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Abstract—The risk and damage of wildfires have been increasing
due to various reasons including climate change, and the Republic
of Korea is no exception to this situation. Burned area mapping
is crucial not only to prevent further damage but also to manage
burned areas. Burned area mapping using satellite data, however,
has been limited by the spatial and temporal resolution of satellite
data and classification accuracy. This article presents a new burned
area mapping method, by which damaged areas can be mapped us-
ing semantic segmentation. For this research, PlanetScope imagery
that has high-resolution images with very short revisit time was
used, and the proposed method is based on U-Net which requires a
unitemporal PlanetScope image. The network was trained using 17
satellite images for 12 forest fires and corresponding label images
that were obtained semiautomatically by setting threshold values.
Band combination tests were conducted to produce an optimal
burned area mapping model. The results demonstrated that the
optimal and most stable band combination is red, green, blue, and
near infrared of PlanetScope. To improve classification accuracy,
Normalized Difference Vegetation Index, dissimilarity extracted
from Gray-Level Co-Occurrence Matrix, and Land Cover Maps
were used as additional datasets. In addition, topographic nor-
malization was conducted to improve model performance and
classification accuracy by reducing shadow effects. The F1 scores
and overall accuracies of the final image segmentation models are
ranged from 0.883 to 0.939, and from 0.990 to 0.997, respectively.
These results highlight the potential of detecting burned areas using
the deep learning based approach.

Index Terms—Burned area (BA) mapping, deep learning (DL),
forest fire, PlanetScope, U-Net.

I. INTRODUCTION

NATURAL wildfires are considered to play a significant role
in clearing out forest litter on forest floors and allowing the
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soils to contain enough nutrients [1], [2], [3], [4], [5]. Despite
these positive effects on the ecosystem, wildfires also cause
some disadvantages, such as forest destruction, alteration of
the water cycle, and social-economic damages, including huge
losses of both life and property [6], [7], [8], [9]. Anthropogenic
wildfires have happened and increased since fire has been used
as a tool for human activities. Furthermore, the frequencies and
spatial scales of wildfires have gotten higher and larger for a
few decades due to climate change [10], [11], [12]. As a result,
the drawbacks of wildfires outweigh the benefits. These days,
it is not difficult to encounter stories of countries struggling
with massive wildfires, for example, the massive wildfires in
California and Australia [11], [13]. Most recently, Greece expe-
rienced the most severe heat wave in decades and these wildfires
caused mass evacuations as the wildfires spread quickly despite
attempts to extinguish them [14]. Wildfires are also a big emitter
of greenhouse gases, and this would further fuel global warming.
This situation is caught in a vicious circle. Thus, a necessity for
wildfire management arises.

The Republic of Korea is also a country that needs effective
wildfire management, especially forest fires. About 62.6% (6
286 000 ha) of the territory of the country is occupied with
forests, so it has a vulnerable geographical feature to forest fires
[15]. Even though the area of forest has decreased due to the
change in land category, the Republic of Korea is the OECD’s
fourth-highest ratio of forest per land area [15]. According to
statistics from the Korea Forest Service, 473 forest fires have
occurred, damaging 1119 ha of land on average during the last
ten-year period (2011–2020) [16]. With a relatively small land
scale of South Korea, 99 646 km2, this damage scale is consid-
erable. The amount of significantly damaged forests caused by
wildfires is immeasurable. Weather is also an influential factor in
causing forest fires in both direct and indirect ways, on fire igni-
tion potential, fire behavior, fire severity, and fire extinction, by
promoting the radiative and convective heat transfer, increasing
the dryness and flammability of the fuels and supplying oxygen
to the combustion zone [17], [18], [19], [20], [21], [22], [23].
As a result, the most burning in Korea occurs with a marked
dry season, especially in springs. The size of burnings is very
varied, and the locations are distributed across the country. The
government spends 34.1 million USD annually on efforts to
prevent forest fires. In particular, approximately 5.2 million USD
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per 1010 hectares are spent annually on vegetation restoration
and forest facility reconstruction in areas affected by forest fires
[24]. Forest fires also pose a threat to local communities. In this
sense, a risk management system is necessary to reduce damage
from forest fires, and satellite technology can be a part of the
solution.

Managing wildfires can be divided into three groups: before,
during, and after a wildfire. Satellite data have been used for the
whole stages of fire management. Remote sensing technology
can be applied to these whole stages [25]. To bring a wildfire
under control, early identification of the location and size of
the fires is essential [26]. After the fire, postfire responses com-
promise mainly rehabilitation and restoration activities. These
are long-term processes focusing on repairing infrastructure and
natural resource damages caused by the fire and can take many
years [27]. When it comes to the restoration of a fire, the mapping
of burned areas (BA) is essential to rapid and effective recovery.
In addition, BA information takes an important role in develop-
ing climate modeling and addresses international commitments
related to carbon emissions [28]. Moreover, global BA products
could be utilized to analyze fire effects, since only a few countries
collect statics on BA and have reliable data [29].

To detect and estimate BA from wildfire, a few methods have
been used, and manual field measurement has been a typical
way to measure a scale and severity of a wildfire. However,
using satellite imagery has been regarded as an effective and
practicable way with the advancement of remote sensing satellite
technologies, and it has some advantages. First, it is not easy and
could be dangerous to access the fire-damaged area in person
soon after the fire due to smoke and embers. On the other
hand, a satellite can photograph the Earth’s surface regardless
of what disastrous situations happen. Next, in the event of a
big forest fire, it is more effective to utilize satellite scenes
for the measurement since the size of the BA is too extensive
for expedite manual field measurement. With such advantages,
much research has been conducted to find ways of more accurate
BA mapping [30], [31], [32], [33].

However, utilizing satellite technology for mapping BA in
optical imagery still has their limitation, such as the issue of
atmospheric opacity, revisit time, and sensor characteristics.
When a forest fire occurs, smoke from fire and cloud disturbs
the observation of the BA, so when choosing scenes, only a few
satellite imageries are valid for research [34]. Revisit time of a
single satellite that provides global coverage is usually more than
five days, and this acts as an obstacle since disasters have no fixed
schedule [35]. That is to say that this feature would further retard
obtaining pertinent satellite data. Moreover, as aforementioned,
smoke from a fire and clouds in scenes narrow the possible
options for research [36], [37], [38]. Recently, the increase in
the number of satellites helps to solve this problem. Moreover,
satellite constellations comprising a number of satellites over-
come this limitation with rapid revisit times. Regarding the
sensor issue, many satellites having coarse-resolution sensors
have been used to measure BA, but it causes an underestimation
of BA when fires are small [34]. These limitations are also
compensated by the development of satellite remote sensing
technology.

As many pieces of research have been conducted on the
measurement of BA with satellite images, a lot of methods have
been invented to analyze satellite data. Recently, research in
this field welcomed dramatic progress thanks to deep learning
(DL) approaches [39], [40]. Although the convolution neural
network (CNN) algorithm was invented for analyzing medical
classification tasks at first, it has also been proven that CNN is
a useful tool for a satellite image classification method.

This study aims to find a practical model for measuring a BA of
forest fires occurring in the Republic of Korea. As the occurrence
of forest fires is repeated yearly, its management is important.
Nevertheless, it does not seem that a high-performance detection
model for Korean local forest fires has been developed yet.
Therefore, devising a DL model to detect BA with satellite
imagery would cast light on an immediate wildfire action
plan. In addition, Korean forest fires have quite different
characteristics compared to those of other countries due to their
topographical features as aforementioned, and it could have
some significant implications to develop a Korean own fire
detection model. Through the research, we intended to answer
the following questions: Which BA detecting model through DL
is best suited to South Korea as a whole with a monotemporal
approach using PlanetScope images? To get an answer to this
question, we tried to find a band and index combination to bring
the best result and additional information that could improve
the result. Moreover, we considered developing an automated
BA mapping algorithm to make it possible to use the research
product in a real-life situation.

II. STUDY AREA AND DATA SET

A. Study Area

According to a governmental forest fire statistics report from
2009 to 2018, the Republic of Korea has 432 forest fires a year,
and roughly 70% of the forest fire damage occurred in spring due
to its dry weather [41]. As moving into the 21st century, massive
forest fires occurred more frequently due to climate change; for
example, the number of forest fires in 2020 increased by 31%
compared to the average of the last 10 years (474 cases), and the
area of forest fire damage in 2020 increased by 161% compared
to the average of the last 10 years (1120 ha) [16]. Based on
the government statistics, 12 forest fire events happened in 9
areas (Andong, Ulsan, Goseong, Cheongsong, Busan, Gunwi,
Samcheok, and Sangju) after 2017 were chosen as study areas
considering the scales (larger than 31.9 ha) and availability of
PlanetScope satellite data. The chosen forest fires’ location,
occurring date, and damaged area are shown in Table I.

B. Fire Data Set

1) PlanetScope: PlanetScope images were used for this re-
search since PlanetScope, which is operated by PlanetLabs
cooperation, provides high-resolution scenes with a very short
revisit time that facilitates the acquisition of a daily image with
worldwide coverage. As aforementioned, one of the limitations
of using satellite images to map BA is coarse temporal resolu-
tion. As other satellites providing high-resolution images have
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TABLE I
DESCRIPTION OF WILDFIRE EVENTS INVESTIGATED IN THIS WORK

longer revisit times, PlanetScope overcomes the limitation by
operating the PlanetScope constellation consisting of approxi-
mately 130 small CubeSat 3U satellites called “Dove” [42]. The
PlanetScope imagery is known as having a spatial resolution
of 3 m/pixel, but the images look a little less clear due to
its unideal signal-to-noise ratio [43]. In addition, even though
currently PlanetScope offers eight spectral bands, those products
just have started to be obtainable. This is because PlanetScope
has replaced old Dove satellites with the new generation Doves
equipped with eight-band sensors since mid-March 2020. This
replacement work was completed in August 2021 [44]. Conse-
quently, the PlanetScope images used in this study are provided
with four bands: blue (455–515 nm), green (500–590 nm), red
(590–670 nm), and near infrared (NIR) (780–860 nm) with a
color depth of 16 bits per channel [45].

For each study site, a cloud-free PlanetScope image was
downloaded from planet.com (accessed in April 2021). We
only downloaded images after the fire, since this research is
focused on mapping BA using monotemporal PlanetScope im-
agery. PlanetScope images are offered as a Basic Scene product
(level 1B), Ortho Scene product (level 3B), and an Analytic
Ortho Tile product (level 3A) [45]. Between these three types
of image products, we chose the second one, i.e., Ortho Scene
product, with less than 5% cloud cover. This product is supplied
with orthorectified and atmospheric correction (scaled Top of
Atmosphere Radiance at the sensor). The Ortho Scene product
has some benefits [46]. First of all, the imagery with orthorec-
tification is the most effective to proceed value-added images
such as land cover classification. Next, the PlanetScope offers

images of which radiometric quality has been improved with
radiometric correction.

The images used in this study were available and acquired
closest to the date of the burn. When selecting the date of the
scenes, cloud coverage and clarity of the BA perimeters of the
preview images provided on the Planet website were considered
(see Table II).

2) Labeling of the Damage and the Elaboration of the Refer-
ence Data: Under the machine learning process, it is necessary
to generate input training data to find out what features each data
has. This enables a computer to find a certain pattern or rule by
analyzing the data by learning itself. Therefore, it is required
to obtain labeling of the forest fire damage. Although some
studies have used labeled samples provided by governmental
institutions, we produced label data for this research due to the
quality of publicly available spatial data. Since the range of
pixel values of forest fire BA in satellite images varied from
image to image, applying the same threshold value for the
perimeter of the BA was not appropriate. Therefore, labels used
in semantic segmentation were semiautomatically produced by
adjusting the thresholds of the pixel value of the NIR band
individually and gradually. In other words, we determined the
appropriate threshold value by gradually changing the value for
each image through visual interpretation. Also, it was possible
to erroneously include various objects that are not BA but have
similar pixel values of BA in the label. To lower it, the threshold
value was applied only to the forest area

First, we clipped the BA out of the satellite images very
roughly to reduce the possibility of creating false labels since
there are several objectives in the scenes that have very sim-
ilar pixel values. Then, we analyzed the pixel values of each
PlanentScope scene to set appropriate thresholds. Comparing
the perimeter of the created label of the damage to the original
satellite image, the thresholds were adjusted. Even though the
labeled samples were obtained through the process, there were
still some labels that are not forest fire damage due to similar
pixel values. As their size was much smaller than the forest fires,
they were eliminated by setting the number of how many largest
objects we would keep.

The ground truth masks were elaborated by manual digitizing
of a satellite image. In this step, we created polygon vector
layers based on the downloaded satellite imagery data. Then,
each polygon was visually examined and modified with aerial
images from Google Earth and other domestic mapping APIs.
Lastly, we compared the areas of the polygons with the Korean
government statics to evaluate the accuracy of ground truth data.

3) Additional Features—NDVI, GLCM Texture, and Land
Cover Map: To meet better and more accurate results, additional
datasets, the Normalized Difference Vegetation Index (NDVI),
the dissimilarity extracted from Gray-Level Co-occurrence Ma-
trix (GLCM), and the Land Cover Map were used.

In additional to spectral bands, spectral indices have been used
to attain a more precise delineation of BA. Opinions vary on what
spectral indices are suitable for mapping BA owing to the com-
position of land cover types, characteristics of sensors, and other
factors. As a result, some studies recommended using NDVI
based on their research [47], [48], whereas other indices, such as
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TABLE II
PLANETSCOPE SATELLITE IMAGES FOR WILD FIRE DETECTION

normalized burn ratio [49], [50], normalized burned index [51],
normalized difference moisture index [52], burn area index, and
global environmental monitoring index [53], were considered a
good spectral index to monitor and map wildfire events. Among
these indices, we selected NDVI that can be calculated within
the spectral bands of PlanetScope among indices that are mainly
used for BA detection. One of the limitations of the PlanetScope
constellation used in this study is that only four bands (red, green,
blue, and NIR bands; no SWIR band) are on DOVE satellites.
It narrowed down our options, and NDVI is the only index that
can be extracted from the PlanetScope data. Therefore, we chose
NDVI to achieve efficiency and accuracy. The NDVI is extracted
using the following formula:

NDVI =
(NIR − Red)
(NIR + Red)

. (1)

Next, GLCM is one of the texture analysis methods. Only
four spectral bands were able to be used in this research, so we
tried to find more auxiliary data to help make the result better. A
set of eight different GLCM indicators (Contrast, Dissimilarity,
Homogeneity, ASM, Energy, MAX, Entropy, GLCM Mean,
GLCM Var, and GLCM Cor) were obtained by calculations
based on the NIR band images. Among eight indicators, a few
indicators demonstrating the most distinct difference between
burned and unburned areas were chosen by visual interpretation:
dissimilarity, entropy, homogeneity, and GLCM variance. In
addition, some studies have shown that those four indicators
are suitable for separating burned from unburned locations [54],
[55], [56], [57].

Dissimilarity is one of the texture features calculated from
GLCM and belongs to the contrast group. It is a measure of
the difference in each element of the gray level and is more
prominent when the local region has high contrast. Entropy
is a measure of the irregularity of a histogram, and an image
that visualizes 0 entropy would be seen as perfectly flat. In

other words, entropy would be higher when the image has
a more varied texture. GLCM variance shows the dispersion
of parameter values around the mean of the combinations of
reference and neighborhood pixels.

These three texture parameters can be calculated with the
following equations:

Dissimilarity =
N−1∑

i,j = 0

iPi,j |i− j| (2)

Entropy =

N−1∑

i,j = 0

iPi,j (−lnPi,j) (3)

Homogeneity =

∑N−1
i,j = 0 Pi,j

1 + (i− j)2
(4)

Variance =

∑N−1
i,j = 0 (Pi,j − μ)2

N − 1
(5)

where P(i, j) is the frequency that two pixels occur in the image,
one with gray level i and the other with gray level j.

Third, the Land Cover Map, which contains three types of
forest (coniferous forest, broad-leaved forest, and mixed forest)
is used to leave the final prediction result for the forest area.
The forest in Korea is usually divided into coniferous forests,
broad-leaved forests, and mixed forests [15]. Therefore, it is
possible to extract only forest areas by using the Land Cover
Map, and this makes BA mapping more efficacious.

III. METHODOLOGY

A. Topographic Normalization

In this research, we use a monotemporal approach to secure
rapid data analysis and simplify the whole process. However,
this approach has a critical problem caused by shadow. If some
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shadows are included in satellite scenes, the shadows may cause
false detection, especially in this research due to the limitation
of the types of bands that can be used [36]. If we had chosen a
multitemporal approach, it would have been way easier to reduce
the effect of shadow. This is because the multitemporal method
analyzes the difference in pixel value. Despite this disadvantage
of the monotemporal approach, the benefits of the approach, such
as rapid processing, seem amplified. As a result, we decided to
apply a topographic normalization to each image for alleviating
the shadow effect. Furthermore, in the case of Korea’s topog-
raphy, the forest is usually located in the mountains, which are
so steep that it forms many shadows. This situation made this
study perform topography normalization by the C-correction
method [58], [59] to obtain the corrected image for alleviating
the distortion of the real reflectance value of objects caused
by topographic features. When taking into consideration that
an automated BA detection algorithm would be developed, a
modified C-correction method was necessary. Instead of using
regression analysis in the original C-correction, we tried to find
the value of C that minimized the standard deviation of ρ of each
image.

B. Semantic Segmentation

CNN was first introduced as a new class of artificial neural
networks for handwritten digit recognition [60]. CNN had im-
proved a lot since then, and later a type currently used for DL was
proposed [61]. Traditional filtering techniques used fixed filters
to process images. However, CNN introduced a novel basic
concept that “it automatically learns that each element of the
filter expressed as a matrix is suitable for data processing.” For
example, when developing an image classification algorithm,
the traditional method can be used. But one problem is that
which filter to use in the algorithm should be determined through
human intuition or iterative experimentation. Using CNN in
this situation allows the algorithm to automatically learn the
available filters for image classification. CNN and its modified
version, such as fully convolutional network and U-net, have
been applied to a variety of fields, and recently remote sensing
domains also implement CNN to analyze image data to detect
changes [62], [63], detect objects [64], [65], pan-sharpening and
super-resolution [66], [67], and classify land cover [68], [69].
CNN, which is a type of DL model, is considered a promising
method for BA segmentation since it makes it possible to learn
any nonlinear function that maps its features and generalize the
learned features [34].

We downloaded 17 PlanetScope scenes in total for the 12
forest fire events. Among the scenes, 16 satellite images were
used to train, and one satellite image that was not used for
training was used as the final validation data. The semantic
segmentation was performed using the U-Net model. In the
training process, 20% of the dataset is extracted randomly and
used to measure the performance of the model, whereas the
remaining 80% is used for training.

1) Finding an Optimal Patch Size: There is a chance that
some boundaries of the images were confused with neighboring
boundaries unless the full topological frame was given [70].

In other words, the model could not gain the whole context
information, and this trend becomes more influential as the class
size gets smaller [71]. However, a few studies have shown that
the image would get blurry when using a too-big window size
[72] or regions with inaccurate boundaries and classification
of smaller fields would be included in other classes with larger
patch size [73]. Therefore, three different patch sizes were tested
in this research to determine the optimal patch size. The neural
network we used requires that input data should be brought
to a certain size. The original satellite images were divided
into patches with sizes of 160×160, 256×256, and 480×480
to decide which patch size would have a better performance.
We applied 2×2 padding to all tiles to detect features in the
edges of the input for more accurate analysis. This tiling of
satellite images is performed with python code. The model with
480×480 sized samples had to decrease its training batch size
due to the limited quantity of graphic memory. There have been
some studies showing that small batch sizes can cause more
noise in the training gradients and a loss of generalizability. This
can lead to less accuracy [74], [75]. However, the model trained
with 160×160 sized samples made the worst result overall,
although it was trained with a larger batch size than that of
480×480. The results of the models with 256×256 and 480×480
patch sizes showed similar results. A study also showed that for
U-Net and ResUnet models which are only up to 256×256,
improved results could be obtained by increasing the sample
window size, even though this simultaneously decreases the
training batch sizes [76]. Thus, the window size of the samples
was decided as 256×256.

It was also tested which ratio of damage to no damage pixels
brings better performance. The size of the largest forest fire
events analyzed in this study is only 1944 ha, and even that
of some forest fires is less than 100 ha. In other words, BA
account for only a small portion of the entire satellite image
(BA pixels/entire pixels = 0.0177). This means that using all
images as training data can lead to the degradation of model
performance due to class imbalance. Therefore, in this study,
several tests with different proportions of damage to no damage
pixels were performed. Finally, the test using images with a ratio
of BA pixels of 10% to 90% in each patch were used as training
data to mitigate the class imbalance problem. As a result, the
ratio of the pixels (BA pixels/entire pixels) used for training
increased to 0.42.

2) Data Augmentation: Input data augmentation’s aims are
usually regarded as increasing the amount of available training
data and the robustness of the models to variations in the data
[47]. The way of augmentation could be divided into two parts,
i.e., geometric data augmentation and radiometric augmentation.
In this study, rotation change and mirroring that belong to simple
geometric image augmentation were applied to further increase
the amount of training data four times. This augmentation was
carried out with a multiple of 90°, which makes it possible that
the augmented images are created without any pixel interpola-
tion [47]. Besides rotations, mirroring also was applied, with the
easiest forms being a flip along the vertical and a flip along the
horizontal axis. As the final outcome, we could acquire a six
times increase in the number of the training dataset.
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3) Band Combination Test: Satellite sensors in the NIR do-
main and the shortwave infrared (SWIR) domain are usually
understood as suitable sensors to detect BA [77], [78], [79].
This is because reflectance in the NIR domain would be de-
clined considerably, while there has been a moderate increase
of reflectance in the SWIR domain due to the dryness of postfire
[80], [81]. This study used PlanetScope images which include
the NIR band but no SWIR. In addition to the NIR band, there are
still not many studies on which band combination is best if the
red, green, and blue (RGB) bands are additionally used to detect
BA. Since there are various factors that depend on the type of
vegetation, season, and atmospheric conditions [53], [82], [83],
spectral band combination tests were conducted to determine
which bands should be used as the training material.

Among the available spectral bands (blue, green, red, and
NIR), the NIR band is best at distinguishing between BA and
unburned areas, even from the human eye, as previous accumu-
lated studies have proven that using the NIR band is very suitable
to detect BA and vegetation conditions [84]. At the same time,
it is also possible to recognize BA with RGB images. Based on
this, the test was conducted to find the best band combination
that would enter the training with the NIR band.

In this step, all 17 satellite images were put into model training
and predicted by the model. The performance of each band
combination was assessed by three different criteria: F1 score,
overall accuracy (OA), and IOU.

C. Masking With Land Cover Map

If satellite images are detected in the original size, the location
of the forest fire does not require to be cut into the surrounding
area by carefully identifying the location of the forest fire in
advance, but there is a possibility that the sea, the reservoir will
be misdetected as a forest fire area. Therefore, in this study, only
detection results for mountainous areas were left using the Land
Cover Map.

D. Accuracy Assessment

To evaluate the model, F1 scores, OA, intersection over union
(IOU), and recall of the pixels classified as burned were calcu-
lated.

First, F1 score is a statistical measure of a model’s accuracy.
F1 Score is the weighted average of Precision and Recall. In
this study, precision would be defined as the number of pixels
that are in fact burned over that of detected burned pixels, while
recall shows the ratio of the number of truly burned pixels to
the number of pixels that should have been detected as truly
burned pixels. The following equation shows how the F1 score
is calculated:

F1Score =
2× precision × recall

precision + recall
=

TP
TP + 0.5× (FP + FN)

(6)
where TP means true positive, TN is true negative, FP is false
positive, and FN is false negative.

Next, OA means the number of correctly classified pixels over
the total number of pixels. In other words, it yields misleading

TABLE III
DL MODEL SCORES WITH DIFFERENT BAND COMBINATION TO COMPARE THE

CONTRIBUTIONS OF RGB AND NIR BANDS (MEAN VALUES)

results. The equation for OA is defined as

OA =
TP + TN

TP + TN + FP + FN
. (7)

IOU is also another accuracy measure. It is used to measure
overlap between the predicted bounding box and the ground
truth bonding box (the real object boundary)

IOU =
area of overlap
area of union

. (8)

IV. RESULTS

A. Band Combination Test and Analysis

We conducted band combination tests to create an optimal BA
mapping model. First, we tested DL models using every single
band (red, green, blue, and NIR) to understand the sensitivity of
each band to BA detection. As expected, the NIR single band
model had the best scores on F1 score, OA, and IOU. However,
the difference between the scores of NIR and other bands is not
wide.

Besides BA are usually discernible in RGB images, so we
trained a DL model with RGB bands and compared F1 score,
OA, and IOU before all DL models that include the NIR band
were tested. The scores of the DL model with RGB band are
quite similar to that of the model including only the NIR band,
as shown in Table III. Then, we also compared these two scores
to that of the DL model that was trained on all available spectral
bands of PlanetScope. At this time, the model trained with all
possible four bands made the best performance. From this result,
we supposed that the best model would contain the NIR band.

Next, we evaluated all DL models including the NIR band.
The number of possible combinations when the NIR band must
be included is 8. We compared F1 score, OA, and IOU of NIR
to those of the models with all possible band combinations.
The DL models were trained five times on a combination of
a batch size of 16 patches. Fig. 1 summarizes the results of eight
combinations of PlanetScope’s four spectral bands (blue, green,
red, and NIR).

As shown in Fig. 1, some DL model values run off the
tracks. However, it was not easy to pick out a significantly
good model. This is because the values are pretty much the
same among the combinations. In addition, the rankings of the
models’ performances are varied over the criteria: each model’s
minimum value, maximum value, medium value, and mean
value of the five DL models. Even if the criterion is fixed on
one of those four criteria, the rank order of the F1 score, OA,
and IOU are different. As stated above, this suggests that the NIR
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Fig. 1. Result of the band combination test (band1 = blue, band2 = green, band3 = red, band4 = NIR). The V (1,2,3,4,5) marked on the x-axis indicates the
version number that showed the highest value among five runs.

TABLE IV
RESULTS OF THE DL MODELS WITH NDVI, GLCM, AND BLUE, GREEN, RED, AND NIR BANDS AS TRAINING DATA

band is the most decisive for discrimination between burned and
unburned areas. However, among them, the values of the five
models using all four bands are spread out at least. Furthermore,
we conducted naked eye distinction, if the performance score is
similar to determine optimal band combination was determined
by considering eye judgment and other situations. Under this
circumstance, the models using all the bands map BA the best.
Thus, we concluded that the optimal and most stable band
combination is red, green, blue, and NIR.

Much of FP is an area that can be removed later using
Land Cover Map, such as sea, reservoir, and lake. In addition,

relatively G+NIR combination’s prediction results showed that
many areas were actually BA but were not detected.

B. Adding NDVI and GLCM (Dissimilarity)

Table IV shows the results of models with NDVI and GLCM
(dissimilarity) in addition to Blue, Green, Red, and NIR bands
as training data. To validate the effect of topographic normaliza-
tion, we trained both input data applied modified C-correction
and not applied. We also increased the batch size from 16 to 20
to get better performance. Unlike the spectral band combination
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Fig. 2. Demonstration of the effectiveness of the topographic normalization process in removing terrain shadow effects. (a) Prediction results of the DL models
without topographic corrections. (b) Prediction results of the DL models applied with the topographic corrections.

test, satellite images used for prediction were excluded from
the training process to confirm the applicability of the model to
other untrained regions with different vegetation or topographic
features. To predict the BA of three satellite images (Andong
forest fire in April 2020, Samcheok forest fire in May 2017,
and Goseong forest fire in March 2018), these models were
trained five times for each study area, and the conditions and
the results of each model are summarized in Table IV. All other
conditions are the same except for the difference between the
satellite images used for training in the models.

Although the results vary slightly from model to model, the
results are significantly improved compared to the scores of
models previously trained with only spectral bands. As shown in
Table IV, the scores of the topographic normalized group seem
to excel more than those of not normalized group in the numbers.

Among these models, we chose a model that seems the
optimal one and conducted the prediction process. According
to Fig. 2 which shows the prediction results, we can see that
commission errors induced by shadows are reduced.

C. Accuracy Assessment

After the prediction, we compared the prediction results with
the ground-truth map. Three images in Fig. 3, right column show
the comparison between predicting BA in the three regions and
the ground-truth map after postprocessing using the Land Cover
Map, while the images of the left columns are original image

data of each area. The right column of Fig. 3 is only a part of
the result, and the actual prediction was made for the entire size
of the satellite image.

The label was directly produced based on several data surveys
and reliable visual inspection was used as reference truth to
validate the results. At this time, the F1 scores of models 1,
2, and 3 were 0.939, 0.883, and 0.889, respectively, which
were less than the performance evaluation score of the model
(see Table V). On the other hand, all the overall accuracies of
models 1, 2, and 3 were measured much higher as 0.99, 0.997,
and 0.996, respectively. These results imply that the predicted
models have many more TN pixels and this affects the value
of OA.

V. DISCUSSION

In this study, we developed a DL-based BA mapping algo-
rithm using only postfire PlanetScope imagery data. Before the
semantic segmentation process, the terrain of satellite images
was normalized. According to the model validation (see Ta-
ble IV), topographic normalization showed positive effects on
the model performance score to some extent. This is because
we only trained the patches including both classes (burned and
unburned) and excluded single-class tiles. In addition, the model
was evaluated within the dataset. In other words, it is highly
unlikely that patches having different pixel values because of
the modified C-correction were included in the model training.
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Fig. 3. BA mapping results of three areas that were randomly chosen among the study areas using U-Net segmentation methods with PlanetScope imagery data.
(a) Original PlanetScope images of the three study areas. (b) Comparisons between the U-Net prediction of the BA (the white part of the figures) and the reference
BA (the red line).

TABLE V
OVERVIEW OF THE ACCURACY ASSESSMENT FOR THE TESTING TILES (COMPARISON WITH A WHOLE PLANETSCOPE SCENE)

As a result, the topographic normalization has some influence
on the results of the accuracy assessment for the testing tiles.

In the DL stage, a U-Net model was used to conduct semantic
segmentation. The ratio of BA and unburned area pixels was
adjusted (approximately 4:6) to avoid problems caused by class
imbalance. According to some studies, single-class tile integra-
tion helps the network to learn more about unburned areas, and
consequentially reduces misclassification. However, not only
is the extent of BA in our study very small to the original
satellite images but also the types of unburned areas are various.
That is why we did not try to include single-class tiles in the
training stage. The fact that misclassification is rarely found in
the prediction images justifies our decision.

Besides, through evaluation and comparison, the DL model
using all four Red, Green, Blue, and NIR bands was selected

as the optimal spectral band combination model. In the process
of deciding the best band combination, we checked it again that
NIR is very suitable for BA detection. At the same time, RGB
bands also contain information that could assist in discrimination
between burned and unburned areas. This result is thought to be
because all four bands reflect well the changes in vegetation
color and chlorophyll content caused by forest fires. Thus,
when it comes to further development of satellite constellations
comprised of many minisatellites, it would be a good idea that
NIR sensors are equipped.

There is another implication of the band combination tests in
our study. Although many studies try to find an optimal input
data configuration that can acquire the best results with as few
bands as possible to make the model lighter [29], PlanetScope
imagery has only four spectral bands. In other words, decreasing
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the number of the bands used in this study does not greatly
serve to make a lighter model. In addition, we trained the DL
model many times, and the models with more bands have lower
deviations in the accuracy assessment.

When the values of the NDVI and the dissimilarity of the
GLCM calculated from satellite data were used as input data, F1
score, OA, and IOU increased by about 0.1–0.2. As Fig. 2 shows,
the topographic correcting method used in our research raises the
accuracy of mapping algorithms, especially for Korea, a largely
mountainous country. The end results were relatively accurate
and neat so that the entire satellite image could be detected
immediately without cropping the area around the forest fire
based on a preliminary survey.

However, we should keep in mind that there are some limits,
even though it shows the possibility that semantic segmentation
is a promising method of rapid BA mapping. First of all, fire
impacts on vegetation could not be clearly divided into burned
and unburned areas. There are some factors that could influence
BA conditions: the type of fire, fire behavior, and the time of
the acquisition of postevent satellite images [29]. Therefore, it
is not easy to determine where the perimeter of the BA is, and
there is the possibility that the labels could be a little subjective
depending on whom decided the threshold. Secondly, this study
focused on developing a Korean forest fire mapping model, so
the input data was limited. As a result, small fires were included
in the input data to increase the number of training data sets.

VI. CONCLUSION

This study conducted a case study on Korea, where related
studies were not sufficient, and showed the promising potential
of using high-resolution images from PlanetScope and DL to
detect BA.

Until now, there have been ample studies on wildfire detec-
tion and severity mapping using remote sensing. Most of the
previous studies mainly used the multitemporal method, and
there have been very few studies that try to develop a DL model
using semantic segmentation methods [34], [85], [86], [87].
Our research, however, only used postfire images to develop a
DL-based BA mapping algorithm using semantic segmentation
methods. In addition, it has been very rare for studies to use
PlaneScope’s data because the constellation was first launched
in 2016 and it is a commercial satellite. The number of available
spectral bands is only four, and only the NIR band has the
potential for detecting BA. Despite these limitations, the results
of the accuracy assessment for the study areas are comparable
to previous studies. This is because PlanetScope has some
merit: PlanetScope has both high temporal and high spatial
resolution. Therefore, we could use a relatively large number
of high-resolution images as training input data by not missing
the occurrence of wildfires. Moreover, even though PlanetScope
has only four bands, the accuracy could be further improved by
additionally using NDVI, GLCM, and land cover Map as input
data for DL.

In addition, compared to previous studies, the number of study
sites in our research is higher than many previous studies and we
used the PlanetScope images of the diverse regions as training
data. The accuracy assessment for the three random sites is

similar and their performance scores of them are decent to apply
this model to detect fire-damaged areas. This tells us that the
transferability of our model is very high.

In the future, if the number of training data increases, the
topographic normalization becomes better, and further studies
on the indexes and GLCM that can indicate the BA conducted,
the model will become more accurate and general.
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