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Abstract—In lunar exploration missions, path planning for lunar
rovers using digital elevation models (DEMs) is currently a hot
topic in academic research. However, research on path planning
using large-scale DEMs has rarely been discussed, owing to the
low time efficiency of existing algorithms. Therefore, in this article,
we propose a fast path-planning method using a distributed tile
pyramid strategy and an improved A∗ algorithm. The proposed
method consists of three main steps. First, the tile pyramid is gen-
erated for the large lunar DEM and stored in Hadoop distributed
file system. Second, a distributed path-planning strategy based on
tile pyramid (DPPS-TP) is used to accelerate path-planning tasks
on large-scale lunar DEMs using Spark and Hadoop. Finally, an
improved A∗ algorithm was proposed to improve the speed of
the path-planning task in each tile. The method was tested using
lunar DEM images. Experimental results demonstrate that: in a
single-machine serial strategy using source DEM generated by the
Chang’e-2 CCD stereo camera, the proposed A∗ algorithm for
open list and closed list with random access feature (OC-RA-A∗

algorithm) is 3.59 times faster than the traditional A∗ algorithm in
long-distance path planning tasks and compared to the distributed
parallel computation strategy using source DEM generated by the
Chang’e-2 CCD stereo camera, the proposed DPPS-TP based on
tile pyramid DEM is 113.66 times faster in the long-range path
planning task.

Index Terms—A star, distributed computing, hadoop distributed
file system (HDFS), path planning, spark, tile-pyramid.

I. INTRODUCTION

LUNAR exploration using a lunar rover is the first step in
human space exploration, and the path planning problem

for lunar rovers has been an important focus of research in lunar
exploration projects [1].

The core idea of path planning is to determine an optimal
path from the current starting position to the goal position in an
unknown environment. Path planning algorithms are generally
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divided into two categories: global path planning and local path
planning [2], [3].

Global path-planning research uses global terrain and obsta-
cle information to model and calculate optimal paths, whereas
local path-planning research usually models the environmental
data in the process of data collection and then measures as
many effective paths as possible based on the model. Global
path-planning algorithms include classical algorithms such as
Dijsktra [4], Floyd [5], A∗ [6], RRT [7], and intelligent al-
gorithms such as the ant colony algorithm [8] and genetic
algorithm [9]. Local path-planning algorithms mainly include
artificial potential field-based and neural-network-based meth-
ods. Among the above-mentioned methods, Dijsktra and Floyd
can calculate the optimal path, but require more time and a large
amount of memory as they need to traverse and store all the
points [10], [11]. The A∗ algorithm adopts a heuristic search
technique based on the Dijsktra algorithm, which accelerates
the path search speed [12]. The RRT algorithm has a fast
path-finding speed; however, the path is usually neither optimal
nor smooth [13]. The ant colony and genetic algorithms show
strong performance in path planning; however, they rely heavily
on the parameter setting, and the convergence speed is slow.
Gan et al. [14] proposed an improved RRT algorithm for fast
tree construction to reduce the time spent of path planning. Liu
et al. [15] combined pheromone diffusion and geometric local
optimization to propose an improved ant colony algorithm for
solving the problem of slow convergence. Bounini et al. [16]
proposed a novel potential field method for robot navigation,
and Qu et al. [17] proposed a modified pulse-coupled neural
network model for real-time path planning of mobile robots in
dynamic environments.

With the rapid development of modern mapping technology
and the upgrading of sensor hardware, the generated digital
elevation models (DEMs) have become increasingly accurate,
and the data volume has become larger; therefore, pathfind-
ing calculations based on DEMs are becoming increasingly
time-consuming. To solve the above-mentioned problems, Hong
et al. proposed an improved A∗ algorithm using closed list
with random access data structure (C-RA-A∗ algorithm) [18].
Compared with the traditional A∗ algorithm (Trad-A∗ algo-
rithm), the efficiency of path planning on DEM generation
was significantly improved. However, when the data volume of
DEMs is excessively large, the applicability of this algorithm is
limited by the memory size of the server. Compared with a sin-
gle computer, distributed storage [e.g., Hadoop distributed file
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system (HDFS), HBase] and computational technologies (e.g.,
MapReduce, Spark) use the storage and computational resources
of clusters and show tremendous advantages when data increases
dramatically. Therefore, they are extensively used in the storage
[19], [20], [21], calculation [22], [23], segmentation [24], and
path planning of massive remote sensing data. Wang et al. used
the MapReduce-based distributed parallel Dijkstra algorithm to
solve the shortest path problem. The MapReduce-based dis-
tributed Dijkstra algorithm has significant advantages over the
traditional Dijkstra algorithm for large-scale path planning [25].
However, for frequent iterative computation, MapReduce needs
to spend a considerable amount of time on the disk IO of inter-
mediate data. Alazzam et al. proposed a path-planning algorithm
for A∗ on Spark, and the results showed that the Spark-based A∗

algorithm has a significant effect on large-scale graph theoretic
data [26]. However, their algorithm cannot efficiently use the
neighborhood property of DEM grids to obtain neighbour nodes.

According to the above analysis, significant progress has
been made, and a number of algorithms have been proposed
to improve the efficiency of path planning. However, some
problems still need to be explored. First, most existing path-
planning algorithms focus on small areas. Relatively few studies
have been conducted on path planning based on large-scale
data. Second, the efficiency of existing algorithms needs to
be improved, particularly when applied on a large scale, and
the processing of nodes using big data platforms is mutually
irrelevant. Finally, most research focuses on road and traffic data
and DEMs of the Earth, and few studies on path planning based
on lunar DEMs have been conducted. Therefore, the objective
of this article is to propose a fast large-scale path-planning
method based on lunar DEMs. The proposed method adopts
a distributed tile-pyramid strategy to improve the path-planning
efficiency on a large-scale lunar DEM. In addition, an improved
A∗ algorithm was proposed by modifying the data structure,
which can enhance the efficiency of sub-path planning on tiles.

The main contributions of this article can be summarized as
follows.

1) This article presents a fast large-scale path planning
method based on lunar DEM images. The time efficiency
of the path search is significantly improved, especially in
long distance path planning task.

2) We propose a distributed tile-pyramid strategy for per-
forming large-scale path-planning tasks. This strategy
calculates the nodes of path planning from coarse to fine
according to the characteristics of the tile pyramid and uses
the idea of divide-and-conquer to accelerate the process
by distributing the data across the cluster.

3) The data structure of the A∗ algorithm is improved, thereby
accelerating the sub-path-planning task.

4) The method of this article provides support for the fast
search of long-distance three-dimensional (3-D) paths
over thousands of kilometers. The proposed method is not
only applicable to the path planning of lunar rover, but
also suitable for path planning task on Mars and Earth.

The remainder of this article is organized as follows. Section II
presents the details of the methodology. Section III describes the
dataset and experimental design. The experimental results and

Fig. 1. Overall flowchart of path planning for DEMs using distributed tile
pyramid.

analyses are presented in Section IV. The influence of factors
with different cut tile sizes or computational parallelisms is
discussed in Section V. Finally, Section VI concludes the article.

II. METHODS

This article proposes a fast large-scale path-planning method
for lunar DEMs using a distributed tile-pyramid strategy. As
shown in Fig. 1, the proposed method comprises three compo-
nents. First, a tile pyramid was generated for a large lunar DEM
and stored in HDFS. Second, a distributed path-planning strategy
based on a tile pyramid (DPPS-TP) was used to accelerate
path-planning tasks on large-scale lunar DEMs using Spark and
Hadoop. Finally, an improved A∗ algorithm (OC-RA-A∗ algo-
rithm) was proposed to improve the speed of the path-planning
task in each tile.

A. Pyramid Generation and Storage

The tile pyramid was constructed by up-sampling with a 2:1
ratio for the source DEM data to generate the pyramid and cut
each layer of the pyramid into rectangular tiles of the same size
[27]. As shown in Fig. 2, the source DEM (size 2048×2048px)
is the bottom layer (layer 0) of the tile pyramid, and its tile
pyramid consists of three layers when the tile size is 512×512px,
of which the size of layer 1 is 1024×1024px and that of layer
2 is 512×512px. The tiles of each layer have corresponding tile
row and column numbers, which are used to quickly locate the
tiles on the tile pyramid.

HDFS was used in this article to store the tile pyramid of
the DEM. Because HDFS has high-throughput data access and
a data redundancy mechanism, it is well suited for large-scale
remote sensing data applications. The HDFS cluster is a typical
master-slave operation mode that controls and manages the
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Fig. 2. DEM tile-pyramid structure.

distributed storage of the cluster through the NameNode and
DataNode nodes. The NameNode node is used to store the
metadata of tile byte blocks. The function of the metadata is
to locate the storage location and order of the tile byte blocks in
each DataNode node, which is used to store and redundantly
generate the data of the tile pyramid. The NameNode node
communicates with the DataNode node through a network [28].
Fig. 3 shows how a DEM with a pixel size of 2048×2048 is
converted into a tile pyramid with a tile size of 512×512 and
stored in the HDFS. First, the tile pyramid is generated from
the source DEM with a tile size of 512×512px; subsequently,
the tiles of each layer are filled using a Z-order curve [29] or
Hilbert curve [29], [30]. Finally, the tile data and pyramid layer
information are serialized and stored in HDFS.

B. Principle and Implementation of DPPS-TP

This article proposed DPPS-TP and implemented it using
Spark. Using the pyramid model properties, the set of starting
and ending points of each tile was calculated from coarse to fine,
and the sub-path planning task on each tile was accelerated by
Spark using the divide-and-conquer idea.

To reduce the iteration time, a layer-hopping process was
included in the tile layer selection from the upper tile layer to
the lower tile layer. As shown in Fig. 4, coarse-grained path
planning is first performed from the topmost tile layer (n = 4),
and the set of starting and ending points of n = 2 tile layers is
inferred. Subsequently, distributed path planning is performed
for the n-2 tile layers until the path planning result of the bottom
tile layer is calculated.

This article used Spark to implement DPPS-TP. Apache Spark
is a fast, general-purpose computational engine designed for
large-scale data processing. It uses resilient distributed datasets
(RDDs) and directed acyclic graphs (DAGs) to ensure that the
Spark tasks run quickly and correctly in a distributed environ-
ment. RDDs are the most fundamental data processing model in
Spark and represent a resilient, immutable, partitionable, parallel
computable in-memory set. DAGs are a set of combinations of
vertices and edges, where vertices are used to represent RDDs
and edges are used to represent the operational relationships
between RDDs. DAGs in Spark are essential for ensuring that

distributed computations can perform tasks sequentially [22],
[31]. Research shows that the main reason Spark runs faster
than MapReduce is that Spark reduces unnecessary disk IO
operations by building DAGs to improve task execution effi-
ciency; however, as MapReduce operations are independent of
each other, the results produced by each MapReduce operation
are written to the disk [32], [33].

As shown in Fig. 5, in a master-slave mode cluster, Spark
divides the path-planning task into multiple subtasks and assigns
them to the slave nodes for execution. The slave nodes fetch the
tile data from HDFS, execute the subtasks assigned by the master
nodes, and finally write the results to HDFS.

In this article, DPPS-TP was implemented using Spark, which
is used to construct distributed tile datasets and distribute sub-
path planning tasks to clusters for execution. As shown in Fig. 6,
the main steps for implementing DPPS-TP using Spark are as
follows:

1) Read the topmost pyramid tiles from HDFS and construct
tile data RDDs in memory.

2) Input the starting and ending points of the topmost pyra-
mid.

3) Filter the tile RDDs containing the start and end points
based on the set of start and end points.

4) Perform the distributed path planning subtask for each tile
from the filtered tile RDDs to obtain the tile path RDDs
for this layer.

5) Determine whether this layer is the bottom tile pyramid; if
it is not the bottom layer, execute step 6; if it is the bottom
layer, output the tile path RDDs to the HDFS.

6) Use tile path RDDs of this layer pyramid to deduce the set
of starting and ending points in the next tile pyramid layer
that needs to perform local path planning.

7) Read the tiles of the next layer pyramid from HDFS and
construct tile data RDDs in memory.

8) Input the results of step 6 and step 7 into step 3 and
continue down from step 3.

It should be noted that since the starting and ending points
of each tile are determined by the high abstraction and low
resolution layers, there may be points between tiles that will
be fail to pass. These impassable points will be corrected by
iterating over the global path points at the end of the experimental
program. This step has little impact on the final path planning
task. More detail analysis please refer to the results section.

DPPS-TP reduces the time spent performing path planning
tasks on large-scale DEMs by moving from coarse-grained tile
path-planning tasks to fine-grained distributed tile path planning
tasks in an iterative manner.

In the Spark implementation of DPPS-TP, Driver is respon-
sible for broadcasting the set of starting and ending points of
each tile and controlling the number of iterations, and workers
is responsible for the sub-path planning task of each tile.

As shown in Fig. 7, first, driver and workers construct the tile
RDDs and tile metadata of the topmost pyramid (i = n) from
HDFS, and driver broadcasts the start and end points of the
path planning to workers. Subsequently, workers filter the tile
RDDs that do not participate in the path planning and perform
sub-path planning for the remaining tiles according to the set of
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Fig. 3. DEM is distributed to generate a tile pyramid and stored in the HDFS.

Fig. 4. Principle of distributed path planning strategy based on tile pyramid.

start and end points. Finally, DPPS-TP determines whether this
layer is the bottom layer (i = 0) based on the tile metadata. If
yes, the obtained path node RDDs are saved to HDFS, if not,
iterative operations are performed. In the iterative operation,
driver collects the path node RDDs obtained from workers and
calculates the set of starting and ending points of each tile of
layer i-2. And then, the Spark cluster sends a read request for
the tile pyramid at level i-2 to HDFS and constructs the tile
RDD and tile metadata of the tile pyramid at level i-2 from
HDFS and finally performs distributed path planning of layer
i-2.

C. Improved A∗ Algorithm Using Open List and Closed List
With Random Access Data Structure (OC-RA-A∗ Algorithm)

The C-RA-A∗ algorithm uses a minimum heap to implement
the open list and a 2-D matrix to implement the closed list.
Because the time complexity of the minimum heap to find
elements is O(n), the C-RA-A∗ algorithm spends more time

Fig. 5. Spark cluster architecture and task distribution.

determining and searching the neighbouring nodes of the current
node when the amount of data in the open list is large.

Therefore, we made some improvements based on the C-RA-
A∗ algorithm for the closed list and open list data structures. As
shown in Fig. 8, in the OC-RA-A∗ algorithm, the data structure of
the open list is implemented using the minimum heap and 2-D
matrix, and the data structure of closed list was implemented
using a 2-D matrix. Owing to the random-access property of
the two-dimensional array structure, the OC-RA-A∗ algorithm
stores the references of the nodes in the open list in memory
and improves the search speed of the nodes in the open list.
Compared with the C-RA-A∗ algorithm, the time complexity of
the OC-RA-A∗ algorithm in determining whether the adjacent
nodes of the current node are in the open list is reduced from
O(n) to O(1).
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Fig. 6. Flowchart of spark implementing distributed path planning strategy
based on tile pyramid.

III. DATA AND EXPERIMENTS

A. Data

The 20-m resolution lunar DEM data generated by the
Chang’e-2 CCD stereo camera were used in this experiment.
The area selected for the experiment is located from 77 N to 87
N, 158 E to 158 W. The total image size of the selected area was
32768×32768 pixels, and the total area was 429496.7296 km2,
as shown in Fig. 9.

B. Experimental Design

Experiments were performed on a single local computer with
an AMD Ryzen 7 processor with 2.90 GHz speed and 32G
random access memory and on a distributed cluster of three
virtual machines with 96G RAM and 48 cores each. In addition,
a tile pyramid was generated from the DEM data and stored in
HDFS before the experiment.

To ensure the effectiveness of path planning, the tracked lunar
vehicle was used as a reference, and a feasible slope threshold
of 20° was set for whether to pass that was applied to the
experiments of the DEM grid path planning task [34]. As shown
in Fig. 10, in the experiments, the projected area of the vehicle
is assumed to be a grid cell, and a 3 × 3 window is formed
based on the grid cell (i, j) where the vehicle is located, and
the eight surrounding grid cells (the corresponding elevation of
(i, j) is Zi,j). The slopes in the vertical/horizontal and oblique
directions were calculated using (1) [35], where CellSize is the
size of each grid

Slope =

{
tan−1 |Zi, j−Zx, y |

CellSize , |x− i|+ |y − j| = 1

tan−1 |Zi, j−Zx, y |
CellSize∗1.414 , |x− i| = 1 and |y − j| = 1

.

(1)

The heuristic function of the A∗algorithm used in this exper-
iment is given by

F (P ) = G (P ) +H (P ) . (2)

In (2), G(P ) is the actual distance cost from node P to the
starting point and H(P ) is the estimated distance cost from
node P to the end point. In this article, G(P ) was obtained by
calculating the Euclidean distance, as shown in (3), and H(P )
was obtained by calculating the Manhattan distance, as shown in
(4). In (3) and (4), G(P’) represents the actual distance from the
starting point to P ′; G(P ) represents the actual distance from
the starting point through P ′ to point P ; P end represents the
position of the end point; x, y, z represent the horizontal and
vertical positions of the nodes and the corresponding elevation
values, respectively,

G (P ) = G (P ′)

+

√
(Px − P ′

x)
2 +

(
Py − P ′

y

)2
+ (Pz − P ′

z)
2

(3)

H (P ) =
∣∣Px − P end

x

∣∣ +
∣∣Py − P end

y

∣∣ . (4)

In this article, four experiments were designed to verify and
explore the efficiency of the DPPS-TP and OC-RA-A∗ algo-
rithms. As given in Table I, these experiments selected the
starting and ending points at different distances. Except for
the experiments on A∗ path planning based on long paths with
different degrees of parallelism in DPPS-TP, four sets of points
were selected for the remaining experiments to simulate the
starting and ending points of the long, medium, medium, and
short paths.

C. Evaluation Indicators

Time cost and path accuracy were used to measure the per-
formance of the proposed strategy. The time cost is defined as
the total running time for path planning, where the time cost for
distributed computing is divided into the cluster start-up time and
parallel computing time. The total time was calculated using

T = TStart + TCompute. (5)

In addition, the average deviation between the planned path
and the reference path is calculated to evaluate the accuracy of
the path planning. The reference path is defined as the shortest
passable path from the starting point to the ending point by
using the traditional A∗ algorithm. The planned path represents
the path obtained from the experimental calculation.

The average deviation is calculated as the mean offset between
the points of the reference path and the planned path, as shown in
(6). Where (xi, yi), (xgi, ygi) denotes the pixel horizontal and
vertical coordinates of the planned path and the reference path,
respectively, n denotes the number of point pairs, and CellSize
denotes the size of each grid. Totally, 90% of the points in the



HONG et al.: FAST LARGE-SCALE PATH PLANNING METHOD ON LUNAR DEM USING DISTRIBUTED TILE PYRAMID STRATEGY 349

Fig. 7. Spark implementation of distributed path planning strategy based on tile pyramid.

TABLE I
SELECTION OF STARTING AND ENDING POINTS OF DIFFERENT EXPERIMENTS ON DEMS

Fig. 8. Data structures of open list and closed list in OC-RA-A∗ algorithm.

path are involved

Deviation =
CellSize

n

n∑
i = 0

√
(xi − xgi)

2 + (yi − ygi)
2.

(6)

IV. RESULTS

A. Results of Time Cost Comparison of Different Methods

The method in this article consists of two parts: the OC-RA-A∗

algorithm for sub-path planning on each tile and DPPS-TP for
parallel processing of the tiles. In order to verify the efficiency of

Fig. 9. Lunar DEM data with 20-m resolution.

the OC-RA-A∗ algorithm for path planning at different distances
on tiles, this experiment uses a single machine serial computing
strategy of the source DEM to mimic the path planning task of
different A∗ algorithms on tiles.

In order to verify the efficiency of the improved A∗ algorithm
in the proposed method, the proposed OC-RA-A∗ algorithm is
compared with the C-RA-A∗ and Trad-A∗ algorithms. As given
in Table II, the time cost of the Trad-A∗ algorithm is 3.59 times
higher than that of the OC-RA-A∗ algorithm and the time cost
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TABLE II
TIME COST OF USING DIFFERENT A∗ ALGORITHMS IN SINGLE-MACHINE SERIAL COMPUTING AND DISTRIBUTED PATH-PLANNING STRATEGY BASED ON TILE

PYRAMID

Fig. 10. Central 3 × 3 window grid.

of the C-RA-A∗ algorithm is 2.96 times higher than that of the
OC-RA-A∗ algorithm when a single machine serial computing
strategy is used for the long distance path planning task of the
source DEM. It is important to note that the scale of data and the
computational environment used in this experiment is different
from that used by Hong [18], and that slope maps were not
pre-generated for the DEM in this experiment.

To further validate the efficiency of using DPPS-TP, the
proposed DPPS-TP is compared with a single machine serial
computing strategy at the source DEM. As shown in Fig. 11 and
Table II, the time cost using the single machine serial strategy at
the source DEM is 1.57 times higher than that of DPPS-TP when
using the OC-RA-A∗ algorithm for long distance path planning
tasks. Meanwhile, as shown in Fig. 12 and Table III, the time
cost of using a distributed parallel strategy for the long-range
path planning task using source DEM is 113 times higher than
that of DPPS-TP in a distributed computing environment.

In this experiment, there are several results that need to be
explained why. As shown in Fig. 11 and Table II, the proposed
method is only applicable to long-distance path planning tasks.
For shorter distance path planning tasks, the time taken by DPPS-
TP for cluster start-up and RDD transformation would be greater
than the computation time for path planning. In addition, in the
experiments with DPPS-TP, the cluster start-up times are all
controlled between 1 and 1.3 s as the cluster start-up time is
only related to the cluster configuration. The speed impact of
DPPS-TP with different pathfinding distances is smaller due to

Fig. 11. Time comparison of using different A∗ algorithms in single-machine
serial computing strategy and distributed path-planning strategy based on tile
pyramid.

Fig. 12. Time comparison of using A∗ algorithm in distributed cluster and
distributed path-planning strategy based on tile pyramid.
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Fig. 13. A∗ path results based on single machine and distributed path-planning strategy based on tile pyramid. (a) Result of the long path. (b) Result of the
middle-long path. (c) Result of the median path. (d) Result of the short path.

TABLE III
TIME COST OF USING DIFFERENT A∗ ALGORITHMS IN SINGLE-MACHINE

SERIAL COMPUTING AND DISTRIBUTED PATH-PLANNING STRATEGY BASED ON

TILE PYRAMID

the faster sub-path planning on the tiles and the fact that the
main time consumption of DPPS-TP is spent on the operation
of the RDD operator. As shown in Fig. 12 and Table III, the
reason for the long time taken for distributed path planning using
clusters only for the DEM is that it transforms the grid data of
the DEM into discrete point data resulting in a dramatic increase
in the number of nodes involved in the search in the distributed
calculation.

B. Results of Accuracy Comparison of Different Methods

To verify the accuracy of the large-scale path planning, the
proposed DPPS-TP was compared with a single-computer serial
computing strategy and a distributed parallel computing-only
strategy.

Figs. 13 and 14 shows the path planning results based on single
machine and distributed path-planning strategy, respectively. As
can be seen from the figures, the path planning results obtained
by different strategies are very similar. The pathfinding distances
using DPPS-TP are a little longer than those using the single
machine serial strategy. This is because, in the tile pyramid,
the seek nodes in the upper layer cannot accurately derive the
optimal starting and ending points of each tile in the lower layer.

TABLE IV
ACCURACY OF USING A∗ ALGORITHM IN DIFFERENT STRATEGIES

TABLE V
ACCURACY OF A∗ ALGORITHM USING DIFFERENT STRATEGIES IN

DISTRIBUTED ENVIRONMENT

Tables IV and V is the accuracy comparison of single machine
and distributed path-planning strategy. The search paths from
the single-machine serial computing strategy and the distributed
parallel computing strategy are the same as the reference path
because there is no mapping process of different resolution tiles.
Therefore, the deviation is zero. The search path using DPPS-TP
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Fig. 14. A∗ path results based on distributed cluster and distributed path-planning strategy based on tile pyramid. (a) Result of the long path. (b) Result of the
middle-long path. (c) Result of the median path. (d) Result of the short path.

Fig. 15. Time comparison of long path planning with different parallel cores
in distributed path-planning strategy based on tile pyramid.

has a small deviation relative to the reference path since the
starting and ending points of the local path planning on the tiles
are not optimal. As can be seen from the tables, the deviation
is smaller than 1 km for most of the circumstance. Even for
long distance path planning, e.g., the planned distance is greater
than 600 km, the deviation is less than 1.2 km. However, the time
efficiency is greatly improved. The experimental result indicates
the effectiveness of the proposed strategy.

V. DISCUSSION

A. Influence of Using Different Numbers of Parallel Cores

To explore the influence of different numbers of parallel cores
on the time cost of path planning using DPPS-TP, seven parallel
degrees were selected for the long-distance pathfinding task.

The results shown in Fig. 15 and Table VI indicate that the
parallelism of the distributed computation affects the program
running time in path planning over long distances, and the lower
the number of parallel cores, the higher the time overhead of
DPPS-TP.

B. Influence of Constructing Different Tile Pyramids

To explore the influence of different tile pyramids on the
efficiency of path planning using DPPS-TP, this experiment was
performed using three different tile pyramids for the pathfinding
task.

Fig. 16. Time comparison of path planning using different tile sizes in dis-
tributed path-planning strategy based on tile pyramid.

TABLE VI
TIME COST OF LONG PATH PLANNING WITH DIFFERENT PARALLEL CORES IN

DISTRIBUTED PATH-PLANNING STRATEGY BASED ON TILE PYRAMID



HONG et al.: FAST LARGE-SCALE PATH PLANNING METHOD ON LUNAR DEM USING DISTRIBUTED TILE PYRAMID STRATEGY 353

Fig. 17. A∗ path results based on distributed path-planning strategy based on tile pyramid in 512×512, 2048×2048 and 8192×8192 size tiles. (a) Result of the
Long path. (b) Result of the middle-long path. (c) Result of the median path. (d) Result of the short path.

TABLE VII
TIME COST OF PATH PLANNING USING DIFFERENT TILE SIZES IN DISTRIBUTED

PATH-PLANNING STRATEGY BASED ON TILE PYRAMID

DEM data were used to construct tile pyramids with tile
sizes of 512×512, 2048×2048, and 8192×8192. The number
of pyramid layers is seven for a 512×512 tile size, five for a
tile size of 2048×2048, and three for a tile size of 8192×8192.
The results shown in Fig. 16 and Table VII indicate that storing
tile pyramids of different sizes also affected the efficiency of
DPPS-TP.

The experiments were run from the topmost level of tile
pyramids until the bottom level yielded the results. The least time
overhead was spent for DPPS-TP using a tile size of 2048×2048,
followed by the tile pyramid using a tile size of 8192×8192.
The time expense of DPPS-TP with a tile pyramid of tile size
512×512 was larger than that with a tile pyramid of tile size
2048×2048. This is because a tile pyramid of tile size 512×512
requires processing of a larger number of tiles. The time expense
of DPPS-TP using a tile pyramid of tile size 8192 × 8192 is
greater than that of DPPS-TP using a tile pyramid of tile size

TABLE VIII
ACCURACY OF PATH PLANNING USING DIFFERENT TILE SIZES IN DISTRIBUTED

PATH-PLANNING STRATEGY BASED ON TILE PYRAMID

2048 × 2048 because it takes longer to process local sub-paths
using tiles of size 8192 × 8192.

As shown in Fig. 17 and Table VIII, in terms of the pathfinding
distances, using a tile pyramid with a tile size of 8192×8192 is
better than using tile pyramids with tile sizes of 2048×2048
and 512×512. In particular, using a tile pyramid with a tile
size of 512 × 512 for DPPS-TP yielded the worst pathfinding
distances. This is because with the increasing number of tiles
participating in DPPS-TP, the uncertainty of connection points
between adjacent tiles will also increase, which may lead to long
pathfinding distance.

VI. CONCLUSION

In this article, we propose a fast path planning method using
a distributed tile pyramid strategy to solve the problem of the
low time efficiency of existing algorithms in large-scale path
planning tasks. In addition, an A∗ algorithm supporting random
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access data structures is proposed to reduce the time cost of path
planning. In experiments with a single machine serial computing
strategy using lunar source DEM data, by virtue of the properties
of the random-access data structure, the OC-RA-A∗ algorithm
of this article is 3.59 times faster than the conventional A∗

algorithm in long-distance path planning tasks. However, the
OC-RA-A∗ algorithm requires high memory capacity and the
single-machine serial computing strategy is limited by machine
memory, so the distributed path planning strategy based on
tile pyramids is further proposed. By divide-and-conquer and
coarse to fine grained conversion, the proposed distributed path
planning strategy based on tile pyramids is 1.57 times faster
than the single machine serial computing strategy using lunar
source DEM data. In addition, by retaining the neighborhood
information of each pixel, the proposed distributed path planning
strategy based on tile pyramids is 113.66 times faster than the
distributed parallel computation strategy using the lunar source
DEM.
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