 kts and
the bias is 7.11 kts. The RMSE from data balance experiment is
5.3 kts and the bias is 4.6 kts. Obviously, the label distribution
smoothing method effectively alleviates the overestimation of
TC intensity. For the H5 category, the RMSE of TC intensity
estimation decreases from 10.34 kts to 8.0 kts after the balancing
operation and tne bias changes from −10.22 kts to −6.8 kts.
Obviously, the bias between the estimated and best-track in-
tensity is reduced. For the TC size estimation, the RMSE and
bias without data balancing are 7.21 nmi and 7.1 nmi for the NC
category, and the RMSE from data balance experiment is 6.1 nmi
and the bias is 4.4 nmi. For the H4 category, the RMSE of TC
size changes from 34.6 nmi to 33.1 nmi after the balancing op-
eration, and the bias change from −25.8 nmi to −24.0 nmi. The
experimental results show that the label distribution smoothing
method can effectively alleviate the problem of overestimation
and underestimation for TC intensity and size estimation caused
by unevenly distributed data.

D. Visualization

The TC-MTLNet model achieves excellent performance.
However, we cannot accurately understand the CNN model’s
internal knowledge and the underlying reasons that drive it
to make specific decisions. We visualize the output feature
maps of our optimal model to understand the features learned
by the network through different convolutional layers. What’s
more, we understand the role of the convolution kernel by the
deconvolution visualization technique. Finally, we understand
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Fig. 9. Fused feature maps of 2D conv1, 2D conv2, 2D conv3, 2D conv4
convolutional layers and the fused feature maps of the 3D conv1, 3D conv2,
3conv3, and 3con4 convolutional layers. (a) 2D conv1. (b) 2D conv2. (c) 2D
conv3. (d) 2D conv4. (e) 3D conv1. (f) 3D conv2. (g) 3D conv3. (h) 3D conv4.

the contribution of each part of the imagery to TC intensity and
size estimation through heatmaps.

1) The Visualization of Feature Maps: By visualizing the
feature maps generated by each convolution layer, we can un-
derstand the learning process of the TC-MTLNet. Based on
the optimal model, the fused output feature maps of the 2D
conv1, 2D conv2, 2D conv3, 2D conv4, 3D conv1, 3D conv2, 3D
conv3, and 3D con4 convolutional layers are visualized, which
are shown in Fig. 9. Fig. 9(a) and (e) is the fused feature maps of
the first 2D and 3D convolutional layer. We find that the network
close to the bottom layer extracts easy-to-understand and general
visual features such as TC contour edge features. Fig. 9(d) and
(h) are fused feature maps of the fourth 2D and 3D convolutional
layer, and the extracted features are mainly the TC structural
features. These features synthesize the underlying visual fea-
tures, which are more conducive to making TC intensity and size
estimation decisions. Obviously, as the number of convolutions
deepens, the learned features become more abstract and detailed.
Abstract features represent high-level visual features, which
are more helpful to accurate TC intensity and size estimation.
Compared with the fused feature maps of 2D conv1, 2D conv2,
2D conv3, and 2D conv4, the fused feature maps of 3D conv1, 3D
conv2, 3D conv3, and 3D conv4 extract more abundant features
related to TC intensity and size. It is demonstrated that 3-D
convolution extracts the 3-D features of TC by sliding in the
channel dimension.

2) Understanding the Role of the Convolution Kernel by
Deconvolution Visualization: Because different filters extract
different features, we can understand the role of filters by vi-
sualizing the convolution kernels. However, directly visualized
convolution kernels are abstract and which do not reflect much
information. In order to understand the role of the filter, we
use the deconvolution technique to visualize the feature maps
generated by the filters. The specific approach is to multiply the
feature maps learned by the our model by the transpose matrix
of the convolution kernel corresponding to these feature maps to
find the pixels activated by specific feature maps. The visualized
imageries obtained by deconvolution technology are shown in
Fig. 10. Fig. 10(a) shows simple spiral edge features learned
by the 16 convolution kernels of 2D conv2. For example, it can
be seen that the 11th convolution kernel of 2D conv2 mainly

Fig. 10. Features learned by the 16 convolution kernels of 2conv2. Features
learned by the 64 convolution kernels of 2conv4.

extracts edge features. Fig. 10(b) shows abstract detail features
learned by the 64 convolution kernels of 2D conv4. For example,
the 30th convolution kernel of 2D conv4 extracts the TC eye
features.

3) Visualization of High Dimensional Features: There is a
certain spatial correspondence between the output feature maps
by the convolutional layer and the original imagery. We employ
the Grad-Cam++ method to visualize the high-dimensional fea-
tures. The method utilizes the feature maps of the last convo-
lutional layer to generate a heatmap. We judge the contribution
of each part of the satellite imagery to TC intensity and size
estimation results by heatmaps, and reveal the critical factors
that affect the intensity and size estimation results. The heatmaps
and original imageries based on eight categories of satellite
imageries are shown in Fig. 11. In the heatmap, the red areas
represent the most important areas. Obviously, the higher the
TC intensity, the higher the importance of the central region. It
can be found that H1, H2, H3, H4, and H5 categories pay more
attention to the inner core area. That is, high-intensity TCs pay
more attention to the TC eye area. Because weak TCs do not
focus on convective cloud centers, NC, TD, and TS categories
pay more attention to the outer rainbands and cloud areas.

E. Performance Evaluation

In this section, we select independent data from 2017 to
evaluate the performance of our best-optimized model.

To verify the applicability of our model, we select TC No. 11
and No. 15 in the Atlantic and TC No. 6 and No. 15 in the East
Pacific to evaluate the ability of the model to estimate TC inten-
sity. The TC life cycle sequence diagrams are shown in Fig. 12.
The abscissa is time, and the ordinate is TC intensity. Compared
with the most widely used ADT and SATCON techniques, our
experimental results show that our model generalizes well for
full-lifetime TCs. We employ TC No. 9, No. 6, No. 13, No. 10,
and No. 05 in the East Pacific in 2017 and TC No. 12, No. 17,
No. 09, No. 11, No. 08, and No. 13 in the Atlantic to evaluate
the ability of the model to estimate TC size. The time series
graphs of life cycle are shown in Fig. 13. The red dotted line
represents the best-track size and the blue dotted line represents
the model-estimated TC size. We can observe that the model
performance is lower when TC size increases, which may be
because more complex meteorological factors are involved in
the outer wind radius, which is a great challenge for our model
and is worth studying in the future.
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Fig. 11. Visualization of high dimensional features by Grad-Cam++ method. The heatmaps and original satellite imageries based on 8 TC categories of satellite
imageries.

TABLE V
COMPARISON OF OUR METHOD AND EXISTING METHODS FOR TC INTENSITY ESTIMATION

In order to verify the validity of our model, we first display
a scatter plot to examine the model’s ability to fit the best-track
intensity and best-track size (see Fig. 14). In Fig. 14(a), the
abscissa represents the best-track intensity, and the ordinate
represents the estimated TC intensity. The scatter plot shows a
significant positive correlation between the best-track intensity
and the estimated intensity (r = 0.935), reflecting our model’s

excellent performance. In Fig. 14(b), the abscissa represents the
best-track size, and the ordinate represents the estimated TC size.
It is seen that although there are few outliers, the estimated size
is significantly correlated with the best-track size. In general,
the model fits the best-track size well.

As shown in Table V, the quantitative comparisons are im-
possible since previous methods employed satellite data from
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Fig. 12. Time series diagram of life cycle of TC intensity from TC No. 11 and No. 15 in the Atlantic and TC No. 06 and No. 15 in the East Pacific in 2017, to
evaluate the ability of the model to estimate TC intensity.

TABLE VI
COMPARISON OF OUR METHOD AND EXISTING METHODS FOR TC

SIZE ESTIMATION

different regions and channels. However, our study is based
on satellite data from three channels around the globe, and our
model has wider applicability than other methods. In Table V,
we compare the results of our model with existing methods. The
TC intensity RMSE of of our model is 8.40 kts, which is lower
than that of previous study. Thus, the model we designed has a
higher accuracy and wider applicability.

In Table VI, we compare the TC-MTLNet model with existing
deep learning models and traditional methods. It can be found
that the performance of the TC-MTLNet model exceeds that of
MTCSWA and Meng et al.

The parameters, space consumption, and time consumption
of model training are shown in Table VII, which clearly shows
the number of parameters in each layer. To reduce the number of
parameters, we mainly use 3 × 3 and 1 × 1 convolution. We can
find that a total of 1 971 394 parameters are used in the process

TABLE VII
PARAMETERS, SPACE CONSUMPTION AND TIME CONSUMPTION OF

MODEL TRAINING

of model learning, occupying 6695 MB of space resources and
about 8 h of time resources. Under the premise of ensuring the
accuracy of TC intensity and size estimation, our model also
consumes less time, space, and computational resources.



TIAN et al.: LIGHTWEIGHT MULTITASK LEARNING MODEL WITH ADAPTIVE LOSS BALANCE 1069

Fig. 13. Time series diagram of life cycle of TC size from TC No. 09, No. 06, No. 13, No. 10, and No. 05 in the East Pacific (EP) in 2017. Time series diagram
of life cycle of TC size from TC No. 12, No. 17, No. 09, No. 11, No. 08, and No. 13 in the Atlantic (AL) in 2017.

Fig. 14. Scatter plots of correlation between estimated intensity and best-track intensity and estimated size and best-track size.

VI. CONCLUSION

In this study, we proposed a parallel dual-attention TC inten-
sity and size estimation model (TC-MTLNet) based on multi-
task learning. The model takes three measures to improve the

ability of TC intensity and size estimation. First, the model
employs two parallel branches to extract spatial and channel
features. Before the fusion of the two branches, the spatial and
the CAMs are applied to the spatial and channel dimensions
to obtain the interdependence of features on the feature maps
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and the correlation between channels. This approach improves
the capability of feature representation, thereby improving the
performance of our model. Compared with single-task learning,
multitask learning can learn additional useful information from
related tasks, positively affecting TC intensity and size estima-
tion. However, the multiple tasks learning speed and gradient
magnitude are different. Therefore, we adopt the gradient regu-
larization method to prevent the learning of multiple tasks from
being dominated by one task. In addition, we propose a label
distribution smoothing based on kernel distribution by taking
advantage of the similarity between nearby targets in order to
solve the overestimation and underestimation caused by the
uneven distribution in TC observation data. This method reduces
the bias in TC intensity and size estimation, and further improves
the accuracy of model estimation. Finally, we visualize feature
maps, convolution kernels, and high-dimensional features to
understand how the TC-MTLNet model learns intensity and
size features and identify the essential factors for intensity and
size estimation from TC satellite imagery. We evaluated the per-
formance of the best-optimized model using independent data
from 2017. The experiments show that our model generates an
intensity estimation RMSE of 8.40 kts, which is lower by 33.5%
compared to ADT and 11.4% compared to 3DAttentionTCNet.
Furthermore, a size estimation MAE of 23.76 nmi shows that
the performance of our model surpasses MTCSWA by 10%. In
this article, we design a model that alleviates the overestimation
and underestimation problems caused by unevenly distributed
TC data. In future work, this is a research direction. In addition,
due to the lack of deep learning research on TC size, a future
work will focus on systematically studying TC size estimation
to provide more convenience for TC disaster prevention.
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