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SeltS2: Self-Supervised Transfer Learning for
Sentinel-2 Multispectral Image Super-Resolution

Xiao Qian

Abstract—The multispectral image captured by the Sentinel-2
satellite contains 13 spectral bands with different resolutions, which
may hider some of the subsequent applications. In this article,
we design a novel method to super-resolve 20- and 60-m coarse
bands of the S2 images to 10 m, achieving a complete dataset at
the 10-m resolution. To tackle this inverse problem, we leverage
the deep image prior expressed by the convolution neural network
(CNN). Specifically, a plain ResNet architecture is adopted, and the
3-D separable convolution is utilized to better capture the spatial-
spectral features. The loss function is tailored based on the degrada-
tion model, enforcing the network output obeying the degradation
process. Meanwhile, a network parameter initialization strategy is
designed to further mine the abundant fine information provided
by existing 10-m bands. The network parameters are inferred solely
from the observed S2 image in a self-supervised manner without
involving any extra training data. Finally, the network outputs the
super-resolution result. On the one hand, our method could utilize
the high model capacity of CNNs and work without large amounts
of training data required by many deep learning techniques. On
the other hand, the degradation process is fully considered, and
each module in our work is interpretable. Numerical results on
synthetic and real data illustrate that our method could outperform
compared state-of-the-art methods.

Index Terms—Deep image prior, self-supervised learning,
Sentinel-2 satellite, separable 3-D convolution, super-resolution.

I. INTRODUCTION

ATELLITE remote sensing multispectral images (MSIs),
S which provide abundant spectral information, are widely
employed for different applications, e.g., environment moni-
toring [1], [2], flood detection [3], land use and land cover
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classification [4], and change detection [5], [6], [7]. For many
reasons, such as the physical limitations of the radiometric reso-
lution of the imaging sensors, design considerations, and achiev-
ing a higher signal-to-noise ratio (SNR), the spatial resolution
[or say, the ground sampling distance (GSD)] of a single remote-
sensing MSI captured by some well-known satellites, including
the Moderate Resolution Imaging Spectroradiometer [8], the
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer [9], and the recently deployed Sentinel-2 (S2) launched
by the European Space Agency (ESA) [10], might be different
across different spectral bands. As all such resolution differences
would not go away with hardware improvements [11], compu-
tational super-resolving those coarser bands so as to have all
bands available at the highest spatial resolution is of paramount
importance.

Without loss of generality, this article focuses on the S2 satel-
lite. An MSI collected by the S2 satellite contains 13 spectral
bands (443-2190 nm), covering the visible-near infrared and
short-wave infrared wavelengths with three different resolutions,
as shown in Table I. The super-resolution problem of S2 MSIs
is to increase the resolution of bands at 20- and 60-m spatial
resolution to the maximal resolution (i.e., 10 m). The presence of
fine bands makes super-resolving S2 images similar to the con-
ventional pansharpening problem. In [12], existing component
substitution [13], [14], [15] and multiresolution analysis [16],
[17], [18], [19], [20] methods designed for pansharpening are
extended to super-resolve bands at 20 m of S2 images via
integrating four fine bands into a single band. A geostatistical
approach, the area-to-point regression kriging approach [21],
[22], is also extended. However, as pointed out in [11] and [23],
the super-resolution of S2 images differs from the conventional
pansharpening problem [20], [24], [25], [26], [27], [28] and the
hyperspectral image/MSI fusion problem [28], [29], [30], [31]
mainly for the high-spatial-resolution bands (i.e., the panchro-
matic image in pansharpening and the MSI in hyperspectral
image/MSI fusion), spectrally overlapping the lower resolution
bands in these two tasks, while this condition is not met by the
images of S2 as the bands at the resolution of 10 m and the
bands at the resolution of 20/60 m in S2 imagery are almost
nonoverlapping (see Table I). Thus, novel methods tailored for
S2 images super-resolution are expected.

Recent works super-resolve coarse bands via inverting the
observation model that depicts the degradation (downsampling,
blurring, and noise) of S2 images in the imaging process. Lanaras
et al. [11] set up a joint observation model for S2 images
across different bands. With the S2 images in a vector form,
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TABLE I
13 SENTINEL-2 BANDS [12]

Band Bl B2 B3 B4 B5

B6 B7 B8 B10 Bl11 B12

Center wavelength (nm) 443 490 560 665 705

Width (nm) 20 65 35 30 15
Spatial Resolution (m) 60 10 10 10 20

740 783 842 865 945 1380 1610 2190
15 20 115 20 20 30 90 180
20 20 10 20 60 60 20 20
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Fig. 1. Flowchart of the proposed method and the network architecture.

the downsampling and blurring processes are characterized as
two block diagonal matrices with each block associated with a
specific band. Especially, when the blur is assumed to be spa-
tially invariant, each block of the blur matrix is a block-circulant
circulant-block matrix associated with the point spread function
(PSF) of the corresponding band. In [11], the variance of Gaus-
sian blur is computed from the calibrated modulation transfer
function released by the ESA [32]. This observation model has
also been rewritten in the tensor form by Wang and Ji [33].
The inversion of the observation model is obviously ill-
posed [34]. Therefore, introducing the prior knowledge of the
underlying fine bands via regularization is required. Three types
of prior knowledge can be found. In [11], the spatial local
discontinuity of four fine bands in existence is encoded as a
weighted total variation (TV) regularizer to sharpen the 20- and
60-m bands. Furthermore, Paris et al. [35] utilize the spatial
nonlocal self-similarity under the plug-and-play framework.
In [35], a CBM3D [36] denoiser is plugged in, and this version
of CBM3D could compute the patch similarity from a reference
image, which is obtained from the linear combination of four fine
bands. In [23] and [33], the nonlocal self-similarity is exploited
by formulating explicit regularizers. Another important property
of the underlying high-resolution S2 images is that they are

globally correlated. That is, MSIs are living in alow-dimensional
subspace. Thus, low-rank subspace representation is employed
in [11], [23], and [35], and Ulfarsson et al. [37] turn to reduce
the rank of the data matrix.

Lanaras et al. [38] directly learn a deep convolutional neural
network (CNN), which can be viewed as the inverse mapping
of the observation model mentioned above, with the training
data synthesized based on the scale invariance assumption. For
example, when super-resolving the 20-m bands, the original
10-m bands and 20-m bands are downsampled by a factor
of 2. Thus, the ground-truth “high-resolution” with the same
resolution (at 20 m) across all bands at a reduced scale for train-
ing/validation/testing is then gathered together with the existing
20-m bands. Then, this dataset serves for the fully supervised
training for 2 x super-resolution. However, in [38], the 2 x super-
resolution and 6x super-resolution are separately conducted,
and the network architecture for 6x super-resolution is much
deeper. Palsson et al. [39], [40] and Gargiulo et al. [41] also adopt
this strategy, and the deep residual network (ResNet) [42] and the
generative adversarial network [43] are taken into consideration.

Generally, deep-learning-based methods are believed to main-
tain a high model capacity to represent information in need [44].
However, existing S2 super-resolution approaches using deep
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CNNE, e.g., [38], [39], [40], face one unavoidable challenge of
their generalization ability. Those model-based methods [11],
[23], [33], [35], [37] could be scene adaptive as the prior knowl-
edge (global/local/nonlocal) they considered is widespread in
different scenes. Thus, to yield excellent performance with
global applicability, methods in [38], [39], and [40] need to
collect training data for different scenes as much as possible.
Subsequently, this would also lead to a large volume of training
data and a corresponding high computation burden for training.

To address the above issues, this article proposes a self-
supervised learning method for S2 MSIs super-resolution. Our
contributions could be summarized as follows.

1) First, to tackle the Sentinel-2 image super-resolution, we

employ the deep image prior expressed by the CNN with
a high model capacity. Specifically, we adopt a plain deep
residual CNN architecture with the 3-D separable convo-
lution. This structure is expected to adaptively capture a
great deal of low-level MSI statistics for different scenes.

2) Second, the loss function is established based on the degra-

dation model of S2 images. Thus, our results naturally
conform to the degradation. Meanwhile, as the fine bands
at 10-m resolution are available, we initially infer the
network parameters with fine bands and then transfer them
for super-resolving coarser bands. The overall learning
stage is fully in a self-supervised manner, which means
the inferring of network parameters is solely from the
observed S2 MSI, and no extra training data are needed.
Extensive experimental results are carried out to illustrate
the effectiveness of the proposed method.

The rest of this article is organized as follows. Section II
presents the proposed method in terms of the network archi-
tecture, the loss function, and details of learning. Section III
reports experimental results and discussions. Finally, Section IV
concludes this article.

II. METHOD

In this section, we first review the degradation model of S2 im-
ages. Then, we establish the framework of our super-resolution
method, including the loss function and the specific network
architecture. Subsequently, our learning scheme for S2 images
is tailored.

A. Problem Formulation

As the input and output of our network are all in the tensor for-
mat in our implementation, we describe the degradation model
of S2 images in the tensor format. Hence, before formulating
the S2 super-resolution problem, we first introduce the tensor
notations we used throughout this article. Lowercase letters are
used for scalars, e.g., x; boldface lowercase letters are used for
vectors, e.g., X; boldface uppercase letters are used for matrices,
e.g., X; Euler script letters are used for tensors, e.g., X'. Given
a third-order tensor X' € R™*"2*"s we use & to denote its
(i, 7, k)th element. The kth frontal slice of X is denoted as X' (¥)
(or X(:,:, k), XF).

Note that the spatial size and the PSF of blurring matrices for
different bands of S2 images could be different. Formulating the
degradation model of S2 images is tricky [23]. In the following,

we reformulate the degradation model proposed in [11] in the
tensor format with referring to [33]. For notational simplicity,
we first conduct plain upsampling via the Kronecker product
to ensure that the observed images are of the same spatial size.
For example, for a band at the 20-m resolution, denoted as X €
R%*%, we upsample it via

ey

0 0
where ® denotes the Kronecker product. Then, for S2 images
having B = 12 spectral bands' and the spatial size M x N (at
10-m resolution), after the plain upsampling, it can be written as
a third-order tensor Y € RM*N*B The order of the bands in
is from B1 to B12 (except B10), in accord with Table 1. That is,
Y(:,:,1) is at the spatial resolution of 60 m for ¢ € {1,10} and
20 mfori € {5,6,7,9,11, 12}, respectively. For simplicity, we
denote sets as

s1=1{2,3,4,8}, s2 =1{5,6,7,9,11,12}, and s = {1, 10}.

Then, the degradation model, up to the noise, could be ex-
pressed as

YV=MoeBaX) 2)

where Y € RM*NxB jq the observed tensor, M € RM*NxB jq
the binary mask tensor representing the downsampling process,
® denotes the elementwise multiplication, B € R"*"*B is the
Gaussian kernel tensor, ® indicates the slicewise convolution,
and X € RM*NxB g the underlying MSI with the highest
spatial resolution across each band. The ith frontal slice of 3 (i.e.,
B(:,:,i) € R"*") is the Gaussian blur kernel corresponding to
the ith S2 band. For i € s1, B(:, :, ) is the unit discrete impulse
function. That is, the convolution between X (:, :, ¢) and B(:, :, %)
returns X (:, :,4) fori € s1. Similar to ), frontal slices of M are
constructed via

M(:,:0) =
ones(M, N), 1€ S8
, 10 :
ones(%,%)@ L 1€ 8o
1 0 0000
00 0 O0O0O0
000 O0O0O 0 .
ones(%,%)@ 000000 ©€36
00 0 O0O0O0
100000 0
(3)

where ones(m, n) indicates generating a matrix of the size m x
n with all entries equaling to 1. The construction of M also
indicates that the downsampling the conducted via selecting the
element in the top-left corner.

B. Proposed Method

The super-resolution of S2 images aims at recovering the
high-resolution MSI X from the observation ). On the one hand,

n this article, we do not consider the B10 band at 60-m resolution, which is
used for atmospheric correction [45].
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with pre-estimated 3 and a given M, previous model-based
S2 super-resolution methods [11], [23], [33], [35], [37] can be
formulated as

Xzargm);nL(MQ(B®X),y)+¢(X) 4)

where L is the fidelity term and ¢(X) is the regularization term.
L enforces the super-resolution result being in accordance with
the degradation model, and the regularization term is formulated
to express the prior knowledge of the underlying results. On the
other hand, those deep-learning-based methods can be viewed
as learning the mapping function

X =cNn(Y) 5)

from a large amount of training data.
Our method attacks the S2 super-resolution problem in an-
other way and can be formulated as

mginL(M@(B@f@ (2),Y) (6)

where fp(-) is a specific CNN with the network parameter 6,
L(-) is the loss function, and Z is the network input. As for the
network input Z, we follow the strategy of using the degraded
image in [46]. However, directly inputting the ) constructed
via the Kronecker product in (2) would not be helpful for
extracting spatial and spectral features since there are too many
zero entries. Therefore, instead of directly using )/, we use
a simple spatial bicubic interpolation [47] to fill those zeros
entries within 20- and 60-m bands. Meanwhile, to better utilize
the global low dimensionality of the MSI, the bicubic interpo-
lation result is then projected to a low-dimensional subspace
detected via the HySime algorithm [48] and projected back.
For simplification, this preprocessing step can be denoted as
Z = Preprocessing()). As we will show in the experimental
part, other preprocessing techniques also work.

We then explain the distinctions and connections of our
method to (4) and (5). For convenience, we rewrite (6) as

minL(M® (B X),),st fy(2) =X (]

where &’ is an auxiliary variable to represent the network output.

On the one hand, we can see that our method is different from
previous CNN-based methods, which directly map the observed
low-resolution image to a high-resolution result. The parameters
of the CNN in (5) are learned from large datasets of images
via computing the loss between the network output and the
synthetic high-resolution via gradient descent and backpropaga-
tion [49]. Our method is to infer the network parameters solely
from a single observed low-resolution image by minimizing
the distance between the network output after degradation and
the low-resolution image. That is, the network input Z, which
is obtained from the observed MSI via simple preprocessing
techniques, in (7) is always fixed across the overall training
procedure. It can be viewed as our training set containing only
one image, and this single image would be repeatedly used many
times. Thus, our method is in a self-supervised learning manner,
being different from previous fully supervised deep learning
methods.

On the other hand, our method is closer to the model in (4).
The first term L(M ® (B ® Z),)) is in the same manner as
the fidelity term in (4). Both of them can enforce the result X
to be in accordance with the degradation model (2). The main
difference lies in the regularization term. In (4), ¢(+) represents
the regularizer to express prior knowledge, such as TV for spatial
local discontinuity and CBM3D for nonlocal self-similarity. In
our method, fy(+) is herein to express the deep image prior [44],
which widely exists in many types of visual data. That is, the
CNN fp(-) itself serves as the regularization term. Meanwhile,
(4) can be solved via traditional optimization methods, while
this is not suitable for (7).

The super-resolution result is obtained by X' = f5(Z) after
(6) is optimized.? The flowchart of our method is shown in Fig. 1.

C. Network Architecture and Loss Function

Those two parts, i.e., fo(-) and L(-), corresponding to the
fidelity term and regularization term, are vital for successful
recovery. In the following, we will introduce the specific archi-
tecture of fy(+) and tailor the loss function L(-).

1) Network Architecture: As pointed out by Ulyanov
etal. [44], the image statistics prior could be well captured by the
structure of a CNN independent of learning. That is, the structure
of the CNN could express the prior knowledge of the natural
images. Hence, the selection of CNN’s structure is of great
importance. In this article, we adopt a simple deep ResNet [42]
structure with separable 3-D convolutional blocks. Meanwhile,
the input of our network is Z constructed from the observation
Y. These are different from [44], in which a generator network
with a U-net [50] like structure is employed, and the random
noise is taken as the input. For an input Z € RM>*N>12 ‘the first
two 2-D convolution blocks would increase the 2-D features and
extend the feature dimension to the size 256. Then, a ResNet
structure with 34 separable 3-D convolutional blocks follows.
Finally, two 2-D convolution blocks are in series to decrease
the feature dimension to 12. The 2-D convolution block consists
of a cascade of 2-D convolution layer, a 2-D batch normaliza-
tion [51] layer, and the LeakyReL.U [52] as nonlinear activation
function.

Considering that the cubic nature of the underlying MSI
and the pattern along the spectral direction would be different
from that along with spatial modes, we exploit the separable
3-D convolution [53] blocks® to construct the main pipeline
of fo(-). We would illustrate that the separable 3-D convo-
lution is superior to 2-D convolution or plain 3-D convolu-
tion in the experimental part. The (separable) 3-D convolution
block (Conv3D Block) is shown in Fig. 1. It is implemented
via separating a 3-D convolution operation into a 2-D spa-
tial convolution and a 1-D spectral convolution in sequence.
The separable 3-D convolution is expected to simultaneously
capture the spatial and spectral information with fewer filter
coefficients.

2Generally, only local minima could be achieved.

3Different from the initial form of separable 3-D convolution in [53], we omit
the skip connection within the block as the overall network structure has already
been in a ResNet style.
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2) Loss Function: In our work, minimizing the loss function
LM ® (B® fp(2)),Y) rectifies the deviation between the
network output after degradation and the observation. It would
enhance the network output fy(Z), which involves the deep
image prior expressed by the network structure to comply with
the observation model. From the perspective of maximum a
posteriori, the fidelity term should be designed based on the
probability of the observation, given the underlying high-quality
MSI related to the noise distribution. For example, the ¢ norm
in [11], [23], and [35] or the Frobenius norm in [33] accounts
for the independent and identically distributed Gaussian noise.
In this article, inspired by a recent work for the image super-
resolution [54], in which the ¢ norm has been proved to be better
in preserving image edges and textures, we adopt the /1 norm
in our loss function. In the meantime, the structural similarity
(SSIM) [55] loss is added to the loss function to enhance the
structural feature extraction ability of fy for a better preservation
of the structural information. Thus, our loss function turns
to be

L= o1Ly + aaLlssivm
= | MoBa f(2) -V,
+ a3SSIM (M © (B® fo (2)),)) ®)

where || - ||1 is the £; norm defined as the sum of absolute values
and o and a, are set to 1. The choice of oy and «vs is discussed
in Section ITI-CS5.

D. Parameter Initialization and Implementation Details

The ultimate goal of our work is to infer a nonlinear map-
ping function fy(-), which could map the observed MSI with
different spatial resolutions to a desired MSI with the highest
resolution across different bands. Empirically, the network fy
is expected to learn high-resolution features from 10-m bands
and help to super-resolve the 20- and 60-m bands. Considering
that the observation contains four 10-m bands, we proposed the
following network parameter initialization strategy to further
take advantage of those high-resolution bands.

First, we simulate pseudo low-resolution bands from those
10-m bands. For the jth band (j € s2 U s¢) of the observation,
ie., y<j> or Y(:,:,j), we solve the following linear regression
problem:

2
min

e > 8 (MO o (BO e y®)) —y0

1€81

9

F

where M@ B® and Y are the ith frontal slice of M, B,
and X, respectively. Equation (9) aims at finding the opti-
mal linear combination of high-resolution bands to express
the low-resolution bands. For a given j € sy U s, we obtain
the regression coefficients 33, 33, 3, and 3. Then, a pseudo
low-resolution input Viow-pseudo 1 simulated as

) > Bl (MWD o (BD @ @),

low-pseudo— |*S51 . .
y(J)7 lfj € S1

(10)

if j € s5Usg

Correspondingly, we could simulate a pseudo high-resolution
MSI yhigh—pseudo as

Y) {'Z B (YD), ifj € s2Use
1€81 .

high-pseudo - .
Yy,

The above strategy to simulate the pseudo high-resolution MSI
is indeed the band-synthesized scheme of the hypersharpening
framework proposed in [56].

Then, the parameters of our network fy are random initialized
and subsequently trained via minimizing the following loss
function:

(11
lf] € S1

” f9 (ylow-pseudo) - yhigh—pseudo ” 1 (12)

using the ADAM optimizer [57]. After 1000 epochs of training
with a learning rate of 0.02, we stop it and use the network
parameters at this time as the initialization for minimizing (8)
in the main training phase. This initialization stage directly
enforces the network output close to a (pseudo) high-resolution
MSI when inputting the (pseudo) low-resolution observation. As
we will illustrate in the experiment part, it significantly improves
the super-resolution ability of fj.

Our method is implemented with the PyTorch [58] framework
on adesktop of GPU NVIDIA GeForce RTX 2080Ti with 11-GB
GDDR6 RAM. For each iteration (epoch), following the setting
in [44], an independently generated zero-mean Gaussian noise
with the standard deviation o = % is added to the input (after
the bicubic interpolation and the subspace projection). Finally,
in the main training stage, the learning rate is set to be 0.02 with
1000 epochs.

III. EXPERIMENTS

In this section, we compare our method with other state-of-
the-art methods on the synthetic data and real data. Compared
methods are listed as follows:

1) the simple bicubic interpolation;

2) SupReME [11], a method utilizing the discontinuities of

higher resolution bands via a weighted TV regularizer;

3) MuSA [35], a method employing the C-BM3D denoiser
to express the nonlocal self-similarity;

4) NSTMR [33], a method explicitly formulating the nonlo-
cal self-similarity regularization regularizer in the tensor
format;

5) DSen2 [38], a CNN-based method directly learning the
mapping from degraded images to high-resolution results.

DSen2 is implemented on the TensorFlow framework with
the pretrained network* provided by the authors. As DSen2 is
pretrained on data synthesized from the real S2 images with
the scale invariance assumption, directly applying DSen2 on
our synthetic data would be unfair. Thus, we have retrained
DSen2 following the training scheme provided in [38]. The
only difference lies in that we use the degradation model (2)
to generate low-resolution and high-resolution MSI pairs. The
remaining model-based methods are implemented on MATLAB.

4[Online]. Available: https://github.com/lanha/DSen2
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TABLE II
QUANTITATIVE ASSESSMENTS OF ALL COMPETING METHODS ON THE
SYNTHETIC DATA

DSen2

0.0329
0.9294
27.44
0.9302
2.2298

0.0377
0.8952
26.01
0.7937
2.3718

0.0138
0.9515
33.96
0.8035
1.0967

0.0388
0.941
27.84

0.9427

2.3755

0.0218
0.9505
23.1993
0.9498
3.0139

0.0199
0.9774
26.20
0.9774
1.3551

0.0414
0.8708
19.36

NSTMR

0.0210
0.9767
31.12
0.9778
1.6999

0.0176
0.9795
32.22
0.7806
1.217

0.0122
0.9754
3542
0.8266
0.8105

0.0169
0.9826
32.93
0.9846
1.3586

0.0165
0.9811
28.96
0.9803
2.0127

0.0164
0.9806
31.60
0.9784
1.5858

0.0304
0.8711
2291

SelfS2

0.0206
0.9753
31.30
0.9782
1.6443

0.0181
0.9707
31.6
0.8015
1.2266

0.0089
0.9835
37.79
0.8813
0.5506

0.0379
0.9776
25.97
0.9807
1.3404

0.0099
0.9906
32.62
0.9915
1.2653

0.0112
0.9917
34.40
0.9917
1.0370

0.0204
0.9527
25.68

Index  Bicubic

RMSE 0.0823
SSIM  0.6462
SRE  18.26
UIQI  0.6572
SAM  4.4060

RMSE 0.0511
SSIM  0.8179
SRE 2233

UIQI  0.5996
SAM  2.8045

RMSE 0.0313
SSIM  0.8827
SRE  27.61
UIQI  0.6561
SAM  1.8797

RMSE 0.0578
SSIM  0.7534
SRE  21.77
UIQI  0.7557
SAM 29471

RMSE 0.0553

SSIM  0.7193
HYDICE- 17.67

SRE
wbC 0.7147

UIQI
SAM  4.6437

RMSE 0.0552
SSIM  0.7212

H%(e ?;Cf SRE 2048
M UIQL 07194

SAM 3.0761

RMSE 0.0764
SSIM  0.4320
SRE 12.11

Data SupReME MuSA

0.0288  0.0278
0.9461 0.9492
2835  28.66
0.9504 0.9538
22140 2.2609

0.0235  0.0237
0.9438  0.9475
29.71  29.07
0.7425 0.7705
1.7535 1.6647

0.0123 0.0126
0.9598 0.9767
35.18 3481
0.7914 0.8486
0.8869 0.8717

0.0221  0.0220
0.9564  0.9660
30.62  30.24
0.9615 0.9711
1.5876 1.5787

0.0158 0.0284
0.9767 0.9234
2893 2537
0.9785 0.9329
1.8820 4.3418

0.0204 0.0316
0.9558 0.9073
2998 2758
0.9593 0.9155
1.7337 3.0386

0.0302 0.0304
0.8908 0.8812
21.87 2251
UIQI 0.4068 0.8929 0.8815 0.8732 0.8653 0.9550
SAM 8.8328 4.8797 5.1757 5.3612 5.3846 3.7550

The best values and the second-best values are respectively highlighted by
bolder fonts and underlines.

AVIRIS-
City

AVIRIS-
Coast

AVIRIS-
Crops

AVIRIS-
Montain

APEX-
Baden

For all the model-based methods, their parameters are manually
tuned for their best performances. We would exhibit the results
on the synthetic data and real data and then conduct ablation
studies to examine the effect from every single pipeline of the
proposed method.

A. Results on the Synthetic Data

As the ground-truth super-resolved S2 images with 10-m reso-
lution at all 12 bands are inaccessible, it is needed to simulate the
synthetic high-resolution S2 images. However, the simulation
is tricky since both the spectral and spatial properties should
be simultaneously considered. Fortunately, previous research
works have addressed this in a reasonable way. For example,
Paris et al. [35] employ the hyperspectral images captured
by the NASA Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor [59]. The detailed steps can be seen in [35,
Sec. IV-A] and [23, Sec. IV-B]. We restate key steps here for
readers’ convenience. In this work, being the same as [35], we
select four AVIRIS images corresponding to spatial regions of

city (at 3.5-m GSD), coast (at 5-m GSD), crop (at 3.2-m GSD),
and mountain (at 5-m GSD). The first step is to spatially filter
those AVIRIS images with a Gaussian kernel (with standard
deviation of 1.5 for city data, 1.2 for coast and mountain data,
and 1.6 for crop data). Then, the second step is the spatial
downsampling (with a factor of 3 for city data, 2 for coast
and mountain data, and 3 for crop data). After this stage,
the hyperspectral images are approximately reaching the 10-m
GSD. The AVIRIS hyperspectral sensor provides 224 narrow
contiguous spectral bands from 0.4 to 2.5 pum [59], covering
that of Sentinel-2 images. Thus, the final step is to simulate the
spectral properties of S2 images by applying its spectral response
to the 224-band hyperspectral images. Consequently, we can
obtain 12-band simulated ground-truth S2 images (respectively,
denoted as “AVIRIS-City,” “AVIRIS-Coast,” “AVIRIS-Crops,”
and “AVIRIS-Montain”). Their spatial sizes are all 406 x 108
at the 10-m bands.

In the meantime, other three simulated ground-truth images’
in [33] are also taken as the ground truth . Two of them are gener-
ated from the HYDICE images of Washington DC Mall and Ter-
rain (respectively, denoted as “HYDICE-WDC” and “HYDICE-
Terrain”) with 2.8-m spatial resolution, and the remaining one
comes from the airborne prism experiment (APEX) [60] image
of Baden (denoted as “APEX-Baden”) with 1.8-m spatial reso-
lution. The spatial sizes of these three synthetic S2 images at the
10-m bands are 96 x 96. Those three ground-truth images are
generated by downsampling hyperspectral images to obtain a
spatial resolution of approximately 10 m and selecting 12 bands
with the same wavelength as the S2 satellite.

Then, simulated S2 images are generated from the syn-
thetic ground-truth data following the degradation model in (2).
Specifically, the size of the Gaussian blur kernels is 10 x 10
across different low-resolution bands, and standard deviations
are set according to ESA’s data quality report on Sentinel-2
satellite products [32] per spectrum. We remark here that we also
set the kernel size as 10 x 10 when running compared methods
in [11], [33], and [35] for a fair comparison. For each band, the
Gaussian noise is added to control the SNR to 40 dB.

After having the pairs of ground-truth images and simulated
S2 images, we utilize five quality metrics to quantitatively mea-
sure the results by different methods. They are: 1) the SSIM [55];
2) the root-mean-square error (RMSE); 3) the signal to re-
construction error ratio (SRE); 4) the universal image quality
index [61] (UIQI); and 5) the spectral angle mapper (SAM).
For i € so U s¢, we denote the ¢th band of the ground truth as
X' € RM*N and the ith band of the super-resolved result as
XERM*N Then, the SSIM value of the ith band is computed
via

2uzps 4 c1) (2045 + ¢2)
(h2 + 13 +c1) (03 + 03 + c2)

SSIM = (13)

where 11, and p; are the average values of X; and X, respec-
tively, o, oy, and o, are the standard deviation of X, Xi,
and covariance of X7X, respectively, and c¢; and ¢y are two
constants, respectively, defined as (k1 L)? and (ks L)? with the

SThe code of [33] is kindly provided by the authors.
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Bicubic

Fig. 2.

Top row shows the pseudo-color images composed of B1 (red), B5 (green), and B9 (blue) bands of results by different methods on the data AVIRIS-City

and the ground truth (GT). The second to bottom rows illustrate the residual images of these three bands, respectively.

range of per pixel L and size of sliding windows k; and k»°.
Then, the SRE value of the ith band is computed as

SRE = 101log;, ﬂ (14)
X — X%
Next, the UIQI value of the ith band is computed as
40..- .
UIQI = Oxg Mo s (15)

(03 +03) (U3 +p3)
We compute the average values of the SSIM, SRE, and UIQI
across bands in sg U sg. After denoting the ground truth as X' €
RM*NxB and the super-resolved result as X € RM*N*B 'the
RMSE and SAM values are, respectively, computed via

M N B 9
RMSE = MNB;JZ:;( Wik — wk) (16)
and
1 M XN < (4,7,:), X zj,:)>
SAM = —— \
MN gg IR G 1 G )l
(17)

In Table II, we exhibit quantitative metrics of the super-
resolved results by different methods. We can see that our
method is comparable to NSTMR on the data simulated from
the AVIRIS hyperspectral images, as they rank the first and
second places in most cases. As for the data simulated from
HYDICE and APEX hyperspectral images, our method achieves
the best performance on account of all the quantitative metrics,
while NSTMR and SupReME alternately obtain the second-best
values. We can also see that the performance of DSen2 is not the

L, k1, and ko are using the default settings of the python package scikit-
image. See https://scikit-image.org/docs/stable/auto_examples/transform/plot_
ssim.html?highlight=ssim for more details.

best, although it employs a CNN with massive parameters. This
collaboratively validates our analysis in the previous part that
DSen?2 could not well fit the degradation model (2) well since
all the data in this subsection are degenerated in accord with (2).

In Figs. 2-5, we exhibit the pseudo-color images com-
posed of three bands of results on AVIRIS-City, AVIRIS-Crops,
HYDICE-WDC, and HYDICE-Terrain, respectively. Consider-
ing that the spatial sizes of AVIRIS-City and AVIRIS-Crops are
a little bit big, we only clip square areas of the size 108 x 108
from the results for better visualization and space saving. The
selected bands to make the pseudo-color images always consist
of, at least, one 60-m band. In the meantime, the corresponding
error images are also shown. From Figs. 2 and 3, we can see
that errors are generally related to edges. For AVIRIS-City,
SupReMe and our SelfS2 perform well on the BS band, whereas
MuSA and our SelS2 obtain better results on the B9 band. For
the 60-m band B1, the error of the result by our method is the
lowest. For AVIRIS-Crops, all the compared methods have a
good performance on the B6 band, while our method obtains
the lowest error on both the B1 and B1l bands. In Fig. 4,
results of the B6 and B7 bands by our method and SupReMe are
the best and our method super-resolves the B9 band (60 m) of
HYDICE-WDC better than compared methods. It can be easily
found in Fig. 5 that our method achieves the best performance
on all of the illustrated bands. From those visualizations, we can
see that the superior of our method is more obvious on the 60-m
bands.

B. Results on Real Data

In this part, we test all the methods on two real datasets: Verona
and Malmo. The spatial size of them is 180 x 180 at the 10-m
bands. For the real data, we only display the visual results. The
pseudo-color images composed of three bands on Malmo and
Verona are shown in Figs. 6 and 7, respectively. We can see that


https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.html{?}highlight=ssim
https://scikit-image.org/docs/stable/auto_examples/transform/plot_ssim.html{?}highlight=ssim
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Bicubic

Fig. 3.

DSen2

NSTMR SelfS2

0.12

0.06

-0.06

-0.12

Top row shows the pseudo-color images composed of B1 (red), B11 (green), and B6 (blue) bands of results by different methods on the data AVIRIS-Crops

and the ground truth (GT). The second to bottom rows illustrate the residual images of these three bands, respectively.

Bicubic

Fig. 4.

0.12

0.06

-0.12

Top row shows the pseudo-color images composed of B6 (red), B7 (green), and B9 (blue) bands of results by different methods on the data HY DICE-WDC

and the ground truth (GT). The second to bottom rows illustrate the residual images of these three bands, respectively.

all the methods work and generate sharper results compared with
the bicubic interpolation for the real data.

From Fig. 6, it can be found that the result by MuSA is too
smooth that some image details are blurred. Also, we can see
color distortions of the result by DSen2, and its result looks a
little bit blurry. The color styles of the results by the bicubic
interpolation, MuSA, and DSen2 tend to be similar, and this
color difference would be related to their spatial blurring as
these three results are visually blurry. SupReMe, NSTMR, and
our SelfS2 all obtain good results. We can see from the area
boxed by the red-dashed line that our result is more clear.

In Fig. 7, we highlighted two areas of all the results with
red-dashed circles. The results by DSen2 and MuSA are more
blurry for this real data compared with other methods. We can see

from the center of large red-dashed circles that MuSA, NSTMR,
and our SelfS2 preserve the orange and round area well, and only
our method and NSTMR fully reconstruct the small line, which
is composed of red and cyan blocks, right above the orange
and round area. From the small red-dashed circles, the color
distortion of the result by NSTMR is obvious compared with
the bicubic interpolation. More specifically, the dot, which is in
the orange color of the bicubic interpolation, tends to be red in
the result of NSTMR.

C. Ablation Study and Parameter Analysis

In this part, we conduct the ablation study and parameter anal-
ysis to test the effects of important modules of our framework
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Bicubic SupReMe MuSA SelfS2

0.12

(=]

-0.06

-0.12

Fig. 5. Top row shows the pseudo-color images composed of B9 (red), B11 (green), and B12 (blue) bands of results by different methods on the data HYDICE-
Terrain and the ground truth (GT). The second to bottom rows illustrate the residual images of these three bands, respectively.

Fig. 6. Pseudo-color images created with bands B6, B7, and B10 by different methods for Malmo. The bicubic, the input, results by DSen2, MuSA, SupReME,
S2Sharp, NSTMR, and SelfS2.
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SupReMe

Fig. 7.
S2Sharp, NSTMR, and SelfS2.

and the sensibility of parameters. Modules and parameters to be
examined are: 1) the network input; 2) the network structure;
3) the loss function; 4) the network parameter initialization
strategy; 5) the weighting parameters a; and o in the loss
function (8); and 6) the value of the network input regularization
parameter o. All the experiments in the part are conducted on
the synthetic data HYDICE-WDC and HYDICE-Terrain.

1) Network Input: As the initial work of deep image
prior [44] adopts a generator network with the random in-
put, we test our method with the network input randomly
produced obeying the Gaussian distribution with the standard
deviation o = 1/10. Meanwhile, we also adopt the bicubic
interpolation and results by MuSA, SupReMe, and NSTMR as
the network input. Table III shows the results of our method
with different network inputs. We can see that for this S2
super-resolution problem, the bicubic interpolation is more
suitable than the random input. After projected into the low-
dimensional subspace detected by HiSime [48], although this
projection step may delete some spectral anomalies, the bicu-
bic interpolation could help our method to obtain the best
performance.

2) Loss Function: The loss function rectifies the deviation
between the network output after degradation and the obser-
vation, enforcing the network output to obey the degradation
model. To test the effect of different types of loss functions, we
select four frequently used loss functions, i.e., the ¢; loss, the
{5 (or known as the mean square error) loss, the SSIM loss, and

A4 -

Pseudo-color images created with bands B6, B11, and B12 by different methods for Verona. The bicubic, the input, results by DSen2, MuSA, SupReME,

TABLE III
QUANTITATIVE ASSESSMENTS OF OUR METHOD WITH DIFFERENT NETWORK
INPUTS ON THE SYNTHETIC DATA HYDICE-WDC AND HYDICE-TERRAIN

Data  Index R2MOM pioibic MuSA SupReME NSTMR Bicubic+
(Gaussian) HySime

RMSE 00202 00110 00128 00112 00118 0.0099
HybIcE. SSIM 09665 0.9888 09850 09883 09882 0.9906
WheSRE 2628 3165 3022 3162 3L14 3262
UIQL 09715 09900 0.9867 09898 0.9895 0.9915

SAM  2.1615 13574 1.4170 14039 14373 1.2653

RMSE 00745 00158 0.0126 00128 00119 0.0112
HyDICE. SSIM 09815 09861 09898 09912 09901 09917
o 3140 33.04 3327 1761 33.63 3440
UIQI 09824 09881 09897 0.9912 0.9904 0.9917

SAM 14510 10811 1.1608 13999 1.0796 1.0370

The best values and the second-best values are highlighted by bolder fonts and
underlines, respectively.

the perceptual loss’ [63]. All these mentioned loss functions are
computed with M © (B ® f¢())) — Y in (8). In Table IV, we
report the quantitative metrics of the results by our method with
different loss functions and their combinations. We can see that
the SSIM loss is helpful for obtaining better SSIM and UIQI
values. Using the combination of the ¢; loss and the SSIM loss
could achieve the best performance.

7We adopt the output of last Conv2d layer before ReLU from a pretrained
VGG16 [62] to calculate the perceptual loss.
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TABLE IV
QUANTITATIVE ASSESSMENTS OF OUR METHOD WITH DIFFERENT LOSS FUNCTIONS ON THE SYNTHETIC DATA HYDICE-WDC AND HYDICE-TERRAIN

41+f2 Z1+€2+SSIM £1+SSIM £5+SSIM

Data Index & br+ls +SSIM +Perception £1+SSIM +Perception t2 £2+SSIM +Perception SSIM
RMSE 0.0218 0.0139  0.0107 0.0105 0.0099 0.0112 0.0124 0.0103 0.0106 0.0103
HYDICE SSIM 0.9747  0.9873  0.9904 0.9895 0.9906 0.9892 0.9804 0.9901 0.9890 0.9908
WDC " SRE 29.00 31.30 31.86 32.01 32.62 32.02 29.90 32.09 32.10 32.45
UIQI 0.9777  0.9885  0.9913 0.9906 0.9915 0.9902 0.9831 0.9914 0.9900 0.9918
SAM 1.9218 1.4242  1.3334 1.3055 1.2653 1.3552 1.7305 1.3478 1.3769 1.2967
RMSE 0.0167 0.0117  0.0486 0.0117 0.0112 0.0118 0.0120 0.0124 0.0119 0.0116
HYDICE SSIM 0.9784  0.9914  0.9905 0.9914 0.9917 0.9913 0.9907 0.9900 0.9909 0.9915
Terrain " SRE 30.80 33.95 21.21 33.93 34.40 33.83 33.70 33.60 33.80 34.15
UIQI 0.9805 0.9915  0.9876 0.9916 0.9917 0.9915 0.9908 0.9899 0.9910 0.9916
SAM 1.4018  1.0744  1.1870 1.0642 1.0370 1.0642 1.1049 1.1665 1.0717 1.0770

The best values and the second-best values are highlighted by bolder fonts and underlines, respectively.

TABLE V TABLE VI

QUANTITATIVE ASSESSMENTS OF OUR METHOD WITH DIFFERENT NETWORK

STRUCTURES ON THE SYNTHETIC DATA HYDICE-WDC AND

HYDICE-TERRAIN

QUANTITATIVE ASSESSMENTS OF OUR METHOD WITH DIFFERENT NETWORK
PARAMETER INITIALIZATIONS ON THE SYNTHETIC DATA HYDICE-WDC AND
HYDICE-TERRAIN

Data  Index RMSE SSIM SRE UIQI SAM Data Index RMSE SSIM  SRE  UIQI ~ SAM
Hourglass+2D Cony 0.0527 0.8904 18.15 0.9000 3.2958 HYDICE- Random initialization 0.0157 09747 2894 09772 19714
Hourglass + 3D Conv 0.0109 0.9893 31.79 0.9903 1.3222 WDC With parameter initialization  0.0099 0.9906 32.62 0.9915 1.2653
HYDICE Hourglass + Sep 3D Conv 0.0110 0.9882 31.72 09893 13570 HYDICE-  Radom initilizaton  0.0130 0.9863 3303 09865 1.1738
ResNet + 2D Conv 0.0628 0.9384 25.49 0.9660 16.0164 Terrain With parameter initialization  0.0112  0.9917 34.40 0.9917 1.0370
ResNet + 3D Conv 0.0110 0.9895 31.90 0.9907 1.3687 The best values are highlighted by bolder fonts.
ResNet + Sep. 3D Conv  0.0099 0.9906 32.62 0.9915 1.2653
Hourglass + 2D Conv 0.0146 0.9856 31.89 0.9860 1.2696 -
Hypicg. Hourglass +3D conv 0,017 0.9914 33.98 09913 1,0962 [ -~ -HYDICEWDC — HYDICE Terrain
Terrain " Hourglass + Sep. 3D Conv 0.0122 0.9891 33.67 0.9895 1.1378 [~ - = _ \
ResNet + 2D Conv 0.0140 0.9908 33.59 0.9908 1.1263 0.9 \\\
ResNet + 3D Conv 0.0122 0.9912 34.30 0.9860 1.1045 \\
ResNet + Sep. 3D Conv ~ 0.0112 0.9917 34.40 0.9917 1.0370 =038 AN
) R
The best values and the second-best values are highlighted by bolder fonts n 2
and underlines, respectively. 0.7 \\
0.6 . .
102 107! 1072 107! 1 10 102
Qg
3) Network Structure: As reported in [44], the priors ex-
pressed by different network structures could be slightly differ- Fig. 8. SSIM values of the results on synthetic data HYDICE-WDC and

ent, and both the U-net like (or say hourglass) network work and
the ResNet are adequate for natural images. Thus, in this part,
we test our method with these two typical network structures.
In the meantime, three types of the basic convolution block
are tested. They are the common 2-D convolution, the 3-D
convolution, and the separable 3-D convolution. Table V shows
the performance of our method with different network structures.
We can see that, when the overall structure is the hourglass,
using the 3-D convolution could achieve better performance than
using separable 3-D convolution. The ResNet could outperform
the hourglass network, and it could obtain the best result when
using separable 3-D convolution.

4) Network Parameter Initialization: In Section II-D, we
elaborate a parameter initialization strategy, in which the net-
work parameters are first initialized by fully utilizing high-
resolution bands. Table VI shows the results of our method
with this strategy or directly using the random initialization of
network parameters. We can see that random initialization also
works, while using our initialization strategy can largely pro-
mote performance. This comparison reveals that how to resort to
high-resolution bands for super-resolving low-resolution bands
could be of great importance in the S2 super-resolution task.

HYDICE-Terrain with respect to different o1 and a2 in the loss function (8).

5) Weighting Parametersin Loss Function: Our loss function
is constructed as a combination of the /; loss and the SSIM loss.
The weighting parameters a; and a4 are set to 1 throughout all
the experiments except for this part. We conduct an experiment
to examine the performance of our method with different values
of parameters oy and . First, we fix avy = 1 and vary the value
of ay from 1072 to 102. Then, o is fixed as 1 and the value of
ag varies. The SSIM values of the results are shown in Fig. 8.
We can see our method is more sensitive to the value of ao, and
the best performance is obtained when oy = as = 1.

6) Network Input Regularization Parameter: In this article,
we take the same network input regularization strategy as [44],
i.e., adding a zero-mean Gaussian noise with a fixed standard
deviation to the input. This strategy has been shown to generate
better image recovery or super-resolution results [44]. In this
part, we conduct experiments with different values of the stan-
dard deviation 0. Meanwhile, we also consider parameterizing
the input noise with the SNR in dB. Table VII shows the
performance of our model with different standard deviations
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TABLE VII
QUANTITATIVE ASSESSMENTS OF OUR METHOD WITH DIFFERENT oS OR SNRS
(IN DB) ON THE SYNTHETIC DATA HYDICE-WDC AND HYDICE-TERRAIN

Data RMSE SSIM SRE UIQI SAM
o=1/10 0.2710 0.0583 3.59 0.0139 15.7494
o=1/20 0.2686 0.0672 3.66 0.0083 15.5776
o=1/30 0.0099 0.9906 32.62 0.9915 1.2653
o=1/40 0.0246 0.9595 27.57 0.9616 1.7962
o =1/50 0.0243 0.9599 27.58 09614 1.7998
HYDICE-WDC
SNR =20 dB 0.0092 0.9913 33.3 0.9921 1.2080
SNR =30 dB 0.0107 0.9898 32.13 0.9907 1.3459
SNR =40 dB 0.0100 0.9904 3259 0.9912 1.2887
SNR =50 dB 0.0104 0.9885 3223 09895 1.3592
o=1/10 0.2707 0.0624 640 0.0098 15.7415
o=1/20 02711 0.0605 6.39 0.0105 15.8014
o=1/30 0.0112 0.9917 34.40 0.9917 1.0370
o =1/40 0.0162 0.9908 34.21 0.9902 1.0523
o =1/50 0.0114 0.9907 34.07 0.9905 1.0578
HYDICE-Terrain
SNR =20dB 0.0119 0.9910 34.01 09911 1.1267
SNR =30dB 0.0112 0.9907 3453 09910 1.0211
SNR =40 dB 0.0152 0.9904 31.72 0.9901 1.2558
SNR =50 dB  0.0110 0.9912 34.68 0.9915 1.0162

The best values and the second-best values are highlighted by bolder fonts
and underlines, respectively.

TABLE VIII
RUNNING TIME (IN SECONDS) OF ALL METHODS ON THE SYNTHETIC DATA

Data Bicubic SupReME MuSA DSen2 NSTMR  SelfS2

AVIRIS-City 0.11 4.17 289.62 1.71 556.81 1543.3
AVIRIS-Coast 0.1 4.64 301.87 1.2 457.83 1579.84
AVIRIS-Crops 0.1 3.81 295.55 1.38 55439 15514
AVIRIS-Montain 0.1 4.42 287.81 1.26 45997 1533.4
HYDICE-WDC  0.02 0.46 40.12  0.72 140.22 768.75
HYDICE-Terrain  0.13 0.43 44.64 0.69 90.56 775.44
APEX-Baden 0.06 0.46 53.6 622 291.37 776.73

(0 =[1/10,1/20,1/30,1/40,1/50]) and SNRs ([20 dB, 30 dB,
40 dB, 50 dB]). We can see that large os would bring about
inferior results, while small os help our method generate satis-
factory results. Although using the strategy of parameterizing
the noise with different SNRs can obtain the best results, we
still choose to add the zero-mean Gaussian noise with a fixed
standard deviation since this strategy is more stable for different
datasets.

7) Running Time: In Table VIII, we report the running time
(in seconds) of all the competing methods on the synthetic
datasets. As a self-supervised learning method, our method
learns the network parameters solely from the observed data,
which takes a lot of time for the network to converge, thus being
time consuming.

IV. CONCLUSION

In this article, to fulfill the super-resolution of S2 images,
we suggest a novel method resorting to the deep image prior.
The structure of the selected CNN could well capture the
low-level statistics, and network parameters are obtained solely
from the observed MSI, being adaptive to different scenes. The
degradation of S2 images is taken into account via the loss
function, making the network output in accord with the degra-
dation model. Moreover, as the observed S2 images contain four

high-resolution bands, a novel network parameter initialization
strategy is designed to further utilize fine features within those
bands. Then, after our initialization, the network parameters are
self-supervisedly learned solely from the observed S2 image.
Experiments are conducted on simulated and real S2 data. From
the comparison with state-of-the-art methods, we can see the
effectiveness of our method. However, as our method needs
to infer all the parameters solely from the observed MSI in
a self-supervised learning manner, it is quite time consuming.
Thus, we will consider accelerating our method in the future.
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