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Improved Swin Transformer-Based Semantic
Segmentation of Postearthquake Dense

Buildings in Urban Areas Using
Remote Sensing Images

Liangyi Cui, Xin Jing, Yu Wang, Yixuan Huan, Yang Xu , and Qiangqiang Zhang

Abstract—Timely acquiring the earthquake-induced damage of
buildings is crucial for emergency assessment and post-disaster
rescue. Optical remote sensing is a typical method for obtaining
seismic data due to its wide coverage and fast response speed. Con-
volutional neural networks (CNNs) are widely applied for remote
sensing image recognition. However, insufficient extraction and ex-
pression ability of global correlations between local image patches
limit the performance of dense building segmentation. This paper
proposes an improved Swin Transformer to segment dense urban
buildings from remote sensing images with complex backgrounds.
The original Swin Transformer is used as a backbone of the encoder,
and a convolutional block attention module is employed in the
linear embedding and patch merging stages to focus on significant
features. Hierarchical feature maps are then fused to strengthen the
feature extraction process and fed into the UPerNet (as the decoder)
to obtain the final segmentation map. Collapsed and non-collapsed
buildings are labeled from remote sensing images of the Yushu
and Beichuan earthquakes. Data augmentations of horizontal and
vertical flipping, brightness adjustment, uniform fogging, and non-
uniform fogging are performed to simulate actual situations. The ef-
fectiveness and superiority of the proposed method over the original
Swin Transformer and several mature CNN-based segmentation
models are validated by ablation experiments and comparative
studies. The results show that the mean intersection-over-union
of the improved Swin Transformer reaches 88.53%, achieving an
improvement of 1.3% compared to the original model. The stability,
robustness, and generalization ability of dense building recognition
under complex weather disturbances are also validated.

Manuscript received 26 October 2022; revised 20 November 2022; accepted
24 November 2022. Date of publication 28 November 2022; date of current
version 15 December 2022. This work was supported in part by the National Key
Research and Development Program under Grant 2019YFC1511005, in part by
the China Postdoctoral Science Foundation under Grant BX20190102 and Grant
2019M661286, and in part by the Heilongjiang Province Postdoctoral Funding
under Grant LBH-TZ2016 and Grant LBH-Z19064 and in part by Heilongjiang
Province Natural Science Funding under Grant LH2022E070. (Liangyi Cui and
Xin Jing contributed equally to this work.) (Corresponding authors: Qiangqiang
Zhang; Yang Xu.)

Liangyi Cui, Xin Jing, Yu Wang, Yixuan Huan, and Qiangqiang Zhang are
with the School of Civil Engineering and Mechanics, Lanzhou University,
Lanzhou 730000, China, and also with the Key Laboratory of Mechanics on
Disaster and Environment in Western China, The Ministry of Education of
China, Beijing 100816, China (e-mail: cuily20@lzu.ed.cn; jingx21@lzu.edu.cn;
wangyu16@lzu.edu.cn; huanyx21@lzu.edu.cn; zhangqq@lzu.edu.cn).

Yang Xu is with the School of Civil Engineering, Harbin Institute of Tech-
nology, Harbin 150001, China (e-mail: xyce@hit.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3225150

Index Terms—Attention mechanism, complex weather
disturbances, dense seismic building segmentation, feature
fusion, improved Swin Transformer, remote sensing images.

I. INTRODUCTION

EARTHQUAKES are one of the most severe natural dis-
asters, and due to the recent acceleration of urbanization

development, earthquake-induced building damage has become
one of the most severe threats to human beings [1]. Therefore,
after an earthquake occurs, it is crucial to recognize the number,
location, and damage level of urban buildings rapidly to en-
sure postearthquake rescue and reconstruction [2]. The seismic
damage-related data have been mainly collected via field investi-
gation, which is labor-time-intensive and inefficient. In addition,
particular circumstances, such as power facility destruction and
communication system interruption caused by earthquakes, can
bring additional challenges to conducting immediate field in-
vestigation. Therefore, an efficient and effective method that
can meet the practical requirements of postearthquake rapid
assessment and emergency rescue is urgently needed.

In recent years, with the development of satellite systems,
remote sensing techniques have become increasingly popular
in the field of natural disaster assessment [3]. The commonly-
used remote sensing data [4], [5], can be roughly divided into
three categories: synthetic aperture radar images [6], [7]; optical
images [8]; and light detection and ranging data [9]. Among
them, high-resolution optical images—which are easy to obtain
and can provide rich information on postearthquake building
attributes, such as color, texture, and shape—have been the most
widely used [10]. Remote sensing images are wide-ranging,
all-weather, unaffected by earthquakes, and accessible without
onsite human inspection. In early-stage research, remote sensing
image interpretation primarily relied on preset thresholds and
handcrafted parameters and thus was highly affected by a subjec-
tive judgment in various application scenarios. In addition, the
recognition speed and reliability highly depended on engineer-
ing experience and prior knowledge of image analysts. However,
automatic extraction and autonomous recognition of seismic
damage from remote sensing images have rapidly developed
with advanced computer vision techniques, including image
processing, machine learning, and deep learning.
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Compared to image processing and machine learning, deep
learning has relatively better learning ability and stronger robust-
ness against interference and variations in object size, position,
shape, and geometry and thus can provide more accurate lo-
calization and damage information on dense seismic buildings
[11]. Convolutional neural networks (CNNs) have been the most
widely-used deep learning-based model for seismic damage data
extraction from high-resolution remote sensing optical images.
Currently, CNNs are widely applied to seismic damage iden-
tification from postearthquake remote sensing images. Cooner
et al. [12] adopted CNNs to classify high-resolution seismic
remote sensing imagery and quickly detect damaged buildings,
achieving an accuracy of 55% for the 2010 Haiti earthquake
with the 7.0 magnitude. Ma et al. [13] combined remote sensing
images with block vector data and improved the Inception V3
architecture; a test accuracy of 90.07% on postearthquake aerial
imagery of Yushu was achieved. Furthermore, Ji et al. [14] used
the pretrained VGG model to recognize collapsed buildings in
remote sensing images before and after the 2010 Haiti earth-
quake, concluding that the fine-tuned VGGNet model outper-
formed the original VGGNet model trained from scratch with
an overall accuracy increasing from 83.38% to 85.19%. Xiao
et al. [15] proposed a dynamic cross-fusion network to enable
each task to share features from different CNN layers adaptively
and achieved state-of-the-art performance. Zhan et al. [16] used
the Mask R-CNN to extract information on damaged buildings
from postearthquake remote sensing images and identify the
damage level. An improved feature pyramid network (FPN) was
designed, and a detection accuracy of 92% was achieved for
the most severely damaged buildings (the overall classification
accuracy for four damage classes was 88%).

However, conventional CNNs can focus only on a small range
of pixel-level features, thereby providing insufficient informa-
tion on global correlations between local pixels and lack the
capacity to model global relationships between objects within
an image and nonlocal relationships between pixels. In addition,
the limited receptive field could not provide sufficient contex-
tual features, which might have a significant impact on the
damage assessment accuracy of dense seismic buildings [17].
Transformer-based models using global self-attentive mecha-
nisms can compensate for the abovementioned shortcomings of
conventional CNNs that focus only on local receptive fields with-
out considering global features [18], [19], [20], [21], allowing
each pixel to contain global correlations and thus improving
generalization ability and interference robustness [22], [23],
[24], [25], [26].

Dosovitskiy et al. [27] first present the vision transformer
(ViT) models and utilized the transformer as the backbone
network for image classification tasks. The ViT models to-
kenized the input image into fixed-size patches, which were
then flattened as vectors and fed to the transformer backbone.
Experimental results demonstrated that the ViT models pre-
trained on large-scale datasets could achieve better performance
than the CNNs when migrated to the classification tasks on
small-size and medium-size datasets. In recent years, several
transformer-based vision models have been proposed for dif-
ferent computer vision tasks, such as target classification [28],

object detection [29], and semantic segmentation [30], [31],
[32]. Despite the successful application of the transformer in
the natural language processing field, there are two main chal-
lenges in its application to the visual domain from the original
language domain. These challenges are introduced by significant
differences in visual entity size among images and much higher
resolutions of images compared to texts, which leads to an
intensive computational cost.

To solve the above problem, Swin Transformer [33] is pro-
posed with two principle improvements over conventional ViTs.

1) A hierarchical structure similar to the CNN structure is
designed. This structure is very flexible in multiscale
modeling and reduces the increase in computational com-
plexity with the image size from square to linear.

2) The shifted window multihead self-attention (SW-MSA)
block is proposed to reduce the computational cost while
considering the information transferred between different
windows.

Although the transformer-based models made a splash in
computer vision, they have still been in the infancy phase
for large-scale seismic disaster evaluation in urban areas.
Da et al. [34] developed a two-stage damage assessment frame-
work named the SDAFormer, which feeds pre-disaster and
postdisaster images to the network separately for damage as-
sessment. The SDAFormer won first place on the xBD (a
large-scale building damage assessment dataset) and achieved
a mean intersection-over-union (mIoU) improvement of 1.5%
compared to the second-place method. Chen et al. [35] proposed
a transformer-based damage assessment architecture consisting
of a Siamese transformer encoder and a lightweight dual-tasks
decoder, which outperformed traditional CNN models such as
the Mask R-CNN and Siamese-UNet.

Although the CNN models have been extensively investigated
for computer vision tasks, the feature extraction process of
conventional CNN is always performed at a local region, and
modelling the global correlation is challenging. Considering
the characteristics of the investigated remote sensing images
for postearthquake buildings in a city area, the buildings are
densely distributed, and the structure style and damage type
are often similar, which suggests that the small-region features
are closely related and the global correlations should be signifi-
cant for the recognition accuracy. Therefore, this article designs
an integrated model using the improved Swin Transformer for
global correlation modeling and CNN for local feature extraction
to further enhance the recognition capacity of building damage
states and location semantics, respectively.

Meanwhile, statistical analyses of previous studies have
demonstrated that clouds approximately cover 70% of the Earth,
which suggests that weather interferences of cloud or fog ob-
scuration and illumination variances inevitably exist in remote
sensing optical images [36]. In addition, postearthquake remote
sensing images can suffer from light overexposure and dark-
ness due to various illumination conditions. Therefore, accurate
recognition of dense seismic buildings in images collected under
strong weather disturbances represents a great challenge in
semantic segmentation. However, research on semantic segmen-
tation of postearthquake remote sensing images of dense urban
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buildings with complex backgrounds and strong interferences is
rather limited.

To address the abovementioned limitations, this article pro-
poses a semantic segmentation method for seismic damage of
large-scale dense buildings in large-scale urban areas with com-
plex backgrounds and strong weather interferences. In addition,
the opportunity of incorporating the transformer and CNN for
seismic damage recognition from remote sensing images is
analyzed.

The main contributions of this article can be summarized as
follows.

1) An effective semantic segmentation method is proposed
for high-resolution remote sensing optical images of dense
buildings with complex backgrounds and strong weather
interferences; this method can accurately and simulta-
neously extract the building damage state and location
semantics.

2) An improved Swin Transformer with the encoder-decoder
structure is proposed to simultaneously exploit multilevel
local features and global correlations, which performs the
multilevel feature fusion at each stage of the encoder,
inserts convolutional block attention module (CBAM) in
the linear embedding and patch merging modules, and uses
the UPerNet as a decoder.

3) Two actual seismic scenarios of Yushu city and Beichuan
city with different weather disturbances are used to sim-
ulate possible light overexposure, darkness, and fog oc-
clusions and validate the effectiveness of the proposed
method.

4) Ablation experiments are performed to demonstrate the
efficacy and necessity of the proposed modules in the im-
proved Swin Transformer. In addition, comparative stud-
ies are conducted to verify the superiority of the improved
Swin Transformer over the original Swin Transformer and
various mature CNN-based segmentation models.

The rest of the article is organized as follows. Section II
describes the architecture of the improved Swin Transformer.
Section III introduces the dataset and implementation details.
Section IV presents the test results under two real-world seis-
mic scenarios, ablation experiments, and comparative studies.
Section V concludes the article.

II. PROPOSED METHOD

A. Overall Architecture

An improved Swin Transformer based on the encoder-decoder
framework is proposed to realize accurate semantic segmen-
tation of postearthquake dense buildings from remote sensing
images with complex backgrounds and strong weather inter-
ferences. The overall architecture that uses the original Swin
Transformer as a backbone of the encoder is presented in Fig. 1.
As shown in Fig. 1, a feature fusion module is added to the end
of the encoder to fully exploit the extracted features at various
levels. In the proposed structure, hierarchical feature maps are
concatenated using convolutions to enrich the transferable local
features of different stages by multilevel feature fusion. In addi-
tion, the CBAM is inserted into the linear embedding and patch
merging modules to alleviate feature leakage during the patch

Fig. 1. Overall architecture of improved Swin Transformer for dense building
segmentation.

downsampling process in the encoding stage. This enables the
proposed model to distinguish different building damage states
and location semantics, thus improving multiclass segmentation
accuracy. Finally, the UperNet incorporating multilevel features
is used as a decoder. Details on the feature fusion and CBAM
modules are described in the following sections.

B. Swin Transformer Backbone

The Swin Transformer backbone includes an initial patch
partition module and four different stages denoted by stages 1–4.
Stage 1 consists of a linear embedding layer and two consecutive
Swin Transformer blocks. Stage 2 consists of a patch merging
module and two Swin Transformer blocks. Stage 3 consists
of a patch merging module and 18 Swin Transformer blocks.
Finally, Stage 4 consists of a patch merging module and two
Swin Transformer blocks.

For the patch partition module, the input image with a size
of H × W × 3 is split four times in the spatial directions
and flatted in the channel direction, generating a patch size of
H/4 × W/4 × 48. Then, the linear embedding layer projects the
channel dimension to an arbitrary number denoted by C (in this
article, C = 128) through the 1 × 1 convolution, generating a
feature map with a size of H/4 × W/4 × C. The feature map
of each stage is input into the patch merging module, and a
half-flat-size downsampling process is performed by neighbor-
hood sampling every two points, and thus the channel number
quadruples. Then, a 1 × 1 convolution is utilized to adjust the
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Fig. 2. Schematic of the patch partition module.

Fig. 3. Schematic of the fundamental component for Swin Transformer block.

channel number to double. The overall schematic of the patch
partition module is presented in Fig. 2.

The schematic diagram of the Swin Transformer block, which
is the fundamental component of the Swin Transformer, is
presented in Fig. 3. Each Swin Transformer block includes a
regular window and a shift window. The regular window con-
sists of a layer-normalization (LN) layer, a window multihead
self-attention (W-MSA) module, a residual connection, an LN
layer, a multilayer perceptron (MLP), and a residual connection.
The shift window has a similar structure as the regular window;
the only difference is that an SW-MSA module is used instead of
the W-MSA. The mathematical formula of the Swin Transformer
block is expressed as follows:

Ẑl = W −MSA[LN(Zl−1)] + Zl−1

Zl = MLP[LN(Ẑl)] + Ẑl

Ẑl+1 = SW −MSA[E(Zl)] + Zl

Zl+1 = MLP[LN(Ẑl+1)] + Ẑl+1 (1)

where Zl−1 and Zl+1 denote the input and output of the
Swin Transformer block, respectively. A detailed description of
W-MSA, MLP, and SW-MSA can be found in the study of Han
et al. [32].

Fig. 4. Flowchart of the feature fusion module.

C. Feature Fusion Module

Compared with the traditional semantic segmentation task,
the dataset investigated in this article consists of remote sensing
images with complex backgrounds, and its unique character-
istics are reflected in two aspects: images contain complex
backgrounds, including several types of strong distractions, such
as illumination variations and fog obscurations; and buildings in
remote sensing images are in different geometries; particularly,
shapes and sizes of collapsed and not-collapsed buildings are
different.

A previous study has shown that using different convolution
operators in the transformer architecture can provide infor-
mation on both local and global features of the input image,
significantly improving the semantic segmentation performance
[37]. Inspired by this idea, a multilevel feature fusion module is
designed after each Swin Transformer block to convolute the
feature maps output by the previous levels to further enhance the
extraction capability of local features and global correlations.
Although the Swin Transformer has a hierarchical structure,
there are no interactions between feature maps at any stages.
Therefore, enriching the extracted features is essential con-
sidering that remote sensing images of postearthquake dense
buildings contain various types of background distractions, in-
cluding illumination overexposure, darkness, uniform fog, and
non-uniform fog, and have a high diversity of geometric shapes
and sizes.

The schematic diagram of the feature fusion module is shown
in Fig. 4, where four feature maps from the corresponding
stage of the Swin Transformer backbone are illustrated. The flat
dimension of each stage is halved, and the channel dimension
is doubled. The feature map of each stage is downsampled by
a 2 × 2 convolutional kernel with a sliding stride of two and
concatenated with that of the next stage in the channel direction.
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Fig. 5. Schematic of CBAM attention module.

Fig. 6. Flowchart of inserting CBAM in linear embedding module.

Then, the channel number of the concatenated feature map is half
reduced by the 1 × 1 convolution. Finally, feature maps from all
stages are fused in the channel direction, and the channel size is
quartered using a 1 × 1 convolutional kernel.

D. Convolutional Block Attention Module

The attention mechanism is a typical way to achieve adaptive
attention inside a neural network, and the commonly-used atten-
tion mechanisms include channel attention and spatial attention.
The channel attention aims to enable the network to focus on the
category information inside an image by keeping the channel di-
mension unchanged and compressing the spatial dimension into
a scalar. Furthermore, the spatial attention assists the network
in paying more attention to the location information of targets
inside an image by keeping the spatial dimension unchanged
and compressing the multiple-channel dimension into one single
channel. This article utilizes the CBAM by simultaneously com-
bining channel attention and spatial attention and can distinguish
significant feature maps of building damage states and location
semantics. The schematic diagram of the CBAM, which is a
lightweight attention mechanism module consisting of a channel
attention part and a spatial attention part by Woo et al. [38], is
presented in Fig. 5. Details of CBAM have been presented in
[38] and omitted here.

The process of inserting the CBAM into the linear embedding
module is illustrated in Fig. 6. The dimension of the feature map
generated by the patch partition module is transformed to C by
a 1 × 1 convolution block, and the CBAM module is inserted
before the LN layer.

Conventional downsampling operations often use convolu-
tion, average pooling, and maximum pooling in a local region,
which will inevitably cause feature leakage. Patch merging
selects the neighborhood of every two pixels, reassembles them
into a series of patches (the spatial size of patches is halved), and
concatenates the patches in the channel dimension (the channel
dimension is quadrupled), which is finally followed by a 1 × 1
convolution to adjust the channel dimension. Therefore, all the
input information can be reserved, and no feature leakage occurs
in patch merging. The process of inserting the CBAM into the

Fig. 7. Flowchart of inserting CBAM in patch merging module.

Fig. 8. UPerNet decoder architecture.

Fig. 9. Schematic of the PPM module in the decoder.

patch merging module is presented in Fig. 7. In each channel,
neighborhood areas of every two points are reassembled into a
patch (i.e., the flat size is halved). The reconstructed patches
are fed into the CBAM module individually, and the output
feature maps of the CBAM module are fused in the channel
direction. The CBAM module is followed by an LN layer and a
fully-connected linear layer.

E. UPerNet Decoder

For remote sensing images with complex backgrounds and
small dense buildings, a multilevel segmentation predictor, the
UPerNet [39], is employed to achieve full-scale coverage from
low-level concrete features to high-level abstract features. The
design of the UPerNet is based on the pyramid pooling module
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Fig. 10. Representative postearthquake remote sensing images with data augmentation. (a) Original image of Yushu city. (b) Brightness transformations of light
overexposure and darkness. (c) Uniform fogging in light and heavy degrees. (d) Nonuniform fogging in light and heavy degrees.

(PPM) [40] and FPN, which fully integrates extracted features
from different stages of the encoder. The architecture of the
UPerNet decoder is shown in Fig. 8.

The PPM block utilizes pooling kernels covering different
portions of the input feature map to generate multiscale corre-
lations among different subregions. In this article, a four-level
pyramid pooling is designed to individually perform the pooling
operation for the whole, half of, a third of, and a sixth of the input
feature map. Then, the channel dimensions are adjusted using
1 × 1 convolution, and the spatial dimensions are unified by
bilinear interpolation upsampling. Finally, they are fused as the
global prior and concatenated with the original feature map at
the channel dimension, as shown in Fig. 9.

III. DATASET AND IMPLEMENTATION DETAILS

A. Dataset

In this article, 24 remote sensing city-scale images of the
Yushu city and Beichuan city after Yushu and Wenchuan earth-
quakes with a resolution of 4608 × 2560 were used. The orig-
inal images were downloaded from the Internet and manually
pixel-wise labeled using “labelme” [41] to classify buildings
into collapsed and non-collapsed buildings. Buildings with de-
structive shapes, severely-damaged roofs, columns, and beams
were classified as collapsed, and other buildings were labeled as
non-collapsed.

Data augmentation operations, including random flipping in
the horizontal and vertical directions, brightness transformation,
uniform fogging, and nonuniform fogging, were performed to
expand the dataset and simulate possible light overexposure and
darkness and fog occlusions in remote sensing images.

The brightness transformation is realized by rescaling the
pixel intensity as follows:

Î(h,w) = median [0, α× I(h,w), 255] (2)

where I(h,w) and Î(h,w) denote the image intensity at the
pixel location (h,w) before and after brightness transformation,
respectively; α denotes the rescaling coefficient controlling the
light exposure and darkness; median operator ensures the trans-
formed pixel intensity within the range of 0-255.

Based on the dark channel prior theory [42], dark pixels have
very low intensity in at least one color channel of the RGB
for most local regions that do not cover the sky; therefore, the
non-uniform fogging operation is expressed by

Ĵ(h,w) = t(h,w)J(h,w) + [1− t(h,w)]×A

t(h,w) = exp[−β × d(h,w)]

d(h,w) = − γ ×
√(

h− H

2

)2

+

(
w − W

2

)2

+W (3)
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Fig. 11. Test results of 512 × 512 patches for Yushu city. (a) Patch 1. (b) Patch 2.

Fig. 12. Test results of large-scale remote sensing image for Yushu city. (a) Input Image. (b) Ground-truth Annotation. (c) Original Swin Transformer.
(d) Improved Swin Transformer.
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Fig. 13. Test results of 512 × 512 patches for Beichuan city. (a) Patch 1. (b) Patch 2.

Fig. 14. Test results of large-scale remote sensing image for Beichuan city. (a) Input Image. (b) Ground-truth Annotation. (c) Original Swin Transformer.
(d) Improved Swin Transformer.
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Fig. 15. Test results of negative objects for wild regions with trees, tents, and rivers. (a) Patch 1. (b) Patch 2.

where J(h,w) and Ĵ(h,w) denote the image intensity before
and after fogging transformation; h and w are the pixel indexes
in the height and width directions, respectively; A denotes the
fog brightness parameter, and its value is in the range of 0-255
corresponding to the grayscale intensity of fog changes from
black to white; t(h,w) represents the light transmittance; β
denotes the fogging concentration factor; γ denotes the constant
influence factor, and in this article γ = 0.04; d(h,w) denotes
the scene depth. H and W denote the height and width of the
input image.

Considering that remote sensing images could be completely
covered by a large area of clouds or fog, the uniform fogging
operation is used to simulate possible scenarios and enhance the
dataset as

Ĵ(h,w) = tJ(h,w) + (1− t)×A. (4)

Equation (4) is a particular case of (3) with a constant light
transmittance at all pixel locations, where Ĵ(h,w) denotes the
image intensity after uniform fogging transformation, J(h,w)
denotes the original image and L(h,w) denotes a new image
with the identical pixel value of 170 on three channels of RGB.

Fig. 10 shows some representative postearthquake remote
sensing images with dense buildings after brightness, uniform,

and non-uniform fogging transformations with different con-
figurations. After data augmentation, the original images were
cropped to 512 × 512 patches with an overlap ratio of 50%.
Finally, 8262 patches were obtained, 80% of which were used
for training by random assignment, and the rest was used for
validation.

B. Implementation Settings

The proposed method was implemented in PyTorch 1.7.0 on
a workstation equipped with an i9-10900k CPU and a GeForce
RTX 3090 GPU. The AdamW optimization algorithm was em-
ployed to update the model parameters under a learning rate
of 0.0001, a batch size of 8, and a training epoch of 50. The
mIoU between the predicted and ground-truth buildings was
used as an evaluation metric of the proposed method and used the
weights obtained from pre-trained on the ADE20K [43] dataset
as pre-training weights for the model.

IV. RESULTS AND DISCUSSION

A. Test Results of Yushu City

Remote sensing seismic images of Yushu city, including
various weather disturbances, were used to demonstrate the
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recognition accuracy of the proposed method for postearthquake
dense buildings. The test results obtained by the original and
improved Swin Transformers on 512 × 512 patches of Yushu
city collected under different weather disturbances are presented
in Fig. 11. The results show that the proposed improved Swin
Transformer achieved higher accuracy and better robustness
against light overexposure, darkness, and fog occlusions than the
original Swin Transformer with an average mIoU improvement
of 0.83% for 512 × 512 patches. In Fig. 11, white circles in
sub-figures present local details of predicted building corners
and edges, indicating that the improved Swin Transformer could
maintain better recognition ability under various weather dis-
turbances than the original Swin Transformer. In addition, the
improved Swin Transformer achieved better recognition on the
fogging test images where the buildings were already difficult to
distinguish, and the mIoU value improved by 1.18% compared to
the orginal Swin Transformer. The test results on the large-scale
image with a resolution of 4608 × 2560 are presented in Fig. 12,
which shows that the improved Swin Transformer performed
better than the original Swin Transformer.

B. Test Results of Beichuan City

Remote sensing seismic images of Beichuan city, which in-
cluded various weather disturbances, were used to demonstrate
the recognition accuracy of postearthquake dense buildings fur-
ther. The test results obtained by the original Swin Transformer
and improved Swin Transformer on the 512 × 512 patches of
Beichuan city are presented in Fig. 13. The results in Fig. 13
show that the improved Swin Transformer achieved higher accu-
racy and better robustness against light overexposure, darkness,
and fog occlusions than the original Swin Transformer with an
average mIoU improvement of 1.05% for 512 × 512 patches. In
addition, the improved Swin Transformer still achieved better
recognition on the fogging test images, and the mIoU value
improved by 1.77% compared to the orginal Swin Transformer.
Additional test results on the 512 × 512 patches are given in
Fig. 20. The test results of the two transformers on the large-scale
image with a resolution of 4608 × 2560 are presented in Fig. 14,
which shows that the improved Swin Transformer performed
better than the original Swin Transformer.

C. Discussion of Test Results

For all test images of Yushu city and Beichuan city, the
original Swin Transformer had more local misrecognition and
larger prediction errors for building edges than the improved
Swin Transformer, which resulted in the distinct shape variance
of dense building regions. The original Swin Transformer tended
to ignore unconnected pixels inside the building region and
classified them into the same class. Moreover, the improved
Swin Transformer achieved higher recognition accuracy than
the original Swin Transformer for collapsed buildings with more
irregular geometrical shapes. The recognition results of negative
objects for wild regions with trees, tents, and rivers are shown in
Fig. 15. The results show that negative objects are successfully
classified into the background, and misrecognition rarely occurs.

Fig. 16. Comparisons of category-wise IoU with different models and weather
disturbances. (a) IoU comparisons for each category using Original and the
improved Swin Transformer. (b) IoU contour plot for each category under
different weather disturbances use the improved Swin Transformer.

It further indicates that the proposed model possesses good
stability against complex environmental disturbances.

Under weather disturbances of fogging and brightness trans-
formation, the misrecognition of the background of collapsed
buildings and incomplete recognition of non-collapsed build-
ings often occurred. A possible reason may be that the fog-
ging and brightness transformation introduced severe occlu-
sion in certain areas, thus increasing the difficulty of accurate
segmentation.

The comparison results of category-wise intersection-over-
union (IoU) of the two models for different weather distur-
bances are presented in Fig. 16. As shown in Fig. 16(a), the
proposed Swin Transformer improved the average segmentation
IoU for each category with a lower volatility than the original
Swin Transformer, suggesting the robustness and stability of
the proposed method. Fig. 16(b) shows that the model perfor-
mance decreased for each category when weather disturbances
existed. Among the considered types of weather disturbances,
the non-uniform fogging affected the model performance of the
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TABLE I
COMPARISONS OF MODEL PERFORMANCE IN ABLATION EXPERIMENTS

improved Swin Transformer the most, and the proposed model
was less sensitive to brightness transformation than fogging
occlusion.

It should be noted that the remote sensing images of Yushu
city and Beichuan city had unique characteristics. In Yushu city,
buildings were more densely distributed; intensities in the color
space were similar to the background and plenty of tents and
vehicles existed in the images, which increased difficulty in
recognition. Although these factors could cause a slight decrease
in average IoU, the improved Swin Transformer still achieved
good recognition accuracy for each category. The results also
indicated that the proposed method efficiently addressed the
deficiencies of the original Swin Transformer and enhanced the
edge smoothness and completeness of the results of geometri-
cal shapes for postearthquake dense buildings. Therefore, the
improved Swin Transformer had stronger robustness and resis-
tance to different types of severe interferences under real-world
scenarios than the original Swin Transformer.

D. Ablation Experiments and Comparative Studies

Ablation experiments were performed to demonstrate the
effectiveness and necessity of the feature fusion and CBAM
modules in the improved Swin Transformer. Besides the pro-
posed model (including both the feature fusion module and
the CBAM module), three additional models, namely the orig-
inal Swin Transformer, the Swin Transformer + feature fusion
module, and the original Swin Transformer + CBAM module,
were trained using the same dataset, optimization algorithm,
and training hyperparameters. Table I gives the comparison
results of model performances in the ablation experiments. The
results showed that both the feature fusion and the CBAM had
certain contributions to the model performance improvement,
but the effect of the feature fusion module was more significant.
Accordingly, the feature fusion and CBAM modules improved

TABLE II
COMPARISONS OF MODEL PERFORMANCE WITH CNN-BASED METHODS

TABLE III
COMPARISONS OF DIFFERENT FEATURE FUSION MODULES

the segmentation accuracy of background, collapsed buildings,
and noncollapsed buildings.

The full model achieved the highest improvements in seg-
mentation IoU of background, collapsed buildings, and non-
collapsed buildings by 0.38%, 1.57%, and 1.95%, respectively.
The overall mIoU improvement was 1.3%, demonstrating that
the improved Swin Transformer successfully integrated the
advantages of feature fusion and CBAM modules. It further
indicated the effectiveness of multilevel feature fusion in al-
leviating feature leakage and CBAM in focusing on small dense
objects.

To verify the effectiveness of the improved Swin Transformer
over conventional CNNs, several mature CNN-based semantic
segmentation models, including the PSPNet [43], DeepLabV3+
[44], and UNet [45], were used for comparison. The dataset, opti-
mization algorithm, and training hyperparameters were the same
as those of the improved Swin Transformer. Table II gives a com-
parison of the performances of the improved Swin Transformer
and several CNN-based models. The results showed that the
UNet performed the best among the three CNN-based segmen-
tation models but worse than the proposed Swin Transformer.
Although the background IoU, noncollapsed IoU, collapsed
IoU, and mIoU of the UNet reached 93.86%, 80.85%, 79.05%,
and 84.59%, the improved Swin Transformer performed better
in terms of all metrics by 2.49%, 5.22%, 5.11%, and 3.94%,
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Fig. 17. Test results under different fogging conditions for a representative image.

respectively. This indicated that the proposed method integrating
the Swin Transformer and CNN together enhanced the semantic
segmentation accuracy of dense buildings in postearthquake
remote sensing images compared to conventional CNN-based
models.

The feature fusion module is designed to alleviate the possible
feature leakage and enhance the multistage feature extraction.
Even if some features at a particular stage are ignored, the feature
fusion module can ensure that the information on missed features
is retained and can be fed into the subsequent decoder. The
authors admit that it is indeed challenging to determine which

feature stage is essential and should be enhanced in the feature
fusion module. Therefore, the feature fusion model is designed
in a two-step manner: the adjacent stages are fused to alleviate
the feature leakage at the previous stage; and all the stages are
fused at the final stage to take full advantage of the multistage
features.

In addition, two comparative studies are performed to demon-
strate the effectiveness of the proposed feature fusion module.
First, the feature fusion module is only adopted at the final stage
and ignored for the adjacent stages in the encoder, noted as
feature fusion-1 in Table III.
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Fig. 18. Test results under different lightness conditions for a representative image.

Second, the feature fusion module is adopted both in the
encoder and decoder, noted as feature fusion-2 in Table III. The
encoder part is the same as Fig. 4; for the decoder part, feature
maps of the first and second stages are downsampled by 2 × 2
convolution and concatenated in the channel dimension with
those of the next stage. Afterward, the number of channels is
halved by 1 × 1 convolution, and the residuals are finally added
together. Table III gives the comparison results of these three
different feature fusion modules, indicating that both insufficient
(feature fusion-1) and excessive (feature fusion-2) feature fusion
modules have negative impacts on recognition accuracy.

To explore the applicable range of controlling parameters un-
der each weather condition, more experiments are performed, as
shown in Figs. 17 and 18. Fig. 17 shows representative test results
under various lightness conditions. It suggests that the control-
ling parameter α could be recommended in the range of 0.4–1.3
with a high mIoU over 0.8. Whenα is set as 1.9, a significant drop
of about 19.85% in the prediction accuracy occurs. Fig. 18 shows
representative test results under various fogging conditions. It
suggests that the controlling parameterβ could be recommended
in the range of 0–0.04 with a high mIoU over 0.8. Whenβ is set as
0.05, a significant drop of about 20% in the prediction accuracy
occurs.

Fig. 19. Comparison of segmentation mIoU for different insertion positions
of CBAM in original Swin Transformer backbone (using the average results of
three independent experiments).

The mIoU increasing curves of the background, noncollapsed,
and collapsed buildings for different CBAM insertion locations
in the original Swin Transformer backbone are presented in
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Fig. 20. Additional test results for 512 × 512 patches in Beichuan city and Yushu city (white circles compare local details of predicted building corners and
edges improved by the proposed method). (a) Patch 1. (b) Patch 2. (c) Patch 3. (d) Patch 4. (e) Patch 5.
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Fig. 20. (Continued).

Fig. 19, where “CBAM before concat” represents that all fea-
ture maps were first input into the CBAM module and then
concatenated in the proposed patch merging block; “CBAM
after concat” represents that all the related feature maps were
concatenated before being input into the CBAM module in the
Patch Merging block. The results indicated that the insertion
strategy of CBAM before concatenation gained the higher train-
ing accuracy and lower diversity than inserting CBAM after
concatenation.

V. CONCLUSION

This article proposed an improved Swin Transformer for
remote sensing segmentation of postearthquake dense buildings
in urban areas. The main contributions of this article are obtained
as follows.

1) An improved Swin Transformer following the encoder-
decoder framework was proposed to achieve accurate
semantic segmentation of postearthquake dense buildings
from remote sensing images under complex backgrounds
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and strong weather interferences. The proposed struc-
ture performed multilevel feature fusion at each stage of
the encoder, inserted the CBAM into the linear embed-
ding and patch merging modules based on the original
Swin Transformer backbone, and used the UPerNet as a
decoder.

2) A total of 24 high-resolution remote sensing city-scale
images were used to train and validate the proposed model.
Different weather disturbances were considered by per-
forming brightness transformation, uniform fogging, and
nonuniform fogging to expand the dataset and simulate
possible light overexposure, darkness, and fog occlusions
under actual situations. The results showed that the im-
proved Swin Transformer achieved higher recognition
accuracy than the original Swin Transformer, especially
for collapsed buildings with highly irregular geometrical
shapes.

3) Ablation experiments were performed to demonstrate the
effectiveness and necessity of the proposed modules in
the improved Swin Transformer. The comparison results
showed that the full model (i.e., the proposed model with
feature fusion and CBAM) obtained the best segmentation
IoU result of background of collapsed and noncollapsed
buildings among all models, which further indicated the
advantages of the multilevel feature fusion in alleviating
feature leakage and the CBAM in focusing on small dense
objects.

4) The comparison results showed that the improved Swin
Transformer had distinct superiority over the original Swin
Transformer and some mature CNN-based segmentation
models, including the PSPNet, DeepLabV3+, and UNet.
It indicated that the proposed method could enhance
the semantic segmentation accuracy of dense buildings
in postearthquake remote sensing images owing to the
comprehensive extraction capability of local features and
global correlations by organically integrating transformer
and CNN structures.

In future work, the multiscale recognition of seismic disasters
is supposed to be investigated using multisource data based on
ViTs.
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