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Novel Air2water Model Variant for Lake Surface
Temperature Modeling With Detailed Analysis

of Calibration Methods
Adam P. Piotrowski, Jaroslaw J. Napiorkowski , and Senlin Zhu

Abstract—The air2water model is a simple and efficient tool for
modeling surface water temperature in lakes based solely on the
air temperature. In this article, we propose to modify the air2water
model in such a way that different parameters would be associated
with lake stratification of cold waters than with lake stratification
of warm waters. The situation of a mix of both cold water and
warm water is also considered. The model is tested on 22 lowland
Polish lakes against two classical air2water variants. As the new
air2water model variant is slightly more complicated than the basic
versions, we focus on the importance of the choice of the calibration
method. Each variant of the air2water model is calibrated with
eight different optimization methods, which are also compared on
various benchmark problems. We show that the proposed variant
is superior to the classical air2water models on about 90% of tested
lakes, but only if the calibration approach is properly selected,
which confirms the importance of the links between the model
and appropriate optimization procedures. The proposed air2water
variant performs well on various lowland lakes, with exception of
large but shallow ones, probably due to the weak stratification of
the shallow lakes.

Index Terms—Air2water, evolutionary computation,
hydrological modeling, lake surface temperatures, limnology,
optimization.

I. INTRODUCTION

THE problem of modeling the lake surface water tempera-
ture based on the air temperature has been widely discussed

in the literature [1], [2], [3]. As water temperature in lakes affects
the presence of important gases such as oxygen [4], [5] and
impacts the fate of aquatic biota [6], [7], the problem of water
temperature modeling is important for both biodiversity [8], [9]
and lake water management [10], [11]. Thermal modeling is
becoming even more critical during climatic change [12], [13].
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The majority of lake water temperature models are either
physical-based [14], [15] or empirical [16], [17], [18], [19].
However, recently, some kinds of physically based empirical
models have been proposed. One group of such approaches are
physics-guided neural networks [6], which have a large number
of parameters, another is the air2water model that in its basic
version has only eight parameters that represent physical and
thermal processes that occur between air, land, and the lake
surface [3], [20]. Air2water model has found numerous applica-
tions in hydrology and limnology [18], [21], [22], [23], [24]. In
general, the air2water model aims at modeling water temperature
within some depth of a lake’s surface layer. However, it is
very difficult to define the bounds of this surface layer [24].
Recently Guo et al. [25] introduced a variant of the air2water
model with 15 parameters developed for the thermal surface
conditions of frozen lakes. Based on the idea introduced in [25],
in this article, we propose a new version of the air2water model
that has 12 parameters but is much more flexible in capturing
interrelationships between a cold or frozen lake surface and the
water body. The variant uses different parameterizations for cold
and warm water periods (basically, those with classical thermal
stratification and inversion of water temperatures), and considers
a situation of a mix of both of them.

In this article, we present a modified version of the air2water
model and analyze how the modeling quality will be affected
by the choice of the optimizer. Both issues are interrelated, as
although the air2water model is physically based, the physical
processes in air2water are parameterized, and such parameters
require calibration. Simpler optimizers may be unable to show
the advantage of the new version of the air2water model over its
older counterparts, but more advanced optimization procedures
may be able to do so. Hence, proposing a new variant of a
model should be associated with a discussion on the appropriate
calibration method. The question regarding the relationship
between the model and its optimizer may be addressed from a
philosophical [26] or empirical point of view (e.g., [27]), but is
asked again and again in various fields of science. It is to some
extent similar to the problem of the choice of the appropriate
machine learning approach for the particular data [19].

Although the literature is full of metaheuristics [28], [29],
[30], [31], [32], according to no free lunch theorems, the aver-
aged performance of all possible problems would be equal [33].
Nonetheless, the performances of metaheuristics do differ for
the specific problems, and may highly affect applications to such
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practical problems like the Internet of Things [34], COVID-19
pandemic [35], robotics [36], photovoltaic systems [37], and
various hydrological [38], planetary [39], or remote sensing [40]
problems. The question of how to choose an appropriate meta-
heuristic for a particular application is old and ubiquitous [41],
[42], [43], [44], [45]. Various issues may affect this choice. Some
of them are related to the flexibility of the specific algorithm,
like balancing exploration and exploitation during search [46],
[47], [48], [49], fitness-landscape analysis [45], [50], [51], the
approach to control parameter adaptation [52], [53], [54], [55],
[56], [57], or specification of the population size [58], [59], [60],
[61]. The other factors are related to the comparison settings
that are set by the user, like the assumed maximum number of
allowed function calls [62], [63], the specific benchmarks or
criteria based on which the choice is being made [64], [65],
[66], the statistical tests used in the evaluation [67], [68], or the
nature of the decision space [69], [70]. In choosing the algorithm
for the specific application one may even consider how well
the particular optimizer matches the source of inspiration (e.g.,
[71]), or how much inspiration-independent it is (e.g., [72], [73],
and [74]). However, there is no general guide for “practitioners,”
how to choose the “right” metaheuristic (e.g., [65] and [75]).

In the present article, we compare the performance of the new
air2water model variant against its two older counterparts [3],
[20] on 30-year-long daily air temperatures and water tempera-
tures of surface layers in 22 lakes that are located in the lowland
part of Poland. Each air2water variant is trained with eight se-
lected optimization algorithms that are discussed in Section III-
A. Before the algorithms are applied to our problem of interest,
we test them on benchmarks and real-world problems from the
literature to determine which among eight metaheuristics seems
to be the “best”. To do so, we define a few criteria for comparing
optimization algorithms and test the eight metaheuristics on 30
IEEE CEC2017 benchmarks [76] and 22 real-world problems
from different fields of sciences introduced in IEEE CEC2011
[77]. We discuss the performance of each optimizer and analyze
the ranking of metaheuristics based on particular criteria and
benchmarks. We point at algorithms that seem most appropriate
based on artificial benchmarks or various real-world problems—
following a roughly similar way as in [78]. After that, we get
back to the problem of modeling water temperatures in lakes and
use each among eight metaheuristics for calibration of the three
air2water model variants. We fit parameters of the air2water
model variants to observational data from the calibration set
that is composed of roughly 20 years of daily measurements; the
remaining 10 years of daily data is kept aside as the validation
set. Based on the results obtained for calibration and validation
sets, for each metaheuristic separately we choose the best variant
of the air2water model and discuss the impact of the optimizer on
that choice. Finally, we compare the performances obtained by
different air2water variants trained by different metaheuristics
and point out to what degree the choice of the best metaheuris-
tics based on artificial benchmarks or real-world problems not
related to our problem of interest were useful in determining
the most appropriate method for calibration of the air2water
model.

To summarize, there are three main goals of the present study:

Fig. 1. Locations of the studied lakes and the corresponding meteorological
stations. The numbers and characters are corresponding to that in Table I.

1) to improve the air2water model for lake water temperature
modeling, by proposing a new variant;

2) to analyze the impact of existing optimization algorithms
on the performance of air2water variants – both the new
one and two classical versions from [20];

3) to find out if one could pick up an appropriate opti-
mization algorithm for the specific application—air2water
model calibration in our case—based on the results ob-
tained by optimizers on classical benchmark sets: either
numerical benchmarks [76] or collections of real-world
problems [77].

II. AIR2WATER MODEL VARIANTS AND DATA

A. Data

In this article, 30 years long daily data (1987–2016) from 22
lowland lakes located in the northern and western part of Poland
and from nine meteorological stations located in the nearby areas
are used (see Table I and Fig. 1). Data from the years 1987–2006
are used for optimization, the remaining 2007–2016 data are
left for the model validation. In the case of Lake Bachotek, the
data set ends on November 30, 2016, and in the case of Lake
Slawskie, the data ends on December 31, 2014; in both cases,
the validation periods are shorter, but calibration periods are the
same as for the other lakes.

In each lake, the water temperature was measured once a
day at 6:00 GMT at a water depth of 0.4 m below the water
surface, or below the ice cover during winter months. All lakes
are dimictic, which means that the difference in temperature
between the surface and bottom layers becomes negligible twice
per year (about 4 °C), allowing all strata of the lake’s water to
circulate vertically. During the year the surface may have water
temperatures both lower and higher than 4 °C—this is important
for the mixing among lake layers, as 4 °C is the temperature in
which the water is the densest.
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TABLE I
INFORMATION ABOUT THE 22 LAKES FROM LOWLAND POLAND

B. Air2water Model With Eight Parameters

The air2water model, which has been proposed by Piccolroaz
et al. [20] and Toffolon et al. [3], is a simple physically inspired
model that relates the surface water temperature in lakes only to
the air temperature. The model is based on a volume-integrated
heat balance equation with linearized heat flux terms. The re-
lation between air and lake water temperatures is expressed as
follows [3], [20]:

dTw

dt
=

1

δ

(
a1 + a2Ta − a3Tw + a5cos

(
2π

(
t

ty
− a6

)))

(1)
where δ is defined as

δ = exp

(
−Tw − Th

a4

)
if Tw ≥ Th

δ = exp

(
−Th − Tw

a7

)
+ exp

(
−Tw

a8

)
if Tw < Th. (2)

In (1), t is the day of the year and ty is the number of days
in a year. In (1) and (2), Tw is the lake water temperature in the
surface layer, Ta is the air temperature, δ is a dimensionless
parameter representing the ratio between the volume of the
surface lake layer and a reference volume, Th is a reference value
for the deep lake water temperature, and a1–a8 are eight model
parameters that are to be calibrated for the particular lake. In the

original air2water model with eight parameters, the reference
value Th is fixed depending on the lake type. In the case of
Polish lakes that are dimictic, it is set to 4 °C. For warm or cold
monomictic lakes, it is set to the minimum or the maximum water
temperature, respectively. In the version of the air2water model
proposed in [79], Th is calibrated together with the remaining
eight parameters, instead of being fixed. In the present study, we
keep the value fixed to 4 °C, as proposed for dimictic lakes in
the original air2water model [20].

The air2water model is solved using the 4th-order Runge–
Kutta method, and water temperatures below 0 °C are set as 0 °C
during computations. To limit the impact of the initial conditions
on the results, the first 30 days of each data set are considered
a warm-up period and are not used to evaluate the modeling
performance. As the basic model has eight parameters, we call
it a2w8 in the future part of the text.

C. Air2water Model With Six Parameters

As may be seen from (2), the computation depends on whether
the reference value for the deep lake water temperature is higher
or lower than the water temperature in the surface lake layer.
As discussed in [3] and [20], for some lakes air2water model
may be insensitive to the parameters a7 and a8, which are used
solely for the calculations of δ, and only in a case when the
water temperature is between 0 °C and 4 °C. Hence, a simplified
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air2water model with six parameters was proposed [3] in the
following form:

dTw

dt
=

1

δ

(
a1 + a2Ta − a3Tw + a5cos

(
2π

(
t

ty
− a6

)))

(3)

δ = exp

(
−Tw − Th

a4

)
if Tw ≥ Th

δ = 1 if Tw < Th. (4)

This way the parameters a7 and a8 are ignored and the model
requires calibration of just six parameters (hence we call it
a2w6). However, the relation between the air and the lake surface
temperatures in colder periods of the year may be oversimplified
and less adequate.

D. Proposed Air2water Model With 12 Parameters

The classical air2water model relates the air temperature with
the temperature of water within the upper layer of the lake,
hence the temperature that is observed within a body of liquid
water at some depth under the surface. However, a conceptually
similar approach could be also used to link air temperature with
the temperature of the sheer surface of the lake that may be
measured from remote sensing (e.g., [80]). In such a case the
surface temperature may be measured at the top of either the
liquid water or the ice that may cover the lake. Guo et al. [25]
introduced the air2water variant in which heat exchange between
the air and the water may in some periods be open, but in others
become blocked by the ice. In [25], it was proposed that the
temperature at the surface Tw may be computed either as the
temperature of the liquid water
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or as the temperature of the ice on the lake’s surface
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(7)
or as a mix of both temperatures. Which equation will be used is
governed by water temperature (Tw) and two additional model
parameters (a14 and a15). IfTw ≥ a15, (5) is used; ifTw ≤ a14,
(7) is used, and when a15 > Tw > a14, the mix of both (5)
and (7) is applied such that the result from (5) is multiplied
by (1 – K) and the result from (7) is multiplied by K, where
K = (a15 − Tw)/(a15 − a14) is a ratio between frozen and
open water part of the lake surface.

Note that (7) is similar to (5) or (1), but with different param-
eter names (a9 instead of a1, a10 instead of a2, and so on). This
allows the model to perform differently in icy and liquid surface

conditions. The approach proposed in [25] was defined for cases
when one aims to determine the temperature of the lake surface
with satellite data, but it does not skip the problem with the lack
of model sensitivity to a7 and a8 parameters. However, if we are
interested in the temperature of liquid water in a surface layer
of the lake (in the case of Polish lakes, either 0.4 m under the
open surface or under the ice cover), one may eliminate these
two parameters by using two similar equations with a separate
parameterization for different lake stratifications in a similar way
as proposed in [25]. This new variant developed for in situ water
temperature measurements may be proposed in the following
form:
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if a11 < Tw < a11 + a12 (8)

where a11, a12 ∈ [0 ◦C, 25 ◦C], and K that appears in (8) repre-
sents the ratio between the occurrence of two different stratifi-
cations (attributed to cold or warm waters), defined as

K =
a11 + a12 − Tw

a12
. (9)

In the proposed variant of the air2water model [(8) and (9)],
there are 12 parameters: a1–a5 and a6–a10 represent similar
processes, but for warmer (a1–a5) or colder (a6-a10) waters.
Similar to the idea presented in [25], the role of K, and hence the
parameters a11 and a12, is to choose whether the water tempera-
ture should be computed according to the version representative
for warm waters, cold waters, or a mix of both. This division
is important due to different stratification dynamics in colder
and warmer waters [81], [82]. Note that δ does not appear in
this variant of the air2water model. Because the new variant
uses different approximations for cold and warm waters, it may
better fit the conditions in the particular lake. The number of
parameters (12, hence we call this variant a2w12) is larger
than in the case of the classical (8 parameters) or simplified
(6 parameters) air2water variants, but lower than in the version
designed for satellite measurements [25]. In Supplementary
Table I, the bounds for each parameter used in a2w6, a2w8,
and a2w12 variants are given.
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E. Optimization Criteria

In the present study, we test the performance of three different
air2water model variants when each of them is calibrated with
eight different optimization algorithms. As a result, we compare
both the models and the optimizers. The objective function used
during optimization is the mean square error (MSE)

MSE =

∑N
i=1

(
TP
w (i)− TM

w (i)
)2

N
(10)

where N is the number of observations in the calibration data set,
and T P and T M are predicted and measured lake temperatures at
the ith day, respectively. Obviously, the data from the validation
set are used to compute MSE for the validation period (with
different days i and a different number of days N).

The maximum number of function calls is set to 100 000 for
all considered metaheuristics, irrespective of the variant of the
air2water model, and hence of the number of parameters. This
approach is similar to the one applied in the CEC2011 competi-
tion on real-world problems (where 150 000 function calls were
allowed) but different from the majority of CEC competitions
held on artificial benchmark problems, in which the number of
function calls depends on the problem dimensionality (e.g., [76],
[83], and [84]). The fixed number of function calls benefits rather
the classical than the new air2water variant. During empirical
tests, each optimization algorithm was run 30 times on every
air2water variant and lake.

III. OPTIMIZATION METAHEURISTICS

A. Chosen Optimization Algorithms

In [85], 12 various metaheuristics were tested for the cali-
bration of the basic air2water model with 8 parameters. In the
present study, we introduce a new air2water model variant and
analyze how to choose the right algorithm to train it. As a result,
we need to apply recent and competing algorithms that belong
to various families of methods. For historical reasons, the basic
PSO is also tested, as it is the first method used for air2water
optimization in the past. The eight metaheuristics tested, include
the following:

1) The basic PSO algorithm [86] that has been used for the
calibration of the basic air2water model in the past papers
[87]. The PSO version with global topology [86], c1 = c2
= 1.49445 [88], inertia weight decreasing linearly with
time from 0.9 at the start of the search to 0.4 at the end
[89] and swarm size set to 50 [59] has been applied.

2) Triple archives PSO (TAPSO) [90] is a new version of PSO
that divides the particles into different subsets depending
on their fitness and the speed of progress and proceeds
with both swarm intelligence and genetic operators. We
used 60 particles in the experiment, as there was no guide
provided in [90] on how to set the population size for a
particular type of problems.

3) HARD-DE [91] that turned out the best method for the
classical eight-parameter version of the air2water model in
[85]. The good performance of HARD-DE was also shown
in [91] against a number of other DE variants on various

benchmarks. HARD-DE uses nonlinear, parabolic pop-
ulation size reduction, from initial 25× lnD × sqrt(D)
(but, in the present study, not fewer than 25) to 4 at the
end of the search.

4) EL-SHADE-SPACMA [92], which was ranked the third
best method in the CEC2018 competition. This algorithm
is an updated version of L-SHADE-SPACMA [93], and
is a member of the L-SHADE family of methods [61]
that was developed by step-by-step improvements of older
algorithms [94] and performs exceptionally well in many
competitions between metaheuristics [95]. This variant
uses linear population size reduction during the run; the
algorithm starts from the population size set to 18D and
ends with four individuals.

5) L-SHADE-50-PWI [96] that, unusually, is a simplified
version of some L-SHADE variants, developed by re-
ducing some of their unneeded elements, but adding an
inertia weight that is so widely used in PSO algorithms
[89]. In the source paper, it outperformed a number of
other L-SHADE variants on CEC2017, CEC2014, and
various real-world problems. L-SHADE-50-PWI found a
successful application in the soil erosion analysis [97] and
achieved reasonable results for brain magnetic resonance
image segmentation [98]. The use of inertia weight within
L-SHADE was also considered a promising solution in
space flight trajectory design [99].

6) djDE with diversity-based adaptive population size [60].
This approach combines one of the best DE variants from
early 2000’s, jDE algorithm [100] with a new population
size adaptivity method that allows to balance exploration
and exploitation capabilities by controlling the population
diversity [101].

7) Stochastic fractional search algorithm with fitness-
distance balance (FDB) [102], which is a fresh approach
based on the fitness-distance balance algorithm proposed
in 2020 [103]. The population size is set to 50.

8) Self-organizing migrating algorithm-T3A – (SOMA,
[104]), an adaptive extension of an algorithm proposed
in [105], that has been ranked 4th out of 18 algorithms for
the 2019 100-Digit Challenge on real-parameter single
objective optimization [63], a competition with (almost)
unlimited time to solve 10 hard problems with precision
up to 10 digits of accuracy. SOMA solved 9 problems
out of 10 with the required accuracy, the only algorithm
that solved all problems with assumed precision was a
variant of jDE called jDE100 [106]—a modification of
which, called djDE [60], has already been included in our
comparison.

Three among eight tested algorithms are based on the famous
L-SHADE [61] optimizer that won IEEE Competition in Evo-
lutionary Computation in 2014. We have used three algorithms
from this family of methods, as several L-SHADE-based vari-
ants won various IEEE Competitions or achieved very good per-
formances in comparison studies [94]. The efficient L-SHADE
algorithms include the three variants applied in this study, as
well as SPS-L-SHADE-EIG that uses rotation invariant mech-
anism [107], L-SHADE-cnEpSin [108] that uses an ensemble
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of sinusoidal approaches in parameter adaptation, L-SHADE-X
[109] that introduces dimensionality-dependent spread parame-
ter in distribution from which scaling factor is generated and an
archive with offsprings that did not reach the main population
despite having good performance, or OLSHADE-CS [110] that
uses novel initialization and conservative selection mechanisms.
In our opinion, large successes of L-SHADE-based algorithms
justify testing various variants on different practical applica-
tions, as in [57], [111], and [112].

All the metaheuristics were run with default control parame-
ters as proposed by their inventors, with a few exceptions noted
in the above description. In our tests, first, each method is tested
on 22 real-world problems from CEC2011, and, due to the
low-dimensionality of the air2water model–on 10-dimensional
CEC2017 artificial benchmarks. After that, each method is ap-
plied to every air2water variant for each lake. A comparison
of the results would show us to what extent the choice of
metaheuristics based on either various real-world problems or
CEC2017 artificial benchmarks will be useful for choosing the
appropriate approach for a particular air2water variant.

On CEC2011 and CEC2017 problems, each algorithm is run
51 times as suggested in [76]. We compare the optimization
algorithms in three ways.

First, the averaged performance of each algorithm on every
problem is computed, and algorithms are ranked from the best
(rank 1) to the worst (rank 8) on each problem. The rankings are
then averaged over all problems in the set, and Friedman’s test is
used with the post hoc Shaffer’s static procedure at α = 0.05 to
choose if there are statistically significant differences between
algorithms [113], [114]. This is the classical way of comparing
metaheuristics, used in plenty of papers. However, it compares
just average performance, and the specialization of a particular
metaheuristic in a particular type of problem is often lost; as
a result, the algorithm that performs above the average for all
problems may be ranked best, even if it is not the best approach
for any specific problem.

Second, we count the number of problems for which the
particular algorithm has won. The algorithm that achieved the
best-averaged performance on the particular problem is termed
a winner. We set a range of precision to 10–19. If the difference
between performances achieved by some algorithms is lower
than 10–19, and no other algorithm performed better, we consider
all such equally performing algorithms as winners. As a result,
there may be more than 1 winner for the particular problem.
By counting the number of problems for which the particular
algorithm turns out a winner we find whether the algorithm may
be especially useful for some problems. However, the possible
failures of the algorithm in finding any reasonable solutions for
some problems are neglected by this measure.

Thirdly, instead of averaged ranking, we count the number
of wins differently. For each problem, we find the best run
achieved by the particular algorithm. Then, we compare the
best runs achieved by different algorithms and find a winner
for a particular problem. After that, we count the number of
problems for which the particular algorithm turned out a winner
using the best run performance. This way we may look at
algorithms that achieve diversified performance in each run,

and may occasionally lead to very good results, even though
some poor runs may highly affect their average performance.
The algorithm chosen in this way would not necessarily be
reliable for a single application and may perform poorly for
some problems. However, for other problems, if run many times,
it may find a solution better than algorithms that were chosen
according to the average performance. Here we do not claim
which way of comparison is a better option for choosing the right
approach for the specific problem—in our case the calibration of
the air2water variants. Our only intent is to verify how consistent
(or not) the results will be if we use different ways to compare
metaheuristics.

B. Comparing Metaheuristics on CEC2017 Benchmarks

The CEC2017 set contains 30 problems with various diffi-
culties [76]. Because tested air2water model variants have 6
to 12 parameters, we have selected 10-dimensional versions of
CEC2017 problems.

The average results obtained by eight optimization algo-
rithms on each among thirty 10-dimensional CEC2017 prob-
lems are given in Supplementary Table II. The averaged rank-
ing of algorithms, and the number of wins based on the av-
eraged performance is given in Table II. As may be seen,
based on the ranking averaged over all problems HARD-DE
turned out to be the best method (with mean ranking = 2.4),
followed by EL-SHADE-SPACMA (mean ranking = 2.72),
djDE (3.0), and L-SHADE-50-PWI (3.5). Clearly, the worst
method was SOMA (mean ranking = 7.44). In Supplementary
Table III, the statistical significance of the differences achieved
by all algorithms, computed according to Friedman’s test with
Shaffer’s post hoc method with α = 0.05, is presented. As
may be seen, the differences between the best 4 algorithms
are not statistically significant. FDB, ranked fifth, is signifi-
cantly poorer than HARD-DE, but the difference between FDB
and the other three well-performing methods is statistically
insignificant.

Marginally different results are obtained if we count the
number of wins for each algorithm when the win is based on
the averaged performance for the particular problem. In such
a case HARD-DE and EL-SHADE-SPACMA perform equally
well with 12 wins, and djDE and L-SHADE-50-PWI share 10
wins. Among the other four methods, FDB achieves 7 wins,
whereas other methods achieve at best a single win among 30
problems.

Based on these two ways of comparison, HARD-DE
may be chosen as the most appropriate method for
10-dimensional benchmark functions, closely followed by
EL-SHADE-SPACMA. Two other algorithms, i.e., L-SHADE-
50-PWI and djDE, perform only marginally poorer. Other meth-
ods are clearly inferior, and only FDB may be considered
somehow competitive.

Supplementary Table IV contains the best results obtained by
particular algorithms on the specific problems in 51 runs. The
number of wins counted with respect to this best performance is
also given in Table II. If we count the number of problems for
which the particular algorithm can find a better solution than the
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TABLE II
SUMMARY OF THE RESULTS OBTAINED FOR 10 DIMENSIONAL CEC 2017 BENCHMARKS AND 22 CEC2011 REAL-WORLD PROBLEMS (DETAILS ARE GIVEN IN

SUPPLEMENTARY TABLES)

TABLE III
NUMBER OF TIMES PARTICULAR AIR2WATER VARIANT TURNS OUT THE BEST DEPENDING ON THE METAHEURISTIC USED FOR OPTIMIZATION WHEN MEAN

PERFORMANCE (MSE) FROM ALL RUNS IS COMPARED

TABLE IV
NUMBER OF TIMES PARTICULAR AIR2WATER VARIANT TURNS OUT THE BEST DEPENDING ON THE METAHEURISTIC USED FOR OPTIMIZATION WHEN THE

PERFORMANCE (MSE) FROM THE BEST RUN IS CONSIDERED FOR COMPARISON

other algorithms (including ties) in the best run, both L-SHADE-
based algorithms, namely L-SHADE-50-PWI and EL-SHADE-
SPACMA, would be ranked the best, with 17 wins (including
ties) each. HARD-DE and djDE are slightly less efficient, with
15 wins each. FDB achieves 12 wins, both PSO and TAPSO –
8; only SOMA remains without any win.

Although these findings are not in contradiction to the results
based on the average ranking, they nonetheless clearly differ.
First of all, L-SHADE-50-PWI and EL-SHADE-SPACMA turn
out more efficient in finding the best solutions than HARD-DE.
Secondly, the best solutions for specific problems are found by
seven various algorithms, including FDB, PSO, and TAPSO.
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TABLE V
MEAN PERFORMANCE OF METAHEURISTICS ON CALIBRATION OF A2W12 VARIANT FOR EACH LAKE (VALIDATION SET)

Only SOMA remains fully unable to locate the best solution
for any problems. This suggests that the good performance of
HARD-DE observed when the performance is averaged over all
runs may be due to the consistent and reliable performance in
all runs, rather than the ability to find a solution that cannot be
found by other optimizers.

According to the all above discussion based on artificial
benchmarks of similar dimensionality to air2water models, one
could conclude that one of four algorithms, i.e., HARD-DE,
EL-SHADE-SPACMA, L-SHADE-50-PWI, and djDE, should
be applied to the calibration of air2water model variants.

C. Comparing Metaheuristics on 22 Real-World Problems
From Different Fields of Science

In Supplementary Tables V–VII, the same eight algorithms
are compared on 22 real-world problems of different dimen-
sionality that originate from various fields of science or indus-
try. Supplementary Table V contains the averaged performance
obtained on a particular problem, the ranking of algorithms
averaged over all problems, and the number of wins achieved
according to the average performance. Supplementary Table VI
contains information on the significance of the differences be-
tween performances obtained by various algorithms according
to Friedman’s test with Shaffer’s post hoc procedure with α =
0.05. Supplementary Table VII shows the information on the

best performance in 51 runs achieved by a particular algorithm
on a specific problem, and the number of wins counted with
respect to the best performance. The main results are, like in the
case of CEC 2017 benchmarks, summarized in Table II.

According to the averaged ranks based on the mean perfor-
mance, on real-world problems, L-SHADE-50-PWI turns out
the best method (mean ranking = 2.57). L-SHADE-50-PWI is
followed by HARD-DE (mean ranking = 3.05), PSO (3.64),
and EL-SHADE-SPACMA (3.64). The djDE algorithm does
not perform well on real-world problems and is only ranked 6th
(mean ranking = 5.43). SOMA remains the poorest approach
(with a mean ranking of 7.48).

Like in the case of CEC2017 problems, the differences be-
tween the four best methods are not statistically significant at
α = 0.05. However, L-SHADE-50-PWI is significantly better
than SOMA, djDE, TAPSO, and FDB algorithms.

If we count the number of problems for which the particular
algorithm is the winner according to the mean performance (see
Table II and Supplementary Table V), L-SHADE-50-PWI is
clearly the best approach (ten wins), followed by HARD-DE
(six wins) and, surprisingly, TAPSO (four wins) and FDB (three
wins). This shows the superiority of L-SHADE-50-PWI and, to
some extent HARD-DE, over the other methods. However, it also
shows that some algorithms that do not perform well across all
considered real-world problems (i.e., TAPSO and FDB) may be
well suited for the specific goals: TAPSO is the best method for
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TABLE VI
MEAN PERFORMANCE OF METAHEURISTICS ON CALIBRATION OF A2W8 VARIANT FOR EACH LAKE (VALIDATION SET)

TABLE VII
MEAN PERFORMANCE OF METAHEURISTICS ON CALIBRATION OF A2W6 VARIANT FOR EACH LAKE (VALIDATION SET)
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30-dimensional problem 2 and 110- and 216-dimensional prob-
lems 11.1 and 11.2; FDB—is the best method for 1-dimensional
problem 4 and 96-dimensional problem 11.10. Note also that
EL-SHADE-SPACMA turned out inefficient in this competition.

When we compare the number of wins for the best among 51
runs performed on a particular problem, the results are much dif-
ferent. Although L-SHADE-50-PWI remains the best approach
with nine wins, it is only marginally better than TAPSO with
eight wins. EL-SHADE-SPACMA has seven wins, HARD-DE
has six, and FDB has five. Hence, five out of eight algorithms can
find solutions for the specific problem that is better (including
ties) than all other solutions for this problem found by the other
methods. We may again note that the specialization of algorithms
for a particular kind of search becomes much more evident when
the best runs, instead of the mean performances, are compared.

Tests performed on 22 CEC2011 real-world problems do not
confirm the superiority of HARD-DE, and do not point at djDE
as a promising method. Instead, overall for real-world problems
L-SHADE-50-PWI seems to be the best initial choice. However,
for many specific real-world problems HARD-DE, TAPSO,
EL-SHADE-SPACMA, or even basic PSO may be considered
the second-best approach. It seems that choosing the appropriate
metaheuristics for the air2water model calibration based on the
results obtained for various-dimensional real-world problems
is more difficult than making this choice based on artificial
benchmarks of fixed dimensionality.

IV. RESULTS AND DISCUSSION

A. Choosing the Best Air2water Model Variant Using
Different Optimizers

In this section we use, one by one, each among eight meta-
heuristics to calibrate the three air2water variants on every
among 22 lakes. We run each metaheuristic 30 times for every
variant and lake. We consider two ways of comparison—mean
and best performance among 30 runs. MSE (10) is used as an
objective function and as a comparison criterion. We separately
compare air2water variants for calibration and for testing data
sets.

The graphical comparison of averaged MSE obtained for three
air2water variants calibrated by each metaheuristic is given in
Fig. 2; in Supplementary Fig. 1, a similar comparison is shown
solely for the MSE obtained in the best run. The number of times
the particular air2water variant turns out the best according to
each comparison scenario is given in Tables III and IV—we
seek the best air2water variant for each lake, and then sum up
the number of lakes for which particular air2water variant is the
best choice.

From Fig. 2 and Supplementary Fig. 1 and Tables III and IV,
we note that the relative performance of different air2water vari-
ants indeed depends on the metaheuristic used for comparison.
The results also differ depending on whether we compare the
averaged MSE from all runs, or the best result obtained in all
runs.

When MSE is averaged over all runs, three algorithms, namely
PSO, SOMA, and TAPSO point at the superiority of a2w6, the
variant with the lowest number of parameters, over a2w8 and

the newly proposed a2w12 (see Table III). The choice based
on the calibration data is, for these three algorithms, confirmed
on the testing data set. When the FDB algorithm is used for
calibration, a2w12 seems to be the best variant according to
the calibration data, but this result is not confirmed on the
testing set. On the contrary, when air2water model variants are
calibrated with L-SHADE-50-PWI or djDE, the a2w12 variant
seems to be the best according to the calibration data, and
the validation data set does not change the outcome (although
the number of wins achieved by a2w12 and a2w6 is close to
each other, a2w12 is marginally better). Finally, HARD-DE and
EL-SHADE-SPACMA algorithms show the clear advantage of
a2w12 over the two simpler variants. When HARD-DE is used
for calibration, a2w12 is better than both a2w6 and a2w8 on 21
out of 22 lakes according to the calibration data, and on 19 lakes
according to the validation set.

From such results, we see that the a2w12 variant may outper-
form the other two versions on almost all lakes providing that
the appropriate optimization method is chosen for calibration. In
such a case the superiority of a2w12 is confirmed on independent
validation data set. However, if for example the classical PSO
algorithm is used to calibrate the models—as in various recent
studies on air2water—the simplest air2water variant with 6
parameters will be pointed out as the best option. It seems that
simpler algorithms are able to find appropriate solutions for
simpler air2water variants, but fail on more difficult ones. Only
advanced metaheuristics are able to find appropriate solutions
also for other air2water variants.

Interestingly, the results would change if one compares only
solutions obtained in the best run (out of 30) of the calibration
algorithm. In such a case only SOMA would point to a2w6 as the
best choice (see Supplementary Fig. 1 and Table IV), all other
algorithms clearly show the advantage of a2w12 over simpler
variants, and this result is confirmed on both calibration and
testing data sets. It means that almost every algorithm was able
to converge to the better solution for the a2w12 model than for
the a2w6 variant, but finding such good solutions for a2w12
was relatively harder than for a2w6, and was done successfully
only in some runs. As a result, in the case of PSO, TAPSO, and
FDB and to some extent L-SHADE-50-PWI and djDE, the con-
clusions based on the performance from the mean and the best
run do differ. Only for HARD-DE and EL-SHADE-SPACMA,
the final results are basically the same for both cases (compare
Tables III and IV).

From Fig. 2 and Supplementary Fig. 1, one may note that
when the HARD-DE algorithm is used for calibration, the results
obtained by the a2w12 variant are clearly better than the results
obtained by a2w8 and a2w6 calibrated by any algorithm. In that
case a2w12 variant may not outperform other air2water variants
only on three lakes: Jamno (lake no. 2 in Table I and Fig. 2
and Supplementary Fig. 1), Lebsko (lake no. 4), and Jeziorak
(lake no. 11). For all other 19 lakes the performance of a2w12 is
superior to the performance of a2w8 and a2w6 variants. May we
find any common feature of these three lakes on which a2w12
fails? All three lakes are relatively shallow and relatively large
compared to the other lakes under study (see Table I). Jamno
and Lebsko are two of three most shallow lakes, out of 22, and



PIOTROWSKI et al.: NOVEL Air2Water MODEL VARIANT FOR LAKE SURFACE TEMPERATURE 563

Fig. 2. Averaged MSE obtained by each air2water variant on each lake.
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Fig. 2. (Continued.)
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Jeziorak is 4th–6th the most shallow lake, depending on whether
one compares maximum or average depth. Lebsko lake is the
3rd largest lake, and both Jamno and Jeziorak are among the 6
largest lakes, out of 22 tested. No other common features of the
three lakes may be found. This suggests that the a2w12 variant
is not appropriate for large but shallow lakes. This observation
may be confirmed (see Fig. 2 and Supplementary Fig. 1) by the
very good performance of the a2w12 variant on the two deepest
lakes—Wdzydze (lake 7) which is of moderate size, and Elckie
(lake 17), which is very small. We suppose that the reason is in
weak stratification of large shallow lakes, which results in low
importance of seasonal mixing between deeper and surface lake
layers. As a result, we may recommend an a2w12 variant of
the air2water model for various lowland lakes with exception of
large shallow ones.

B. Comparison Between Metaheuristics for Each
Air2water Variant

In the previous section, we analyzed how the choice of cali-
bration method would affect the choice of appropriate air2water
variant. In this section, we compare the performance of meta-
heuristics for each individual air2water variant.

In Tables V–VII, the averaged over 30 runs performance of
each algorithm achieved for every air2water variant is given
for the validation set. The respective results for the calibration
set are given in Supplementary Tables VIII–X. The results are
shown separately for calibration and testing (validation) data
sets. From the metaheuristics’ point of view, the results for the
calibration set are more meaningful, as the aim of the optimizer
is to fit the model to these data. However, from a hydrological
point of view results obtained for the testing set are much more
important—as what is finally needed is the extrapolation of the
calibrated model for the future, unknown data. In the bottom
of Tables V–VII and Supplementary Tables VIII—X, the mean
ranking (averaged over all 22 lakes) achieved by each meta-
heuristic is given. The lower the ranking, the better metaheuris-
tic. We set the threshold in comparison among metaheuristics to
10–19; if the difference in averaged performance is lower than this
threshold for the particular lake, the methods are given an equal
rank.

From Tables V–VII and Supplementary Tables VIII—X, we
see that HARD-DE is the best choice to calibrate a2w12 and
a2w8 variants. This result is consistent for calibration (see Sup-
plementary Tables VIII—X) and validation (see Tables V–VII)
data sets. In the case of the a2w8 variant, HARD-DE performs
equally well for the calibration set as EL-SHADE-SPACMA
and L-SHADE-50-PWI, for the other cases – it is the sole
winner. EL-SHADE-SPACMA is constantly the second-best
approach, and L-SAHDE-50-PWI and djDE compete for third
place. All four metaheuristics perform well, and the differences
between their results are relatively minor for the majority of
lakes.

For a2w12 and a2w8 variants, the FDB algorithm is to some
extent competitive, but the three remaining algorithms (TAPSO,
PSO, and SOMA) perform much poorer. SOMA is the weakest
approach.

The ranking of algorithms remains roughly similar for the
a2w6 variant when calibration data are considered, with HARD-
DE and EL-SHADE-SPACMA as two clear winners. Interest-
ingly, for the validation set, PSO seems to be the best approach
to calibrate the a2w6 variant. This may be highly surprising,
but a quick look at the specific results given in Table VII shows
that, from the practical point of view, the performance of all
algorithms apart from SOMA is almost equal. Only the marginal
differences noted for some lakes resulted in a better ranking of
PSO in this specific case. The possible reason for the marginal
superiority of PSO for validation data in the case of the air2water
variant with just six parameters is that PSO was sufficient to find
a good solution but unable to overfit to the specific training data;
other algorithms (with exception of SOMA) fitted to both signal
and noise present in the training sample.

Supplementary Figs. 2 and 3 allow visual comparison between
observed and simulated lake water temperatures for the year
2016, which belongs to the validation period, on two typical
lakes: Mikolajskie and Gardno. The simulated values are single
realizations, out of 30 runs, from each metaheuristic for every
air2water variant. One may note that simulations obtained by
different metaheuristics for the a2w6 variant are almost identical
(overlap on Supplementary Figs 2 and 3). On the contrary,
simulations obtained by different metaheuristics for a2w8 and
a2w12 variants are highly diversified for Lake Mikolajskie, and
also differ, although on a much lower scale, for Lake Gardno.
The differences between simulations obtained with the use of
different optimizers may be large, and for some days exceed
3 °C. This confirms that the calibration of the a2w6 variant
is rather straightforward, but the a2w8 and a2w12 variants are
much harder to calibrate and require much more attention in
choosing the appropriate calibration method.

Having all this in mind, one could conclude that, for the prob-
lem of air2water model calibration, the choice of the optimizer
based on CEC2017 benchmarks seems more appropriate than the
choice based on real-world problems of various dimensionalities
that come from versatile fields of knowledge.

V. CONCLUSION

In this article, we have introduced a novel air2water model
variant for modeling lake surface water temperatures based
on air temperatures, and have shown that the choice of the
optimization method may be crucial to confirm the good perfor-
mance of the new model variant. The new variant uses separate
parameterization for cold and warm water periods. If inappro-
priate metaheuristics are used, they point at simpler versions of
the model as the better. Only more flexible optimization al-
gorithms may find appropriate solutions for more complicated
air2water model variants.

Which model variant performs the best may also depend on
the performance measure. If instead of the averaged performance
from all runs, one compares only the best performance achieved
by a particular algorithm in all runs, seven out of eight considered
metaheuristics would show the superiority of the new air2water
model variant over its older versions, and only one would suggest
the superiority of the simplest variant with six parameters. It
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turns out that almost every algorithm was able to converge at
least once to the sufficiently good solution of the new air2water
variant to show its superiority. However, finding such a good
solution was relatively hard, and many metaheuristics were able
to achieve it only occasionally. Nonetheless, repeating compu-
tation many times and finding the best solution may be a simpler
and cheaper option for many practitioners than seeking the
method that will find a similarly good solution—but in every run.

We have also found that it is not easy to choose the right
metaheuristics based on available benchmark problems from the
literature. Depending on whether the tests are to be performed
on 10-dimensional IEEE CEC2017 problems (which are sim-
ilar to the air2water model variants in dimensionality), or on
22 real-world problems from the IEEE CEC2011 set (which,
like optimization of the air2water model, represent real-world
problems, not artificial functions), different metaheuristics may
be considered as the best ones. Depending on the criteria of
comparison, on CEC2017 problems HARD-DE or EL-SHADE-
SPACMA are pointed out as the best algorithms. On the contrary,
on CEC2011 real-world problems L-SHADE-50-PWI performs
best and is followed by TAPSO, HARD-DE, or EL-SHADE-
SPACMA.

In the practical application of the calibration of air2water
model variants, the HARD-DE algorithm turns out clearly
the best approach, confirming the choice that would be based
on 10-dimensional artificial benchmarks, rather than various-
dimensional real-world problems from diversified fields of sci-
ence. When HARD-DE is used, the air2water model with 12
parameters turns out clearly better than the older air2water
versions. However, if one would calibrate air2water models with
L-SHADE-50-PWI, the superiority of the new air2water variant
is weaker. If one decides on PSO for model calibration, the sim-
plest air2water variant with six parameters would seem to be the
best. Hence, the choice of metaheuristics for model calibration
may be a crucial factor affecting the modeling outcome.

The general conclusion from our work regarding the search
for the appropriate optimizer for the specific application based
on the results obtained on benchmark problems is to look for
algorithms that perform best on problems of similar dimen-
sionality. Results obtained on versatile real-world problems of
various dimensionalities may be misleading. If an analysis of
the results for similarly-dimensional problems does not lead to
any conclusions—a number of tests with different optimizers
for the particular application of interest is needed.

We may finally note that if the right calibration method is
chosen, the proposed air2water model variant with 12 parame-
ters outperforms other air2water model variants on 19 out of 22
lakes. The new variant is not recommended for larger but shallow
lakes but performs well on other kinds of lowland lakes. For large
shallow lakes, we suggest using the simplified air2water model
version with 6 parameters.
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