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Abstract—Target recognition in SAR images was widely studied
over the years. Most of these works were usually based on the
assumption that the targets in the test set belong to a limited set
of classes. In the practical scenarios, it is common to encounter
various kinds of new targets. It is therefore more meaningful to
study target recognition in open-world environments. In these
scenes, it is needed to reject the unknown classes while maintain
the classification performance on known classes. In the past years,
few works were devoted to open set target recognition. Though the
detection performance on unknown targets can be improved to a
certain extent in the preceding works, most detection schemes are
independent of a pretrained feature extractor, leading to potential
open space risks. Besides, the model architectures are complicated,
resulting in huge computational cost. To solve these problems, a
family of new methods for open set target recognition is proposed.
Targets indistinguishable from known classes are constructed by
random sampling combination strategy. They are further sent
into the classifier for feature learning. The original open-world
environment is then transformed into a closed-world environment
containing the unknown class. Moreover, the special implication
of generated unknown targets is highlighted and used to realize
unknown detection. Extensive experimental results on the MSTAR
benchmark dataset illustrate the effectiveness of the proposed
methods.

Index Terms—Open set target recognition, open-world
environments, random sampling combination, synthetic aperture
radar (SAR).

I. INTRODUCTION

D ESIGNING target recognition systems has received con-
siderable critical attention for synthetic aperture radar

(SAR) data in a real-world environment. With the character-
istics of active coherent imaging, SAR acquires high-resolution
surface image data all day, all weather, and plays an irreplaceable
role in modern high-tech information warfare. Recent develop-
ments in remote sensing technology have enabled more and more
SAR images to be acquired. The interpretation of large-scale
SAR images is an increasingly important area, in which target
recognition is one of the research hotspots [1], [2], [3].
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Most current research of SAR target recognition methods
focuses only on a closed-world environment. The closed-world
environment describes such a scenario, where the classes in the
training set are consistent with the classes in the test set. These
classes included in the training set are called known classes, and
targets appeared in the test set all belong to known classes. The
main task of target recognition is to accurately divide targets
into one of the known classes in a closed-world environment,
which is called closed-set recognition (CSR). Traditional CSR
technology mainly includes three stages: data preprocessing,
feature extraction, classification, and recognition. Because there
is a heavy dependency on a large amount of professional knowl-
edge and prior information to manually design feature extractors,
these technology have high computational complexity and poor
generalization performance. With the continuous development
of deep-learning theory, various methods based on automatic
feature extraction of neural network have shown significant
advantages and become mainstream methods.

Because SAR image data are scarce while the learning process
of CNN requires a large amount of data, some scholars propose
to augument the training sample set to improve recognition
performance. For example, Ding et al. [4] extracted the attributed
scattering centers of original SAR images to reconstruct targets
to expand the database. Wang et al. [5] designed a semisuper-
vised learning framework including self-consistent augmenta-
tion rule, mixup-based mixture, and weighted loss, which allows
a classification network to utilize unlabeled data during training.
Similarly, Zheng et al. [6] proposed to generate new samples
with the help of generative countermeasure network. And these
unlabeled generated images are input to CNN together with the
labeled images for semisupervised recognition. The expansion
of sample set effectively prevents model overfitting caused by
the small amount of training data. However, the quality of
these augmented samples is difficult to guarantee. When augu-
mented features are not representative, the existing classification
performance is affected. What is more, some CSR methods
optimize classification models by combining CNN and other
deep-learning models such as autoencoder and SVM. For exam-
ple, Wagner [7] suggested replacing the fully connected layers
of CNN by a collection of SVMs for the final classification. In
addition, elastic deformation and affine transformation are used
to expand the training set. By optimizing the algorithm structure,
such methods aim to reduce network complexity while improv-
ing classification accuracy. However, the generalization ability
is relatively poor when dealing with small training datasets.
Besides, some target recognition methods based on multifeature
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Fig. 1. Difference between open-world environments and closed-world environments in SAR targets recognition problem. In the distribution of original dataset,
� represents all targets belonging to three known classes. © denotes various unknown targets in real open-world environments. Fig. 1(a) shows the decision
boundary of each class obviously misclassifies unknown targets as known. Fig. 1(b) shows the decision boundaries limit the scope of known classes, reserving
space for unknown classes. (a) Closed-set recognition problem. (b) Open-set recognition problem.

fusion are also popular. Such as Chen et al. [8] used convolutional
kernels of different sizes to extract the multikernel-size deep
features, and then, these features are fused in an optimal way
to acquire the lowest loss. The feature information of different
dimensions is fully used to achieve promising feature representa-
tion integrity in such methods. But they rely heavily on network
parameters and are not well generalized on various types of
datasets.

In the real-world target recognition problem, many unseen
classes not included in the training set are likely to appear,
which are called unknown classes. And these unknown targets
are misjudged as known classes in CSR. This misjudgment is
defined as open space risk and seriously affects the military
application of recognition systems [9]. Therefore there is an
urgent need to address the risk caused by the assumption of
closed-world environments. The concept of open-world envi-
ronments is proposed to describe this scenario where the test
set contains various targets not belonging to known classes. In
such an open setting, there are two primary goals. First, the
system ought to correctly classify all targets belonging to known
classes. Second, the targets not belonging to any known class
are required to be identified as the unknown class and promptly
rejected. The recognition problem setting is regarded as open set
recognition (OSR) for SAR targets. Compared with CSR, OSR
can additionally achieve the rejection of unknown classes, which
is the significant difference between them. Fig. 1 describes the
tasks that OSR and CSR need to achieve, respectively.

A. Traditional Strategies

Early there have been some efforts with traditional techniques
toward developing efficient OSR methods for SAR targets, as
shown in Fig. 2. For example, Scherreik and Rigling [10] pro-
posed a support vector machine (SVM)-based method, which
realize classification with a rejection option using the W-SVM
and POS-SVM. Besides, some scholars proposed classification
models based on artificially generated unknown targets. Such
as [11], two template-based open set recognizers using synthetic
images as unknown classes are adopted. Later, Song et al. [12]
regarded physics-based electromagnetic (EM) simulated images
under different azimuth angles as the unseen targets and ZSL

Fig. 2. Summary of OSR methods for SAR targets. “SVM-based” denotes sup-
port vector machine-based models while “EVT-based” represents the statistical
EVT is applied to the models. Modern methods based on deep-learning improve
OSR performance from both discriminative and generative perspectives.

model was designed. What is more, some methods using extreme
value theory (EVT) are also representative. For instance, Dong
et al. [13] put forward to select the edge exemplars by edge
pattern selection and herding, and then fit the probabilistic distri-
butions with EVT. The unknown class is rejected by thresholding
distribution similarities.

B. Modern Strategies

Recently, with the emergence of deep neural networks, deep-
learning based OSR methods have developed and achieved
superior performance [14]. Most studies focus on discriminative
models, which quantize the output distance or probability to
constrain the decision boundary. For instance, Hendrycks Gim-
pel [15] compared output probabilities to a threshold based on a
pertrained classifier. An instance belongs to the unknown class
when the max probability is lower than the threshold. Bendale
and Boult [16] defined scores from the penultimate layer of the
deep network as activation score. Then activation scores were
used to estimate whether the input data belong to the unknown
class combining meta-recognition. However, they mostly serve
as postprocessing methods on resulted CNN features. The divi-
sion of decision boundaries depend heavily on the information
obtained after training. When the extracted features are not rich
enough, the recognition effect is greatly affected. Apart from
these discriminative models, some generative models have also
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gained a lot of attention. They learn the decision boundaries
by generating known targets or unknown targets using gener-
ative adversarial network (GAN) [17], autoencoder [18] and
flow-based model [19]. An example can be drawn from [20],
which learned the distribution of known classes with GAN and
discriminator. Because the unknown samples did not fit in with
the learned distribution, unknown classes were identified by
thresholding the output scores of the discriminator.

C. Our Solution

Compared with discriminative methods, generative models
are theoretically elegant and straightforward. However, these
classifiers are trained independently of the targets generation
process in existing methods. The deep unknown distribution
learned by the classifier is ignored, resulting in the potential
open space risk. Besides, the techniques used to generate targets
are usually complicated. Motivated by these problems, a family
of novel OSR methods, generative models via random sampling
combination (GvRSC) is proposed in this article. Two technical
routes are designed to estimate the distribution of unknown
classes indistinguishable from known classes. The original open
environment is then converted into a closed environment. More-
over, the different implications between prior information on
determined known classes and simulated unknown classes are
used to detect unknown targets.1

The main contributions of this article are as follows.
1) The designed generation process of unknown targets is

straightforward and effective. Furthermore, the classifier
is trained in the feature space augmented by generated
targets, making the model more general.

2) A rich deep feature space is further learned, so that
decision boundaries of known classes are pushed away
significantly. Meanwhile, the randomness of generation
allows diverse novel features to be constructed continu-
ously, effectively avoiding overfitting.

3) The proposed spatial clipping suppresses the noise in-
terference effectively on the basis of retaining important
details. By this way, the features used for classification are
optimized with strong pertinence in SAR images.

II. BACKGROUND

Our work is mainly related to the concatenation and inter-
polation between known targets, aiming to simulate unknown
targets. In this section, the challenges in OSR and the algebraic
model of known class spaces are briefly discussed.

A. Challenges in OSR

Rejecting unknown targets while correctly classifying all
known targets is just the targeted problem to be solved by OSR,
even if these unknown targets come from varieties of categories.
In a feature space, the positive half space for each known class is

1“Unknown detection” means identifying whether the target is belonging to
the unknown class for OSR problem, the concept of which is completely different
from that of target detection technology. Target detection technology is used to
locate regions of interest in a complete automatic target recognition system.

Fig. 3. Distribution of unknown targets in a feature space, where � represents
all targets belonging to three known classes. The black © denotes the unknown
targets similar to some known classes and blue © denotes unknown targets that
have nothing to do with all known classes.

considered to be relatively bounded. The prior information used
to learn the known distribution is limited but sufficient. However,
the distribution space of unknown classes is unbounded. The
mixed unknown targets are roughly divided into two types:
unknown targets far away from clusters of all known classes,
and unknown targets close to some clusters of known classes,
as shown in Fig. 3. Considering the identification process is
essentially the process of finding the best match of feature
information, the distribution of unknown targets is determined
by the feature similarity between them and known classes. The
first type of unknown targets have few similar features to all
known classes, but the second type of unknown targets have a
high feature similarity with known classes.

Unknown targets far away from clusters of all known classes:
The positive half space of each class is identified after a classifier
is trained. When a sample appears deeper in an identified positive
half space, the probability of belonging to the corresponding
class is large. On the contrary, the probability tends to decline
gradually as the sample is further away from the identified space.
Hence, the output probabilities of such unknown targets under
all classes are all low. In this case, these unknown targets are re-
jected directly by thresholding the maximum output probability.

Unknown targets close to some clusters of known classes:
Notably, the difficulty lies just in identifying such unknown
targets, which have a semantically similar component/region to
that of some known classes. The existence of common features
leads to a high probability for these unknown targets under the
nearest known class. This probability is as high as the probability
of the known target being under the true class. As a result,
thresholding probabilities simply fails to solve the rejection
problem of these unknown targets.

B. Algebraic Model of Known Class Spaces

For all targets of the same classXk = {xk,1,xk,2, . . . ,xk,n},
it is generally considered that they span into a linear subspace
of the class [21], [22]

Span(Xk) = αk,1xk,1 + αk,2xk,2 + · · ·+ αk,ni
xk,n (1)

where αk = [αk,1, αk,2, . . . , αk,n}is the coefficient vector.
Each group of imaging data for this class is regarded as a
specific element on the linear subspace. On the contrary, a
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linear combination of two or more groups of imaging data
from different classes theoretically do not belong to any related
subspace spanned by the known class

β · xk,i + λ · xj,l �∈ Xk, Xj ,

{
∀xk,i ∈ Xk

∀xj,l ∈ Xj .
(2)

Likewise, each image is quantified into a group of limited
discrete features set. The kth class ith SAR image is denoted as

xk,i = {Aki, Bki, Cki, Dki, Eki, Fki, · · · } (3)

where Aki, Bki, Cki, Dki, Eki, Fki represents different under-
lying features. Because the targets from different classes span
into their respective linear subspaces, the zero vector is the only
common vector. This algebraic model indicates that subspaces
of different classes are noninterconnected. Hence, feature sets
of two or more targets from different classes are disjointed. Any
feature set composed of some discrete features from different
classes does not belong to any relevant known class

x̃k,i ∪ x̃j,l /∈ Xk, Xj ,

{
∀x̃k,i ∈ Xk

∀x̃j,l ∈ Xj

(4)

where x̃k,i represents a feature subset of xk,i, i.e. x̃k,i ⊂ xk,i,
the same as x̃j,l ⊂ xj,l.

Targets constructed as above are obtained based on the feature
transformation for known targets. Consequently, these targets
are similar to known classes while not belonging to any known
class. Inspired by that, known targets not in the same class are
randomly combined to approximate the distribution of indistin-
guishable unknown targets in our study.

III. PROPOSED METHODS

Assuming the original training set contains K known classes,
then OSR can be regarded as [9], [23]: simultaneously correctly
classifying the K known classes and identifying unknown tar-
gets as the unknown class. That is, OSR is aK + 1-class classifi-
cation problem containing prior information of K known classes.
We concatenate known targets to simulate the prior information
on indistinguishable unknown targets, and make these unknown
targets participate in classifier training. Consequently, the orig-
inal open space is transformed into a closed space containing
prior information of K + 1 classes. Specifically, two technical
routes about unknown samples generation are included. The first
is that some known targets not in the same class are randomly
cropped and spliced in the input layer. This technique is defined
as spatial clipping used to generate unknown samples (SCG).
The second is to make a random weighted combination of some
known targets in the middle hidden layer, ensuring these targets
are not in the same class. This technique is named as weighting
used to generate unknown samples (WG).

In this section, we first propose the overall frameworks of
the family of generative models in detail, and then explain
the implementation process of unknown detection and known
classification, followed by motivation.

A. Generative Model Based on SCG

1) Modeling: As an underlying support, the network archi-
tecture of our classification model is arbitrarily chosen according
to pratical requirements. We denote the selected network as
f(x; θ) with parameters θ, which inputs an image x and outputs
a logit vector over the limited set of classes. Furthermore,
the classification network is considered to be composed of an
embedding function and a linear classifier, described as

f(x) = WTϕ(x). (5)

In (5), ϕ(x) : RD → Rd denotes the abstract embedding func-
tion for extracting features, whereD refers to the dimensionality
of each input image and d refers to the dimensionality after
mapping. W ∈ Rd×(K+1) represents the weight matrix of the
fully connected layer (FC) for linear classification, whereK + 1
indicates the network output has a total of K + 1 classification
nodes with the K + 1th node corresponding to the unknown
class.

2) Implementation: Assuming a labeled training set Dtr =
(xi, yi)

L
i=1 consisting ofK known classes,xi ∈ RD is a training

target and yi ∈ Y = {1, 2, . . . ,K} is the associated class label.
In the input layer, we first randomly sample four different targets
not in the same class from Dtr for pairing. Noting that we do not
pair (xi,xj ,xk,xl) for all possible combinations. Conversely,
combinations are produced within mini-batches. Given the train-
ing batch of sizeB, four orders of training targets are obtained by
shuffling the mini-batch. Then pairs containing the same target or
belonging to the same class are discarded, leaving the remaining
pairs for unknown targets construction.

After target pairing, random cropping and stitching are per-
formed to simulate novel targets. Within the length and width
of the original training image, two values are sampled from
Beta distribution to construct the boundary coordinate in every
training step [23]. Supposing the size of the training image is
a× b, that is

w = w′ × a, w′ ∼ Beta(α1, β1)

h = h′ × b, h′ ∼ Beta(α1, β1). (6)

To guarantee the difference between generated images and
original images, the boundary coordinates are required to fall
on the target center area with a higher probability, while fall
on the boundary area of the original image with a lower prob-
ability. Considering Beta distribution simulate the probability
distribution of event occurrence probability, this characteristic
is used to effectively constrain the probability distribution of
selecting boundary coordinates. We set α1 = β1 = 2 > 1, and
the corresponding probability distribution shape is shown in
Fig. 6. By drawing a horizontal line and a vertical line at the
position of (w, h), the original shape a× b is divided into four
new rectangles. We denote the shapes of these four rectangles as

ν1 ∼ [w, b− h], ν2 ∼ [a− w, b− h]

ν3 ∼ [w, h], ν4 ∼ [a− w, h]. (7)

[·, ·] represents the length and width of rectangles. The paired
four-column images are sequentially cropped according to the
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Fig. 4. Process of spatial clipping used to generate samples (SCG). Only
pairs consisting of different targets not belonging to the same class are utilized
for cropping. (w,h) denotes the boundary coordinate randomly produced to
determine the cropped shape. The spliced targets are used to anticipate indistin-
guishable unknown targets.

Fig. 5. Scheme of the proposed generative model based on SCG. Unknown
targets generated by SCG are augmented into the original training set at the input
layer and sent to the network for training together.

shape νn, n = (1, 2, 3, 4). Specifically, the starting positions
for cropping denoted as (an, bn), n = (1, 2, 3, 4) are randomly
produced from beta distribution within a certain range

an = a′n × (a− wn), a′n ∼ Beta(α2, β2)

bn = b′n × (b− hn), b′n ∼ Beta(α2, β2). (8)

They are taken as the upper left corners of cropped areas. In order
to avoid the cropped area contains a complete known target,
starting positions are required to locate in the upper left region of
the central target as little as possible. Therefore, we also use the
Beta distribution to constrain the selection probability and set
the parameters as α2 = 1, β2 = 4, resulting in the distribution
shape shown in Fig. 6. Finally, the four cropped images in each
pair are spliced around the boundary coordinates (w, h) to form

Fig. 6. Shape of Beta distribution under different parameter settings.

a novel unknown image with the same size as the known image.
The specific explanation of the process is shown in Fig. 4.

The targets generated in each batch are augmented into
the batch of Dtr with class label K + 1. The augmented
dataset is expressed as D′

tr = (xi, yi)
N
i=1, where yi ∈ Ŷ =

{1, 2, . . . ,K,K + 1}. Then, D′
tr is sent to the classification

network for joint training. The classification loss of K + 1
classes is expressed as

lt1 =
∑

(x,y)∈D′
tr

�(f(x), y). (9)

The output distribution of network is optimized to match the
one-hot encoded distribution of true labels, leading the generated
targets to approximate the unknown class. After the network
finishes iterative optimization, a K + 1-class classifier CK+1 is
formed. The complete process of the SCG-based model is shown
in Fig. 5.

B. Generative Model Based on WG

1) Modeling: Considering a higher dimensional information
is in the middle hidden layer than the input layer, the hidden
representations are used to construct unknown targets in this
technique. We divide the network structure into two parts with
the middle hidden layer as the boundary. The embedding func-
tion ϕ(x) can be further expressed as

ϕ(x) = ϕpos(ϕpre(x)). (10)

In (10),ϕpre(·) represents the embedding function corresponding
to the prelayers before middle layer, mapping input data into
hidden representations. ϕpos(·) corresponds to the remaining
layers of the feature extraction network, mapping the hidden
representations into output features. Then, the classification
network is described as

f(x) = WTϕpos(ϕpre(x)) (11)

where ϕpre(xi) refers to the high-dimensional hidden represen-
tations of the input xi.

2) Implementation: Similarly, known targets in Dtr are first
sampled randomly for pairing, discarding the pairs containing
the same target or in the same class. Denoting one of the
obtained pairs as (xi, xj , xk, xl), the four known targets are



336 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 7. Process of weighted combination used to generate samples (WG). The
indistinguishable unknown targets are simulated by weighted combination of
four known targets, pushing the decision boundaries much tighter.

separately put into the previous part of the feature extraction net-
work. The corresponding hidden representations are expressed
as (ϕpre(xi), ϕpre(xj), ϕpre(xk), ϕpre(xl)). A linear weighted
combination of these representations is performed to construct
a novel unknown target, as shown in Fig. 7. The corresponding
formula is as follows:

x̂u = λ1 · ϕpre(xi) + λ2 · ϕpre(xj)

+ λ3 · ϕpre(xk) + λ4 · ϕpre(xl). (12)

These weight coefficients are also selected from Beta distribu-
tion. That is, β1 ∼ Be(α, α), β2 ∼ Be(β1, β1), β3 ∼ Be(1−
β1, 1− β1). In order to ensure the sum of weight coefficients
is 1, we set

λ1 = β2, λ2 = β1 − β2

λ3 = β3 − β1, λ4 = 1− β3. (13)

Then, x̂u goes through the rest part of feature extraction network,
corresponded toϕpos(·). The final output is represented as f(x̂u).
An additional loss function is constructed for generated targets,
defined as:

lu =
∑

(x,y)∈Dtr

�(WTϕpos(x̂u),K + 1). (14)

lu is used to optimize the output distribution of generated
targets, leading these targets to simulate indistinguishable un-
known targets as much as possible. As a result, the unknown
distribution in open-world environments are constrained within
a limited range.

The original training set Dtr is directly input to the com-
plete classification network f(x) = WTϕ(x), so as to obtain
the output distribution of known targets. The corresponding
classification loss between known classes is denoted as lk

lk =
∑

(x,y)∈Dtr

�(f(x), y). (15)

Finally, the overall loss is obtained by the weighted summation
of lu and lk, denoted as

lt2 = lk + γ · lu. (16)

AK + 1-class classifierCK+1 is also formed after optimization.
The corresponding complete process of the WG-based model is
shown in Fig. 8.

Fig. 8. Scheme of proposed generative model based on WG. Unknown targets
generated by WG in the middle layer are separately sent into the later part of
network for training, which constitutes a new loss function lu.

C. Implementation of the Identification Process

The output distribution difference between unknown and
known targets is significantly improved after training. The output
probabilities of class K + 1 are relatively high for unknown
targets similar to some known classes. But it does not rule out
that a high output probability of the similar known class may
also appear. As for the known targets, the highest probability
appear in their true class label while the probability of class
K + 1 is low. However, the countless of such unknown targets
is worth noting, just as mentioned in Algebraic model of known
class spaces. The finiteness of the learned unknown features
is normal and realistic, and the difference from known targets
determines the output probability of class K + 1 is full of
different representation meaning. Hence, we do not generalize
the output probabilities of the unknown class and known classes,
making full use of the limited feature information of generated
unknown targets.

During the recognition process of testing instances, the output
probability of class K + 1 is not ignored just because it is not
the max probability on all classes. When the absolute value of
the probability is large, it has been stated the instance belongs
to the indistinguishable unknown class with a high probability.

Above all, we reject the targets far away from all the clusters of
K + 1 classes by thresholding, which corresponds to unknown
targets having few similar features to all known classes

max
k=1,2,...,K+1

P (x) ≤ ε1. (17)

If the above formula is satisfied, where ε1 is the threshold, the
instance is directly judged as an unknown target, expressed as
y = K + 1.

Otherwise, other judgments need to be continued. The re-
jection on unknown targets similar to some known classes is
achieved by thresholding the output probabilities of belonging
to class K + 1. Specifically, if the output probability is greater
than the threshold denoted as ε2

PK+1(x) ≥ ε2 (18)

the instance is judged as indistinguishable unknown class: y =
K + 1. If not, it is identified as the known class corresponding
to the largest probability of the top K classes

y = arg max
k=1,2,...,K

P (x) (19)
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Fig. 9. Visualization results of generated targets in the feature space learned by a closed-set classification CNN. The closed-set classification CNN is obtained by
training with eight random known classes in MSTAR, denoted as 0 ∼ 7. Targets generated by SCG and WG are used for testing, denoted as 8. The high-dimensional
features corresponding to eight known classes and the generated unknown class are extracted in the penultimate layer of the network, and tSNE is then performed to
observe their relative feature distribution. (a) Spatial clipping used to generate unknown samples (SCG). (b) Weighting used to generate unknown samples (WG).

D. Motivation

In this section, the effectiveness of GvRSC is theoretically
demonstrated and expounded in detail. Three main reasons for
improving the unknown detection performance while guarantee-
ing the known classification effect are included: efficient sim-
ulation of unknown targets, boundaries compactness of known
classes, suppression of SAR noise interference.

1) Generative Model Based on SCG: The targets generation
process of SCG only uses image cropping and stitching without
any extra time complexity. Besides, the diversity of feature
combinations is increased by virtue of randomness. Thus, the
generated targets are led to best approximate indistinguishable
unknown targets, which is verified by the t-SNE visualization
effect in Fig. 9(a). In addition, patching creates new global
features in the generation process. This keeps neural network
from overfitting to specific features [24].

Targets generated by SCG always equips local features in-
cluded in the original dataset, from which deep and comprehen-
sive known features are further extracted. Many patch details in
known classes are learned repeatedly. As a result, the decision
boundary is moved away from the generated targets, resulting
in a compact embedding space.

Furthermore, the influence of background noise [25], [26] on
recognition is reduced effectively, increasing the model stability.
We assume the feature set corresponding to each target consists
of main features used to classify and various noise. Because the
background noise is random, the noise distribution among vari-
eties of classes is also random. By cropping and splicing, various
random noises on different images are randomly sampled on one
certain image, so that the same noise distribution exists in the
generated targets and K known classes. The uniformity of noise
distribution is greatly enhanced in varieties of classes. During
the network training process, the weight of all features to the
target classes are determined. Therefore, when the noise tends
to be evenly distributed across all classes, the information gain
or weight assigned to the noise is weakened close to 0. On the
contrary, the main features belonging to the inherent properties

of each known class have regular distribution. The information
gain assigned to each main feature is continuously strengthened
after training. In summary, on the basis of not losing SAR
image texture information, the interference of random noise on
image classification is effectively suppressed. During the testing
process, even if unseen random noise is mixed in, the weight of
these main features still play a dominant role, and the stability
of the classification effect is increased obviously.

2) Generative Model Based on WG: From (12), we find the
generation process also does not consume extra time complex-
ity. WG builds complete new pixel-level features that original
known targets do not include. Therefore, the various of learned
unknown features are enriched drastically.

Since the network learning process is regarded as the parame-
ter learning process, a deeper abstract representation appears in
each layer compared with the previous layer. As the parameters
are updated through the network, targets generated in the middle
hidden layer are continuously optimized. Thus, generated targets
are allowed to better stand for the unknown targets similar
to known classes, as the SNE visualization result in Fig. 9(b)
proved. In addition, the combinations in the middle hidden layer
prevent generated targets from being confused with other known
targets, which prone to occur at the input layer. It means the dis-
tinguishability between known classes is effectively guaranteed.

Weighted combination is understood as the establishment
of a linear interpolation function, which makes the discrete
sample space continuous. Verma et al. [27] proved the learning
of unknown targets located at the interpolated position pushes
the decision boundaries away in all directions, smoothing the
decision boundaries. This characteristic is conducive to improv-
ing the generalization ability of the WG-based model. With the
above characteristics, testing unknown instances are gathered
around the cluster center of class K + 1.

IV. EXPERIMENT AND RESULTS

To evaluate the performance of GvRSC, we use the MSTAR
public database for conducting experiments. The SAR images
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Fig. 10. Confusion matrices of the CSR method and the OSR method under different environments. The prediction labels only contain known classes 0 ∼ 7
in closed-world environments. However, in open-world environments, the prediction labels contain known classes and Unknown denoted as 8. (a) The plain
closed-set recognition CNN in closedworld environments. (b) The plain closed-set recognition CNN in openworld environments. (c) SCG-based recognition model
in open-world environments.

TABLE I
TARGETS AND IMAGING PARAMETERS OF THE USED MSTAR DATABASE

consisted are imaged in the X-band and HH polarization with
0.3-m resolution for multiple targets. There are 10 classes of
vehicle targets with a pixel size of 128×128, ie., BMP2 (tank),
BTR70 (armored car), T72 (tank), BTR60 (armored car), 2S1
(cannon), BRDM2 (truck), D7 (bulldozer), T62 (tank), ZIL131
(truck), ZSU23/4 (cannon). These targets were captured with
190 ∼ 300 different aspect versions, which are more than 360◦

full coverage. According to the recommended configuration [8],
[28], the images with a depression angle of 17◦ are used to train
the network, and the images with a depression angle of 15◦ are
used for testing. The number of the ten-class targets images and
some imaging parameters are shown in Table I. Because the data
in MSTAR is insufficient, a set of data augmentation strategies
is performed in all the experiments of this article.

In this section, we first compared the difference between
open-world and closed-world, reflecting the important research
significance of OSR. Then, we evaluate the performance in
unknown detection and make a further extended experiment
with openness changes. Subsequently, the performance on the
OSR task is compared with other state of the art OSR methods.
Finally, an ablation study is also conducted to further analyze the
contribution of each part in our model. Notably, the result data
are directly quoted from the relevant references if they exist.
In other cases, where there are no directly citable literatures,
we maintain the same conditional configuration as the original
reference, and use the recommended parameter values in the
literature to reproduce. Details on recommended values can be
found in these reference.

A. Comparison Between Open-World and Closed-World

In order to reflect the difference between open-world envi-
ronments and closed-world environments, we conduct a brief
experimental comparison on the MSTAR dataset. Eight of the
ten classes are randomly selected as known, labeled as 0 ∼ 7.
The other two classes are merged into the class 8 as unknown.
The comparative experiments consist of three parts: the plain
CSR CNN in closed-world environments, the plain CSR CNN
in open-world environments, and SCG-based model recognition
in open-world environments. The experimental results are shown
by the confusion matrix in Fig. 10. In Fig. 10(a), the CSR method
ensures the accurate classification of known classes. But in the
real open-world environment as shown in Fig. 10(b), the CSR
method misjudges unknown targets as one of the known classes,
leading to serious open space risks. Different from that, the
proposed OSR method effectively addresses the misjudgments.
In Fig. 10(c), most unknown targets are correctly identified as
the unknown class, and the classification accuracy of known
classes is also effectively guaranteed.

B. Unknown Detection

1) Experimental Datasets: From the MSTAR dataset, we
randomly select eight classes as known classes, remaining the
other two classes as the unknown class. The training set is
composed of the corresponding eight classes of the MSTAR
training images, while two groups of test sets are set up. The
first test set contains 10 classes of the MSTAR testing images.
The second test set contains eight known classes of the MSTAR
testing images and two unknown classes of MSTAR-noise im-
ages. These MSTAR-noise images are randomly generated on
the MSTAR images using GAN, which are similar to the original
MSTAR images.

2) Evaluation Metrics: In a real open-world environment,
it is not known how rare or common the unknown targets
are. An independent and flexible threshold is required for de-
tecting unknown classes. The receiver operating characteristic
(ROC) curve characterizes the performance of a detector with
the threshold changing from zero recall to complete recall.
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Fig. 11. Receiver operating characteristic (ROC) is presented to intuitively evaluate the unknown detection performance of our proposed methods compared with
the other five advanced methods. (a) ROC cruves applied to the MSTAR dataset. (b) ROC cruves applied to the MSTAR+noise dataset.

TABLE II
THE UNKNOWN DETECTION PERFORMANCE IS METRICED BY AUC SCORES

AND WE REPORT CLOSED-SET ACCURACY UNDER THE ASSUMPTION OF A

CLOSED ENVIRONMENT

For this reason, we choose the ROC curve and the area under
the ROC curve (AUC) as metrics, which provide calibration-free
measures of detection performance.

Apart from this, any OSR method should remain capable of
standard closed-set classification when detecting known and
unknown targets. We choose the classification accuracy in a
closed set space as another metric, which states if the classifier
still working when applied to the known subset of classes.

3) Network Architecture: The classification network for this
experiment refers to the classifier32 network used in [29], with
some changes. Considering SAR images are very sensitive
to features such as imaging azimuth, learning deeper high-
dimensional features is the key to improve recognition accuracy.
We add two combined layers composed of a convolutional
layer and an activation function layer to the middle hidden
layer of the original neural network. As a result, the network
depth is increased and more abstract features are obtained. The
momentum stochastic gradient descent (Momentum SGD) is
used to optimize the network, and its learning rate starts from
0.1.

4) Result Comparisons: As shown in Table II, the proposed
two models are compared with newly proposed methodology
under the same conditions. Among them, softmax is regarded
as a baseline, which uses the highest output probability as the
confidence score for detection. We report the mean AUC results
over five trials in the Table II. It is apparent from this Table II the
proposed methods significantly improve the recognition perfor-
mance. Specifically, in the experiments on MSTAR dataset, both

SCG-based model and WG-based model improve the detection
performance by a considerable margin, pushing forward about
10% than Softmax. Their AUC scores have exceeded 90%
and achieved excellent detection effect. As unknown targets
become more indistinguishable in MSTAR+noise dataset, more
prominent advantages are shown in SCG-based model than
other advanced methods. The detection performance is pushed
forward by 12.1% from Softmax, achieving a good effect of
85.2%. WG-based model also slightly improves the performance
in unknown detection by 3.5% compared with the baseline,
though the effect is not as good as the multitask learning-based
model.

Moreover, we draw ROC cruves of these listed methods for
performance evaluation in Fig. 11. In the MSTAR dataset, ROC
curves of SCG-based model and WG-based model are relatively
closer to the upper left corner, which means they have higher
identification accuracy. The ROC curve of RPL is closest to the
lower right corner, which indicates RPL is the worst method to
detect unknown. In addition, the ROC curve corresponding to
SCG-based model is still closest to the upper left corner in the
MSTAR+noise dataset, followed by that of multitask learning-
based model. And the ROC curve of WG-based model is located
in the upper left of RPL, ARPL, and GCPL. In view of this,
the superiority and effectiveness of our proposed methods in
detecting unknown classes is verified.

We also provide the closed-set accuracy in Table II. Com-
pared with the baseline, the closed-set recognition performance
of other newly proposed comparison methods is all obvi-
ously reduced, with accuracy reduced by several percentage
points on different datasets. But the closed-set classification
performance of SCG-based model and WG-based model has
basically remained unchanged, only a few tenths of a per-
centage point fluctuation. From these results, it is concluded
that the proposed methods realize accurate unknown detection
without sacrificing the discriminative ability in the closed-set
classification.

5) Extended Research for Openness: Real open-world envi-
ronments are very complex and unpredictable, where diverse
unseen targets may be encountered. The more classes of un-
known targets, the greater the open space risk in the recognition
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Fig. 12. AUC scores against varying openness under different methods.

problem, and the higher the difficulty in detecting unknown
targets. Therefore, when evaluating the model, the influence of
openness [35] on detection performance needs to be observed.
Following the protocol given in [36], we quantify the complexity
of the open-set task with simplified openness, defined as

Openness = 1−
√

Ntrain

Ntest
. (20)

where Ntrain denotes the number of classes contained in the
training set and Ntest denotes the number of classes contained
in the test set. As we discussed in the preliminaries, we set
Ntrain = K. To change the degree of openness, we vary K with
a fixed Ntest = 10 for the MSTAR dataset. The detection results
corresponding to a range of greater openness scores are shown
in Fig. 12. As the openness degree increases from 10.56%
to 45.23%, our models perform better in unknown detection,
leading to significant differences with Softmax. When the open-
ness degree reaches 45.23%, the AUC scores are improved by
24.8% for SCG-based model and 17.8% for WG-based model
compared with the baseline. What is interesting in Fig. 12 is that
AUC scores of the proposed two models both degrade gently as
the openness increases. Their unknown detection performance
does not deteriorate as drastically as Softmax. Particularly,
SCG-based model appears to be unaffected by openness. Over-
all, these results suggest when Softmax is difficult to work in
high degree of openness, the proposed methods handle these
scenarios with stable and excellent performance.

6) Visualization Detection Results: To analyze the feature
similarity between testing instances and the class K + 1, we
measure the second norm of the distance between testing in-
stances and the center point of classK + 1 in a high-dimensional
feature space. The corresponding high-dimensional feature dis-
tribution histograms with MSTAR as the test set are shown in
Fig. 13. Apparently, the distribution peaks of known classes and
the unknown class are clearly distinguished in both SCG-based
model and WG-based model. The feature difference between
unknown instances and the center of class K + 1 are much less,
while the difference is relatively more for known instances. This
finding confirms thresholding the output probability of class
K + 1 is reliable and effective for unknown detection.

TABLE III
EVALUATION MEASURES OF DIFFERENT METHODS FOR OSR

C. Open Set Recognition

In addition to detecting unknown targets, another purpose
OSR needs to achieve is to accurately classify known targets. In
this section, the open-set classification performance of GvRSC
on known targets is verified.

1) Experimental Datasets: To facilitate comparison with
other OSR methods, we set up the experimental dataset with
reference to [10]. We choose T72, BMP2, and BTR70 to make
the training set. The whole 10 target classes make up the test set.
This means OSR models should receive and classify T72, BMP2,
BTR70, and simultaneously identify the rest seven classes as the
unknown class during the test time.

2) Evaluation Metrics: To analyze the comprehensive per-
formance in both known classification and unknown detection,
we introduce recall, precision, and macro-F1. Recall indicates
the proportion of instances classified correctly among all pos-
itive instances, which measures the ability to identify positive
instances. Precision indicates the proportion of instances that
are actually positive and classified as positive. Macro-F1 is a
weighted harmonic average between recall and precision. In
a multiclass problem, these metrics are calculated as follows,
where K denotes the number of all classes

recalli =
TPi

TPi + FNi
, recall =

∑K
i=1 recalli

K
(21)

precisioni =
TPi

TPi + FPi
, precision =

∑K
i=1 precisioni

K
(22)

F1i =
2× precisioni × recalli

precisioni + recalli
(23)

macro − F1 =

∑K
i=1 F1i

K
. (24)

3) Result Comparisons: Regarding the classification net-
work, we still use the network structure in Unknown Detec-
tion. We compare GvRSC with other six OSR methods in
Table III, i.e., Softmax [30], ARPL [32], Openmax [16], W-SVM
RBF [37], iCaRL [38], and EVM [39]. Among them, Softmax,
ARPL, and Openmax belong to the universal OSR methods
migrated from the optical field. It is apparent that their macro-F1
scores are all below 70%, yielding unsatisfactory performance
in OSR. Especially for ARPL, the recognition ability to SAR
images has almost lost, though ARPL performs well on optical
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Fig. 13. Distribution histogram of high-dimensional feature difference between known targets and unknown targets. The research object is the second norm of
distance between the high-dimensional feature of testing instances and the center point of class K + 1. Test_known represents all known targets in the test set,
while Test_unknown represents all unknown targets in the test set. (a) Generative Model Based on SCG. (b) Generative Model Based on WG.

Fig. 14. ROC cruves applied to MSTAR dataset among different components
for ablation analysis.

datasets. Therefore, OSR for SAR targets needs to be considered
in combination with the characteristics of themselves. Compared
with these migrated optical OSR methods, WG-based model still
has a more passable recognition performance. The macro-F1
score is already close to 70% with the recall as high as 73.2%.

However, the macro-F1 scores of iCaRL, EVM, and SCG-
based model are all more than 80%. Performance differences
have been revealed significantly compared to the optical meth-
ods. It is obvious that our SCG-based model has the best macro-
F1. Futhermore, the precision of EVM is relatively low, which
means the accurate predicted results account for a low proportion
of all predicted results. The recall of the SCG-based model is up
to 89.3% and the precision is up to 82.4%. The results indicate
that a good trade-off between avoiding missed detections and
reducing false detections is achieved well. Consequently, it is
inferred from Table III that SCG-based model performs better
both on known classification and unknown detection than others.

D. Ablation Study

In this section, we conduct an ablation study and analyze
each innovative part’s contribution with the MSTAR dataset.

TABLE IV
PERFORMANCE EVALUATION BETWEEN DIFFERENT BASELINES FOR ABLATION

ANALYSIS

We continue to use the training set in Section IV-B, where eight
out of ten classes are chosen as known and the other two classes
are regarded as unknown. For the two innovative parts in our
method: new technical routes of simulating indistinguishable un-
known classes, ways of detecting unknown classes. We configure
four groups of comparison experiments for analysis: Softmax,
K+1-Softmax, SCG-based model, and WG-based model.

Among them, Softmax stands for a plain CNN, where the
network contains K output nodes corresponding to K known
classes participating in training. And unknown targets are re-
jected only by thresholding the maximum output probability
of K classes. K + 1-Softmax means the output nodes of the
classification network are set to K + 1, while there are still
only K known classes participating in training. By thresholding
the output probability of the K + 1th node, unknown classes
are rejected. On the basis that the network output node is set
to K + 1, SCG-based model means SCG is used to simulate
indistinguishable unknown classes and augmented to the origi-
nal training set, participating in training together with known
targets. Finally, the output probability of the class K + 1 is
thresholded to complete the OSR task. Similarly, in the WG-
based model, WG is used to simulate indistinguishable unknown
targets, and these targets are fed into the later part of the network
for training. OSR is realized by thresholding the output proba-
bility of the unknown class K + 1. We evaluate the recognition
performance by closed-set accuracy, AUC and macro F1-scores.
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The results are shown in Table IV. In addition, ROC is also
presented to simply and intuitively display the recognition effect
of the comparison experiments, as shown in Fig. 14.

We can infer from the Table IV that thresholding the output
probabilities of class K + 1 improves the OSR ability of plain
CNN by a large margin. On this basis, simulating unknown
classes to participate in training further results in better recog-
nition effect. Specifically, the results indicate that adopting
SCG and WG both improve recognition performance through
effective simulation of the unknown class.

V. CONCLUSION

SAR target recognition in open-world environments is im-
portant for practical applications, while only few researches
were studied. In this article, we propose a family of generative
models to solve the OSR problem, that is, SCG-based model and
WG-based model. By random sampling combination, the tar-
gets generation processes do not consume extra computational
complexity. Meanwhile, the kind of indistinguishable unknown
distribution was approximated well by generated targets, result-
ing in compact embedding space of known classes. Besides,
SCG-based model reduces the interference of the background
noise to the OSR performance particularly. The targets generated
by WG make the discrete space continuous, so that decision
boundaries are pushed away in all directions. The smooth de-
cision boundaries further improve the generalization ability of
the model. What is more, the difference of simulated unknown
targets from known classes is highlighted and fully exploited in
unknown detection. A series of experimental results have veri-
fied that the proposed GvRSC performs well both in unknown
detection and known classification. Particularly, the SCG-based
model outperforms other state of the arts. Moreover, there is not
a significant downward trend in unknown detection performance
as the degree of openness increases.

In the practical application of OSR methods for SAR images,
sometimes it is not enough to detect unknown targets, and it is
necessary to further identify their specific attributes. Therefore,
in the future, we will focus on the problem of class-incremental
learning, which learn useful information in new targets, while
retaining the original classification information.
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