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Hypothetical Cirrus Band Generation for Advanced
Himawari Imager Sensor Using Data-to-Data
Translation With Advanced Meteorological

Imager Observations
Jeong-Eun Park , Yun-Jeong Choi, Jaehoon Jeong, and Sungwook Hong

Abstract—Cirrus cloud contributes significantly to earth’s radi-
ation budget and the greenhouse effect. The Advanced Himawari
Imager (AHI) onboard the Himawari-8 satellite lacks a 1.37 µm
band, sensitive to monitoring cirrus clouds. This article proposed
a conditional generative adversarial network-based data-to-data
translation (D2D) model to generate a hypothetical AHI 1.37 µm
band. For training and testing the D2D model, the Geo-Kompsat-
2A Advanced Meteorological Imager (AMI) 1.37 µm bands and
other highly correlated bands to cirrus from July 24, 2019 to
July 31, 2020, were used. The D2D model exhibited a high level
of agreement (mean of statistics: correlation coefficient (CC) =
0.9827, bias = 0.0004, and root-mean-square error (RMSE) =
0.0086 in albedo units) between the observed and D2D-generated
AMI 1.37µm bands from validation datasets. The application of the
D2D model to the AHI sensor showed that the D2D-generated AHI
1.37 µm band was qualitatively analogous to the observed AMI
1.37µm band (average of statistics: bias= 0.0026, RMSE= 0.0191
in albedo units, and CC = 0.9158) on the 1st, 15th, and 28th of each
month of 2020 in the common observing regions between Korea and
Japan. The validation results with the CALIPSO data also showed
that the D2D-generated AHI 1.37 µm band performed similarly
to the observed AMI 1.37 µm band. Consequently, this article can
significantly contribute to cirrus detection and its application to
climatology.

Index Terms—1.37 µm, CGAN, cirrus, data-to-data translation,
geo-kompsat-2A, Himawari, satellite remote sensing.
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I. INTRODUCTION

C IRRUS cloud profoundly influences the radiation budget
of the earth–atmosphere system and amplifies the green-

house effect [1], [2], [3] because of its relatively low albedo, high
altitude, and low emission temperature. Cirrus clouds contain a
significant amount of large and nonspherical ice crystals, which
are widely distributed throughout and affect the relative strength
of the solar albedo and infrared (IR) greenhouse effects. Previous
studies reported that cirrus clouds occur with a global average
frequency of approximately 27% or 16.7%, and 45% or 70%
for north and south tropical zones, respectively [4], [5], [6].
Cirrus clouds in the high atmosphere significantly control the
global radiation budget and terrestrial thermal balance in the
atmosphere owing to their constituent ice crystals and global
coverage [7], [8], [9], [10].

There have been several efforts to detect cirrus using satellite
remote sensing [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21]. Specifically, the 1.37 μm band in a strong water
vapor absorption spectral region has been used to detect daytime
cirrus clouds [12], [14], [18] owing to its high sensitivity to
thin cirrus as well as no sensitivity to the lower troposphere.
However, the 1.37μm band loses some of its advantages because
of surface reflectance effect under dry atmospheric conditions
(total precipitable water < approximately 10 mm) [22], [23].

In satellite remote sensing, the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) [24], [25] onboard the Earth
Observing System Terra and Aqua satellites, Multiangle Imag-
ing Spectro-Radiometer onboard the Terra satellite [26], [27],
Visible Infrared Imaging Radiometer Suite (VIIRS) [28], [29]
onboard the Suomi National Polar-orbiting Partnership and
NOAA-20 weather satellites, Landsat 8 Operational Land Im-
ager (OLI) [30], and Sentinel-2 multispectral instrument (MSI)
[31] have been employed for thin cirrus detection using 1.37 μm
band.

Moreover, several next-generation meteorological geosta-
tionary satellites have been launched and operated success-
fully. The Himawari-8/-9 [32] with Advanced Himawari Im-
ager (AHI) sensor, Geostationary Operational Environmental
Satellite (GOES)-R [33] with Advanced Baseline Imager (ABI)
sensor [34], [35], and Geokopmsat-2A (GK-2A) with Advanced
Meteorological Imager (AMI) sensor [36] have 16 spectral bands
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Fig. 1. Spectral responses of the AMI and AHI sensors. The dotted and solid
curves represent the Himawari/AHI and GK-2A/AMI bands.

with spatial resolutions ranging from 0.5 to 2 km depending on
the band, and full disk imaging from 10 to 15 min [37]. The
GOES-R/ABI and GK-2A/AMI sensors have the 1.37 μm band
for detecting daytime cirrus clouds, whereas Himawari-8/AHI
does not have a 1.37 μm band. Therefore, the Japan Aerospace
Exploration Agency (JAXA) provides the official ice cloud and
surface radiation products using Himawari-8 and Global Change
Observation Mission-C satellites [38], [39], [40].

The objective of this article was to produce a virtual Hi-
mawari/AHI 1.37 µm band using a data-to-data translation
(D2D) with a deep-learning technique, which is an effective
technique that can accurately extract suitable characteristics
from satellite data. Owing to this advantage offered by deep-
learning techniques, recent studies on IR [41], Synthetic Aper-
ture Radar [42], and other types of imagery [43], [44], [45],
[46] have used deep-learning techniques, including artificial
neural network [47], convolutional neural network [48], and
conditional generative adversarial network (CGAN) [49], [50],
[51], [52], [53], [54], [55], [56].

This article proposes a D2D model that employs the CGAN
technique to generate the missing Himawari-8/AHI 1.37 µm
band by pairing the 1.37 μm band with other bands. The
generation of the missing Himawari-8/AHI 1.37 μm band was
evaluated as an adversarial problem solved by CGAN rather
than other deep-learning techniques in support of training and
validation for the D2D model. The D2D-generated Himawari
AHI 1.37μm band can complement the Himawari AHI for cirrus
detection, cloud mask improvement, and climate studies.

II. DATA

A. Satellite Data and Study Area

The AMI and AHI sensors constructed by the Harris Cor-
poration have similar spectral responses to the visible (VIS)
and IR bands. However, the AHI and AMI are missing NIR
bands of 1.37 and 2.26 μm, respectively. Generally, the 1.37
and 2.26 μm bands can effectively detect cirrus clouds and ice
particles in clouds, respectively. Additionally, the two sensors
have similar spectral, spatial, and temporal resolutions except
for the respective missing NIR band. Thus, similar amounts
of energy are recorded by the AMI and AHI sensors. Notably,
AHI and AMI conducted observations at 128° E and 140.7° E,
respectively. Fig. 1 illustrates the spectral response functions

TABLE I
SPECTRAL BAND CHARACTERISTICS OF GK-2A AMI AND HIMAWARI/AHI

FROM VIS TO IR BANDS

Fig. 2. Study areas with AMI extended local area and AHI Japan area.

(SRF) of AMI and AHI sensors; the dotted and solid lines rep-
resent the Himawari/AHI and GK-2A/AMI wavelength bands,
respectively. Table I provides a summary of AMI and AHI sensor
characteristics.

This article chose the Far East region, encompassing the
Korean Peninsula, Japan, and a portion of China between 30°
and 50° N latitude, and 125° and 145° E longitude, as the study
area because of the overlap between the AMI Extended Local
Area and AHI Japan Area, as shown in Fig. 2.

This article used the full disk level 1 (L1B) data in the
1.37 μm and other bands of GK-2A/AMI and Himawari/AHI
in 1024 × 1024 pixel-size to obtain the D2D-generated AHI
1.37 μm band data. We obtained the AMI and AHI data from the
National Meteorological Satellite Center (NMSC) of the Korea
Meteorological Administration (KMA) and JAXA.

B. Preprocess of Datasets

The observed GK-2A/AMI and Himawari/AHI L1B albedo
and brightness temperature (TB) data were cropped into the
study area by 1024 × 1024, to conserve the original data infor-
mation and provide input datasets for obtaining the D2D model-
generated AHI 1.37 μm bands data for training, testing, and
application. The original AMI file constituted full disk data of
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specifications 22 000× 22 000 (AMI red band), 11 000× 11 000
(other VIS bands), or 5500 × 5500 (other bands); the original
AHI file was gridded data with 6001 × 6001 (2 km). The AMI
data were downscaled to 5500 × 5500 (2 km) using the bilinear
interpolation method [57].

The proposed D2D model was trained and tested using the
directly-normalized albedo and TB of the AMI and AHI ob-
servations ranging from −1 to 1, which is different from the
image-to-image translation used in the Pix2Pix model.

C. CALIPSO Dataset for Validation

The Cloud Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) observe the global distribution of
clouds and aerosols in earth’s atmosphere. This article used
the CALIPSO Level 2 lidar vertical feature mask (VFM) data
products providing vertical and horizontal distribution informa-
tion on cloud and aerosol layers [58]. The cloud types in the
CALIPSO VFM data were classified into nine flags according to
the International Satellite Cloud Climatology Project’s standard
definitions for meteorological cloud types [8]. The AMI, AHI,
and CALIPSO data were collocated. The D2D-generated AHI
1.37 data were compared with the observed AMI 1.37 data
and validated using CALIPSO VFM data with cirrus flags. The
MODIS-derived threshold of 0.007 for cirrus detection [59] was
applied to AMI and AHI data to determine cirrus pixels.

III. METHODS

A. CGAN in D2D Model

To develop the D2D model, we used the CGAN method [49],
[50]. CGAN evolved from GAN [60] and deep convolutional
GAN [61], [62]. CGAN techniques have been successfully
applied in a variety of image processing applications.

The D2D translation was implemented using the Pix2Pix [50],
[63] as it does not include noise for G. Moreover, Pix2Pix has
advantages in using U-Net [64] to createG(X) for the generator,
and Patch-GAN [50] for the discriminator.

Mathematically, the D2D model learns a mapping function G
to obtain a virtual output dataset (YD2D) using a dataset of real
input data (X) different from other GAN using a random noise
vector (Z) as follows [49]:

G : (xi, yi) ∈ X × Y → yi,D2D ∈ YD2D = G (X,Y ) (1)

where X and Y are the datasets of the real-observed data xi and
yi. YD2D denotes the dataset of the D2D-generated output data
yj,D2D generated from G. The subscripts i denotes the number
of input and output data.

Additionally, the data-scaling function, with D as the discrim-
inator, is obtained as follows [49]:

D : P (YD2D|Y ) → [0, 1] (2)

where P (YD2D|Y ) denotes the conditional probability ranging
from 0 to 1 between the observed output (Y ) and the generated
output (P (YD2D). P (YD2D|Y ) = 1 when YD2D = Y .

In general, CGAN describes a minimum-maximum function
(LCGAN) between a generative model and a discriminative model

Fig. 3. CGAN structure of generator and discriminator in the D2D model.

as follows [49]:

LCGAN = E [log (D (YD2D, Y ))] + E [log (1−D (Y, YD2D))]
(3)

where X and Y are the pairs of true input data for CGAN. G
attempts to minimize log(D(YD2D, Y )) in the first cross entropy,
while D attempts to maximize the probability of discriminating
real or virtual data in the second cross entropy. The log function
was introduced in cross entropies to the efficient gradient at the
initial step of model training [49].

The reconstruction loss (L1) equation [50] is required to
minimize the distance between the true output dataset (Y ) and
the generated dataset (YD2D). The (L1) is obtained as follows:

L1 (G) = E (||Y − YD2D||1) . (4)

The loss function in D2D (LD2D) consists of the adversarial
and reconstruction loss as follows:

LD2D = min
G

max
D

{LCGAN}+ λ · L1 (5)

where λ is the parameter that demonstrates the tradeoff between
the adversarial and reconstruction loss. This article set λ = 1.

Fig. 3 shows the CGAN structure in the D2D model. Green
and orange boxes represent feature maps, while black boxes
denote the copied feature maps and padding steps, respectively.

The GK-2A/AMI LWIR band TB and TB difference data
were used as X, and GK-2A/AMI 1.37 μm band albedo as
Y, for training and validation of the D2D model. For applying
the D2D model, we used the Himawari/AHI LWIR band TB
and TB difference data, as X. Finally, we obtained the virtual
Himawari/AHI 1.37 μm band albedo (YD2D).

The proposed D2D model underwent approximately 41 h of
training. The experiment was implemented on top of TensorFlow
and optimized with the Adam optimizer [65] with Python 3.54 on
CUDA 10.0 and cuDNN 7.5.17 systems running on one NVIDIA
GeForce RTX 2080 Ti and an Intel Xeon CPU.

B. Multiband Selection for 1.37 μm D2D Model

The cirrus, located at the highest altitude compared to other
clouds, predominantly contributes to cooling the upper tropo-
sphere through the radiative transfer, including emission and
scattering of constituent ice particles [66]. The radiative effects
of the cirrus in the far-IR bands are approximately double that
in the LWIR bands [66].
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TABLE II
CORRELATION COEFFICIENTS BETWEEN THE AMI 1.37 µM AND THE OTHER 6 AMI BANDS, 15 BRIGHTNESS TEMPERATURE DIFFERENCES

The radiative properties of cirrus clouds are primarily char-
acterized using optical parameters such as the extinction optical
thickness (τ ), single-scattering albedo (ω), and asymmetry fac-
tor (g). These properties depend on microphysical factors such as
particle size distribution and concentration profile in addition to
the geometry and thickness of the cirrus cloud [66]. For example,
the extinction optical thickness τ is described as follows [67],
[68]:

τ =
3

2
Qe

IWP
Deρi

(6)

where IWP is the ice water path (i.e., the column ice mass per unit
area (g/m2)), Qe is the mean value of the extinction efficiency,
De is the effective particle diameter, and ρi is the ice density.
Note that Qe, and De are generally modeled [69], [70], [71],
[72].

Thus, based on the different sensitivity of the cirrus clouds to
different IR bands, this article tested the proper IR bands and the
differences between the different bands for the proposed D2D
model. Notably, this article only considered the LWIR bands
because these bands observe the emission from the earth’s clouds
and surfaces, irrespective of day and night.

For the D2D model, to generate a D2D-based GK-2A/AMI
and Himawari/AHI 1.37 μm band, we aim to find the best
pair of GK-2A/AMI 1.37 μm and other VIS and IR bands by
estimating the best correlation coefficient (CC) values >0.5
between these two bands or the differences in the IR band.
Table II summarizes the monthly-averaged CCs (>0.5) found
between the AMI 1.37 μm band and the other 6 AMI bands
(7.3, 8.7, 10.5, 11.2, 12.3, and 13.3 μm) and the 15 difference
between the TBs of 7.3–8.7 μm, 7.3–10.5 μm, 7.3–11.2 μm,
7.3–12.3 μm, 7.3–13.3 μm, 8.7–10.5 μm, 8.7–11.2 μm, 9.6–
8.7 μm, 9.6–10.5 μm, 9.6–11.2 μm, 9.6–12.3 μm, 13.3–8.7 μm,
13.3–10.5 μm, 13.3–11.2 μm, and 13.3–12.3 μm. The monthly-
averaged CC values were computed at 04:00 UTC from July 24,
2019 to July 31, 2020.

For example, 10.5 and 11.2 μm bands in the atmospheric
window have sensitivities to clouds and aerosols in the
atmosphere [73], [74]. The difference between 9.6 and 10.5 μm

bands is used to indicate very high clouds and the influence of
ozone absorption [75]. The difference between 8.7 and 10.5 μm
bands is used to indicate thin, very high ice clouds [76], whereas
that between 8.7 and 11.2 μm bands is used for differentiating
between the cloud size particles [19], [77]. The 7.3 μm band is
mainly sensitive to the distribution and amount of WV in the
upper atmosphere. The difference between 12.3 and 13.3 μm
effectively detects the rainfall region amidst thick cirrus [78].
Thus, the difference between 7.3 and 11.2 μm bands is used
to differentiate the cumuliform clouds [79]. Notably, in this
article, VIS, SWIR, and MWIR bands and a single 9.6 μm band
were excluded because of their low CC (< 0.5) and dependence
on sunlight. Additionally, VIS bands observe cirrus clouds and
lower clouds. The red band is sensitive to the land surfaces. Thus,
the CC values between VIS and 1.37 μm were lower than 0.5.

Fig. 4 shows the paired AMI 1.37μm band with AMI 21 bands
and BTDs datasets for training, validation, and application for
our D2D model.

C. Pre- and Postprocesses for D2D

For preprocessing, all the original L1B datasets observed in
the 21 bands, as well as band differences of AMI and AHI
sensors, were resampled in 2 km × 2 km spatial resolution
corresponding to 1024 × 1024 pixels. The resampled data were
saved in the numerical array form, such as the npy format. The
numerical and resampled datasets were converted to normalized
numerical datasets in the range [−1, 1] owing to the use of
hyperbolic tangent activation function (tanh) in the output layer
in the U-Net encoder–decoder generator G model in the Pix2Pix
as follows [80]:

X ′ = 2× X −Xmin

Xmax −Xmin
− 1 (7)

Y ′ = 2× Y − Ymin

Ymax − Ymin
− 1 (8)

xmin ≤ xi ≤ xmax ∈ X → −1 ≤ x′
i ≤ 1 ∈ X ′ (9)

ymin ≤ yi ≤ ymax ∈ Y → −1 ≤ y′i ≤ 1 ∈ Y ′ (10)
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Fig. 4. Example of training pairs at 21 AMI IR bands and their differences and AMI 1.37 µm band on July 24, 2019, at 04:00 UTC.

whereX ′ andY ′ are the datasets of the normalized real-observed
data x′

i and y′i, respectively; and xmin, xmax, ymin, and ymax are
the minimum and maximum values of the real-observed data xi

and yi, respectively.
Thus, the pairs of input datasets (X ′, Y ′) for training and

validation for the D2D model were expressed as follows:

X ′ = x′
i ∈ {R′

7.3, R
′
8.7, R

′
10.5, R

′
11.2, R

′
12.3, R

′
13.3

R′
7.3 −R′

8.7, R
′
7.3−R′

10.5, R
′
7.3−R′

11.2, R
′
7.3 −R12.3

R′
7.3 −R′

13.3, R
′
8.7−R′

10.5, R
′
8.7−R′

11.2, R
′
9.6 −R′

8.7

R′
9.6 −R′

10.5, R
′
9.6−R′

11.2, R
′
9.6−R′

12.3, R
′
13.3 −R′

8.7

R′
13.3−R′

10.5, R
′
13.3−R′

11.2, R
′
13.3 −R′

12.3, } (11)

Y ′ = y′i ∈ {R′
1.37} (12)

whereR′ is the normalized TB and albedo. The subscripts denote
the central wavelength in the band.

After the D2D model development, output datasets (Y ′
D2D)

were obtained after applying the D2D model to other input
datasets in the form of the normalized numerical array ranging
from −1 to 1. Finally, the output datasets were denormalized
into the range of original datasets in the 1.37 μm band for the
postprocess as follows:

YD2D = Ymin +
Y ′

D2D + 1

2
× (Ymax − Ymin) . (13)

Fig. 5 presents the procedure of D2D model processing and
summarizes the preprocess, model training process, and post-
process for D2D. XTB values are the TB or the differences
between TB in the LWIR bands; and Yalbedo is the daytime
albedo observed in the GK-2A/AMI 1.37 μm band. Table III
summarizes Xmin, Xmax, Ymin, and Ymax.

In preprocessing, training datasets were normalized between
−1 and 1. In the model training process, the generator and
discriminator were trained by their weights. In the postprocess,
the simulation results of the D2D-generated AMI 1.37 μm band
were denormalized to the range of original AMI observations.

Fig. 5. Schematic of D2D model processing to generate AHI 1.37 µm band
albedo from training to application.

Finally, the denormalized D2D-AHI 1.37 μm band was com-
pared with the observed AMI 1.37 μm band in the same target
areas.

D. Training, Validation, and Application of the D2D Model

For training our D2D model, the input patches of GK-2A/AMI
from July 24, 2019 to July 31, 2020, at 04:00 UTC were trimmed
to a size of 1024 × 1024 pixels in a batch size of 334. The
AMI data are available from July 24, 2019. Thus, this article
used the AMI data for one year from that date as a training
dataset. This article selected a time of 04:00 UTC (13:00 Korean
Standard Time) for obtaining the data to maximize the sunlight
effect. Thus, for model training, D used a batch of 334 AMI
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TABLE III
MIN AND MAX PARAMETERS FOR DATASET NORMALIZATION

1.37 μm band albedo datasets of 1024 × 1024 pixels. G used
a batch of 334 bright temperatures of the same size in 6 AMI
bands (7.3, 8.7, 10.5, 11.2, 12.3, and 13.3 μm) and 15 AMI
bands difference between the bright temperatures (7.3–8.7 μm,
7.3–10.5 μm, 7.3–11.2 μm, 7.3–12.3 μm, 7.3–13.3 μm, 8.7–
10.5 μm, 8.7–11.2 μm, 9.6–8.7 μm, 9.6–10.5 μm, 9.6–11.2 μm,
9.6–12.3 μm, 13.3–8.7 μm, 13.3–10.5 μm, 13.3–11.2 μm, and
13.3–12.3 μm). During this process, our D2D model was trained
to resemble the D2D-generated virtual albedo at AMI 1.37 μm
band to the observed albedo at AMI 1.37 μm band, and for
the discriminator D to distinguish the observed albedo from the
D2D-generated albedo at AMI 1.37 μm band.

Thirty-seven pairs of the AMI 1.37 μm band and the su-
perposition with 21 TBs and BTD data were used to validate
the optimal iteration number for D2D model construction. The
validation data periods were from the 1st, 15th, and 28th of
each month (July 28, 2019 to October 1, 2020), which were not
included in the training datasets. The D2D model was applied to
the Himawari-8/AHI sensor with 36 datasets, the superposition
of 21 combinations of AHI TBs and BTDs. The AHI data
periods were each month’s 1st, 15th, and 28th from January 2020
to December 2020. Finally, D2D-generated Himawari-8/AHI
1.37 μm data were compared with the observed GK-2A/AMI
1.37 μm data for the same dates as the AHI simulations.

E. Statistical Comparison

The D2D-generated AMI and AHI 1.37 μm bands were
compared with the observed AMI 1.37 μm band using CC,
bias, root-mean-square-error (RMSE), index of agreement (IA),
mean absolute error (MAE), relative mean bias error (rMBE),

and relative RMSE (rRMSE) as follows [81], [82]:

CC =

∑N
i=1

(
RAI,i −RAI

) (
RReal,i −RReal

)
√∑N

i=1

(
RAI,i −RAI

)2√∑N
i=1

(
RReal,i −RReal

)2
(14)

Bias =
1

N

N∑
i=1

(RAI,i −RReal,i) (15)

RMSE =

√
1

N

∑N

i=1
(RAI,i −RReal,i)

2 (16)

IA = 1−
∑N

i=1

(
RAI,i −RReal

)2
∑N

i=1

(∣∣RReal,i −RAI

∣∣+ ∣∣RAI,i −RAI

∣∣)2
(17)

MAE =
1

N

N∑
i=1

(|RAI,i −RReal,i|) (18)

rMBE =
1
N

∑N
i=1 (RAI,i −RReal,i)

RReal
(19)

rRMSE =

√
1
N

∑N
i=1 (RAI,i −RReal,i)

2

RReal
(20)

where i is the index from 1 to N , N is the total number of pixels
in the AMI data, RReal,i denotes the albedo of an ith pixel in
the observed AMI, and RAI,i denotes the albedo of ith pixel
in the D2D-generated AMI. RReal and RAI are the mean albedo
values of observed AMI and D2D-generated AMI (or AHI) data,
respectively.

In addition, the D2D model was validated using traditional
stochastic skill scores, including the probability of detection
(POD) for a correct prediction, false alarm ratio (FAR) for false
prediction, proportion correct (PC), critical success index (CSI),
and Heidke skill score (HSS) [81]. The POD, FAR, CSI, and HSS
were calculated as follows:

POD =
A

A+ C
(21)

FAR =
B

A+B
(22)

PC =
(A+D)

A + B + C+D
(23)

CSI =
A

A+B + C
(24)

HSS = 2
(AD −BC)

[(A+ C) (C +D) + (A+B) (B +D)]
(25)

where A is the hit (the number of D2D-generated AHI cirrus
pixels corresponding to observed AMI cirrus pixels), B is the
miss (the number of D2D-generated AHI cirrus pixels that do
not correspond to observed AMI cirrus pixels, or the number of
false alarms), C is the number of false alarms (the number of
no D2D-generated AHI cirrus pixels corresponding to observed
AMI cirrus pixels, or the number of misses), andD is the correct
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TABLE IV
2 × 2 CONTINGENCY TABLE

Fig. 6. CC and RMSE between the observed AMI 1.37 µm band albedo and
the D2D-generated band on December 1, 2019.

nonevent (the number of no D2D-generated AHI cirrus pixels
corresponding to no real AMI cirrus pixels, or the number of
correct rejections). Table IV summarizes the contingency tables.

IV. RESULTS

A. Hypothetical AMI 1.37 μm Band

Fig. 6 shows the variations in the CC and RMSE values
during the iterative model training between the observed and
D2D-generated AMI 1.37μm band albedo and the D2D model in
the validation datasets. The D2D model showed a maximum CC
value of 0.9931 and a minimum RMSE value of 0.0043 around
December 1, 2019. The most common number of iterations
in the validation datasets is 79158. Thus, this iteration trained
model was adopted as the constructed D2D model to simulate
the albedo in the 1.37 μm GK-2A/AMI and Himawari-8/AHI
sensors.

Fig. 7 shows the results of one of the validation datasets
to our model for AMI. Fig. 7(a) and (b) shows the observed
GK-2A/AMI and D2D-generated GK-2A/AMI 1.37 μm band
albedo, respectively, from September 28, 2019, 04:00 UTC.
Fig. 7(c) shows the differences between the observed and D2D-
generated AMI 1.37 μm band, from −0.15 to 0.15 (albedo). The
D2D-generated model produced an excellent spatial distribution
of the observed AMI 1.37 μm band. Fig. 7(d) shows the AMI
true-color RGB image obtained using the AMI red, green, and
blue bands simultaneously. As can be seen, our model-generated
AMI 1.37 μm band albedo is qualitatively accurate.

Fig. 8 shows the scatterplot between the observed AMI and
D2D-generated AMI 1.37 μm band albedo with CC = 0.9948,
bias= 0.0007, RMSE= 0.0079, rMBE= 0.0211%, and rRMSE
=0.235%. This comparison demonstrates the excellent accuracy
of the proposed D2D model.

B. Hypothetical AHI 1.37 μm Band

Fig. 9 shows the results when one of the datasets was applied
to our D2D model for AHI observations. Fig. 9(a) and (b) shows
the observed GK-2A/AMI and D2D-generated Himawari/AHI
1.37 μm band albedo, respectively, on February 28, 2020, 04:00
UTC. As mentioned, no real Himawari/AHI 1.37 μm band

Fig. 7. (a) Observed AMI 1.37 µm band. (b) D2D-generated AMI 1.37 µm
band. (c) Difference between (a) and (b) from −0.15 to 0.15 (albedo). (d)
AMI true color RGB image using 0.47, 0.51, and 0.64 µm bands. The time
is September 28, 2019, at 04:00 UTC.

Fig. 8. Scatterplots between the observed AMI and the D2D-generated AMI
1.37 µm band albedo on September 28, 2019, at 04:00 UTC.

albedo is available; therefore, this article used AMI 1.37 μm
band albedo in the common study area to compare. Fig. 9(a) and
(b) shows the general features of cirrus clouds in this article area
and the qualitative accuracy of the proposed D2D-generated AHI
1.37 μm band albedo. Fig. 9(c) shows the difference between
observed AMI and D2D-generated AHI 1.37 μm band, from
−0.15 to 0.15 (albedo). Fig. 9(d) shows the AMI true-color
RGB image. Compared with the D2D-generated AMI albedo
in Fig. 7, the D2D-generated AHI albedo intensity appears to be
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Fig. 9. (a) Observed AMI. (b) D2D-generated AHI. (c) Difference between
(a) and (b) from −0.15 to 0.15 (albedo). (d) AMI true color RGB image using
0.47, 0.51, and 0.64 µm bands. The time is February 28, 2020, at 04:00 UTC.

higher than the observed AMI albedo. These differences may be
related to AMI and AHI sensors’ different geometrical locations
and SRFs in IR bands. The virtual AHI albedo was created by
applying the AHI data to the pretrained D2D model constructed
using AMI data. The transfer learning from AMI to AHI sensors
may lead to relatively lower accuracy in the D2D-generated
AMI albedo shown in Fig. 7 than in D2D-generated AHI albedo
shown in Fig. 9.

Fig. 10 shows the scatterplots between the observed AMI and
D2D-generated AHI 1.37 μm band albedo in Fig. 9. The bias,
RMSE, and CC between the two data are −0.0001, 0.0147, and
0.9544, respectively, in albedo. The rMBE and rRMSE show
0.0046%, and 0.42%, respectively. Thus, a good agreement
between them can be identified. Notably, the D2D-generated
AHI 1.37 μm band shows a little overestimation as the albedo
increases. This result was due to missing input datasets such as
solar and satellite zenith angles and relative azimuth angles of
AMI and AHI sensors. Additionally, the effect of the transfer
learning (from AMI to AHI sensors) on the AHI sensor using
the pretrained D2D model with AMI data affected the result.

Fig. 11 shows the statistical results of comparison between
the observed AMI 1.37 μm band albedo and the D2D-generated
AHI 1.37 μm band albedo with the average values from the
January 1st, 15th, and 28th, 2020, 04:00 UTC, to December
2020, 04:00 UTC. The CC values ranging from 0.8948 to 0.9461
were relatively stable during the year. The bias and RMSE
ranged from −0.0013 to 0.0047, and from 0.0104 to 0.0305,
respectively. The bias and RMSE increased from January to
June but decreased from June to December. The RMSE shows

Fig. 10. Scatterplots between the observed AMI and the D2D-generated AHI
1.37 µm band albedo on February 28, 2020, at 04:00 UTC.

Fig. 11. Time-series results of the average values of CC, IA, bias, RMSE,
rMBE, and rRMSE between the observed AMI 1.37 µm band and the D2D-
generated AHI 1.37 µm band albedo on the 1st, 15th, and 28th of each month
of 2020.

the highest relative value in June because of a relatively larger
area of cirrus compared with other months. This result is related
to the presence of more cirrus clouds in this region owing to high
pressures from the continental air mass over the Yangtze River
in spring, and typhoons in summer. Referring to [82], models
based on rMBE and rRMSE values can be classified as excellent
(�rMBE�< 2% and �rRMSE�< 5%), good (2%<�rMBE�< 5%
and 5%< �rRMSE� < 10%), average (5% < �rMBE� < 10%
and 10% < �rRMSE� < 15%), and poor (10% < �rMBE� and
15% < �rRMSE�) models. The D2D model showed that rMBE
and rRMSE ranged less than 2%. The IA shows a similar pattern
to CC values. These results demonstrate very high accuracy and
low error on the D2D-generated AH+.1.37 μm band albedo
compared with the observed AMI 1.37 μm band albedo.

Fig. 12 shows the statistical comparison results between the
observed AMI and the D2D-generated AHI 1.37 μm band albe-
dos with the average values on every 1st, 15th, and 28th day of
the month from January 2020, 04:00 UTC, to December 2020,
04:00 UTC. The D2D-generated AHI 1.37 μm band showed
consistent results for POD (0.8990 to 0.9650), FAR (0.0627 to
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Fig. 12. Time-series results of the POD, FAR, HSS, and CSI values between
the observed AMI 1.37 µm band and the D2D-generated AHI 1.37 µm band
albedo with the average values on every 1st, 15th, and 28th of each month in
2020.

0.3238), HSS (0.6027 to 0.8609), and CSI (0.6493 to 0.8761).
The CSI and HSS value had a similar pattern to CC and IA. CSI
and HSS decreased from October to December, and POD and
FAR increased. The FAR values showed the opposite tendency
to the CSI and HSS values. The POD values were relatively over
0.89. During winter, the 1.37 μm band detected lower clouds in
a dry atmosphere [83], which may be responsible for a higher
FAR value from November to January.

C. Validation With CALIPSO Data

Fig. 13 shows the comparison results for cirrus detection
between CALIPSO and AMI or AHI 1.37 μm bands. Fig. 13(a)
shows the comparison (lines) between CALIPSO and AMI
cirrus detection with the TBs at the AMI 1.37 μm band (back-
ground image). Fig. 13(b) shows the comparison result between
CALIPSO and D2D-generated AHI cirrus detection. The blue
color denotes that both CALIPSO and the 1.37 μm bands
detected cirrus cloud. The orange color indicates no cirrus in
both CALIPSO and 1.37 μm bands. The green pixels indicate
that only CALIPSO detected cirrus clouds. The yellow pixels
indicate that only the AHI or AMI 1.37 μm bands detected
cirrus cloud. In this comparison, a threshold value of 0.007
was applied to the AHI and AMI 1.37 μm bands, which was
the MODIS-derived threshold for the 1.37 μm band for cirrus
detection [59].

Fig. 14 shows the CALIPSO VFM data for the case shown in
Fig. 13. Nine different flags are shown in the legend. We chose
the cirrus flag for the comparison. Additionally, we compared
the D2D-generated AHI cirrus data with the CALIPSO VFM
cirrus data during 2020 when CALIPSO passed between Korea
and Japan. We obtained 16 cases of spatiotemporal collocation
between the two datasets within the study area. The average
statistical results between CALIPSO and D2D-generated AHI
data gave a POD = 0.8250, FAR = 0.4265, HSS = 0.3903, CSI
= 0.5020, and PC = 0.7070. However, the average statistical
results between CALIPSO and observed AMI data gave a POD
= 0.7181, FAR = 0.3963, HSS = 0.3847, CSI = 0.4774, and
PC= 0.7198. These results demonstrate that the D2D-generated
AHI 1.37 μm band performed similarly to the observed AMI

1.37 μm. Notably, previous studies showed that the MODIS
cloud algorithm for thin clouds gave a POD = 0.849, FAR
= 0.091 [84], and PC = 0.881 [85]. The AMI cloud algo-
rithm gave a POD = 0.652 and FAR = 0.289 [86]. Notably,
the accuracy of the observed AMI and D2D-generated AHI
cirrus bands depended on the threshold value of the MODSI
cloud algorithm. This result could be improved by further
study.

V. DISCUSSION

This article proposes a D2D method to simulate a virtual AHI
1.37 μm band albedo using GK-2A/AMI 1.37 μm band and
superposition of 21 AMI LWIR bands and band differences.
Because of the capability to present a physically nonexistent
observation by a real satellite but physically reasonable in-
formation using deep-learning techniques, this article signifi-
cantly contributes to the satellite remote sensing community.
Thus, the D2D method used in this article can complement the
band information required for a variety of satellite application
products and algorithms based on a multiband combination.
This article demonstrated this advantage from a low difference
between the observed AMI 1.37 μm and D2D-generated AHI
1.37 μm. Our results showed that the deep-learning technique
could simulate the AHI 1.37 μm band, which can be helpful to
identify meteorological features from stationary land features
[83] and detect cirrus clouds for the Himawari-8/AHI.

This article appears to be similar to a previous study [54] for
virtual green band generation of ABI sensor in the GOES-R
satellite, as both studies generated nonexistent bands of weather
satellites. However, this article used a quantitative data transla-
tion method from IR bands to a NIR band, whereas the previous
study [54] used a qualitative image-to-image translation between
VIS and other VIS bands.

One limitation of this article was the dependence on highly
correlated bands of the own satellite and the neighboring satel-
lites with similar bands. This article used 21 combinations of IR
bands and their difference from the original 16 bands. This article
could provide more accurate results if the AMI and AHI sensors
have other bands sensitive to cirrus. However, other bands are
not available.

Furthermore, the proposed D2D method tends to overesti-
mate the virtual AHI 1.37 μm band compared to the observed
AMI 1.37 μm band. This feature could result from the transfer
learning of the D2D model using the AMI data, different SRFs
between the two sensors, and different solar effects due to the
separated longitudinal locations between AMI and AHI sensors.
Thus, the D2D-generated AHI 1.37 μm band derived the over-
estimation of cirrus pixels, in particular, at the edges of cirrus
clouds.

Another limitation encountered in this article was in produc-
ing the time-varying virtual AHI 1.37 μm band because the
D2D model was constructed using the AMI datasets at a fixed
time (04:00 UTC). However, the time-fixed D2D model has the
advantage of generating the virtual AHI 1.37 μm band over a
wide region, including the area with no solar reflection from
sunrise to sunset, as if the solar angle is permanently fixed at
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Fig. 13. Comparison between CALIPSO VFM data. (a) AMI 1.37 µm band. (b) D2-generated AHI 1.37 µm band. (c) Himawari RGB image on June 15, 2020,
at 04:30 UTC.

Fig. 14. CALIPSO VFM at altitudes from 0 to 20 km in the article area on June 15, 2020, at 04:30 UTC. The legend represents cloud types as nine flags. The
cyan color indicates cirrus clouds, while white and blue colors indicate other types of cloud.

04:00 UTC. The construction of the time-varying D2D model
is possible and will be the focus of future work. The preference
for the temporal variation or wide-area observation will depend
on the user’s interests.

Additionally, this article did not include viewing conditions
between AMI and AHI sensors, i.e., the relative location between
the satellite and the cloud [87], affecting the albedo in VIS bands.
Thus, further study using the solar and satellite zenith angles and
relative azimuth angles as additional input datasets for the D2D
model could improve the performance of the proposed D2D
model.

Finally, this article has a deep-learning computational limita-
tion in generating the full disk data with a high spatial resolution

due to GPU memory intensiveness, despite rapid advances in
hardware performance.

Despite a few limitations, this article proposed a beneficial ca-
pability for generating a nonexistent band of an existent satellite
and producing virtual observation data in a region with no solar
reflection, which was impossible in the traditional approaches.
The presented D2D method could be applied to global cirrus
monitoring, estimating the cloud effects on solar radiation and
the energy balance of the earth, and long-term climate change
studies using a combination of numerous real 1.37 μm bands
onboard other geostationary weather satellites located at dif-
ferent longitudes, such as GOES-16/-17 and Meteosat Third
Generation satellites.
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Furthermore, the nonexistent AMI 2.2 μm band, like the
nonexistent AHI 1.37 μm band, can be generated by a D2D
method presented in this article. However, the virtual generation
of missing bands such as the green band, 6.9 and 9.6 μm
bands in the Fengyun-4 with 14 bands ranging from 0.45 to
13.8 μm band will be challenging for the proposed D2D method
application using the neighboring GK-2A or Himawari-8
satellites.

VI. SUMMARY AND CONCLUSION

Geostationary satellites with VIS and IR bands have been
crucial in monitoring weather, particularly in nowcasting and
forecasting. Recently, geostationary weather satellites equipped
with advanced meteorological imagers have been launched and
put into operation. However, the AHI sensor onboard Himawari-
8 does not have the 1.37 μm band, which is important for
detecting thin cirrus clouds. Many previous studies have aimed
to detect thin cirrus using the 1.37μm band, such as the MODIS,
VIIRS, OLI, and MSI sensors onboard polar orbit satellites, and
cirrus has played a crucial role in the earth’s radiation budget
and the greenhouse effect

This article presents a D2D method to simulate a virtual AHI
1.37 μm band albedo using GK-2A/AMI 1.37 μm band and
superposition of 21 AMI LWIR bands and band differences.
The D2D model was trained to simulate an AMI 1.37 μm band
via superposition of 21 AMI LWIR bands and band differences
using Pix2Pix, to implement CGAN. The D2D-generated AMI
1.37 μm band albedo showed excellent statistical agreement
with the observed AMI 1.37 μm band albedo. On the basis of
excellent results in the hypothetical AMI sensor, the D2D model
was applied to generate hypothetical AHI 1.37 μm band albedo
translating the superposition of 21 AHI LWIR bands and band
differences to the nonexistent AHI 1.37 μm band albedo. The
observed AMI 1.37 μm band albedo and D2D-generated AHI
1.37 μm band albedo were compared, and the results showed
good agreement, i.e., high CC and low RMSE between the two
datasets. Additionally, the D2D-generated AHI 1.37 μm band
showed similar accuracies to the observed AMI 1.37 μm band
from the validation with the CALIPSO VFM data. Thus, the
proposed D2D model could be extended to simulate missing
bands in sensors onboard satellites and other optical satellite
applications. Future work will address the nonexistent AMI
2.26 μm band simulation similar to the virtual AHI 1.37 μm
band simulation.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers’ helpful
and constructive comments on the manuscript. The GK-2A/AMI
and Himawari-8 data used in this article were supplied by the
NMSC of the KMA and JAXA, respectively.

REFERENCES

[1] D. K. Lynch, “Cirrus: History and definition,” in Cirrus, D. K. Lynch, K.
Sassen, D. O’C. Starr, and G. Stephens, Eds. New York, NY, USA: Oxford
Univ. Press, 2002.

[2] I. Schlimme, A. Macke, and J. Reichardt, “The impact of ice crystal
shapes, size distributions, and spatial structures of cirrus clouds on solar
radiative fluxes,” J. Atmos. Sci., vol. 62, no. 7, pp. 2274–2283, 2005,
doi: 10.1175/JAS3459.1.

[3] D. L. Mitchell and W. Finnegan, “Modification of cirrus clouds to reduce
global warming,” Environ. Res. Lett., vol. 4, no. 4, 2009, Art. no. 045102.

[4] C. J. Stubenrauch, A. Chédin, G. Rädel, N. A. Scott, and S. Serrar,
“Cloud properties and their seasonal and diurnal variability from TOVS
path-B,” J. Climate, vol. 19, no. 21, pp. 5531–5553, 2006, doi: 10.1175/
JCLI3929.1.

[5] K. Sassen, Z. Wang, and D. Liu, “Global distribution of cirrus clouds
from CloudSat/Cloud-Aerosol lidar and infrared pathfinder satellite ob-
servations (CALIPSO) measurements,” J. Geophys. Res. Atmos., vol. 113,
no. D8, 2008, Art. no. D00A12, doi: 10.1029/2008JD009972.

[6] H. Nazaryan, M. P. McCormick, and W. P. Menzel, “Global characteri-
zation of cirrus clouds using CALIPSO data,” J. Geophys. Res. Atmos.,
vol. 113, no. D16, 2008, Art. no. D16211, doi: 10.1029/2007JD009481.

[7] V. Ramaswamy and V. Ramanathan, “Solar absorption by cirrus clouds
and the maintenance of the tropical upper troposphere thermal structure,”
J. Atmos. Sci., vol. 46, no. 14, pp. 2293–2310, 1989.

[8] C. Poetzsch-Heffter, Q. Liu, E. Ruperecht, and C. Simmer, “Effect of cloud
types on the earth radiation budget calculated with the ISCCP Cl dataset:
Methodology and initial results,” J. Climate, vol. 8, no. 4, pp. 829–843,
1995.

[9] T. Chen, W. B. Rossow, and Y. Zhang, “Radiative effects of cloud-type
variations,” J. Climate, vol. 13, no. 1, pp. 264–286, 2000.

[10] J. C. Dupont and M. Haeffelin, “Observed instantaneous cirrus ra-
diative effect on surface-level shortwave and longwave irradiances,”
J. Geophys. Res. Atmos., vol. 113, no. D21, 2008, Art. no. D21202,
doi: 10.1029/2008JD009838.

[11] K.-N. Liou, “Influence of cirrus clouds on weather and climate pro-
cesses: A global perspective,” Monthly Weather Rev., vol. 114, no. 6,
pp. 1167–1199, 1986.

[12] B. C. Gao, A. F. Goetz, and W. J. Wiscombe, “Cirrus cloud detec-
tion from airborne imaging spectrometer data using the 1.38 µm water
vapor band,” Geophys. Res. Lett., vol. 20, no. 4, pp. 301–304, 1993,
doi: 10.1029/93GL00106.

[13] D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years
of global cirrus cloud statistics using HIRS,” J. Climate, vol. 7, no. 12,
pp. 1972–1986, 1994.

[14] K. Hutchison and N. Choe, “Application of 1-38 µm imagery for
thin cirrus detection in daytime imagery collected over land sur-
faces,” Int. J. Remote Sens., vol. 17, no. 17, pp. 3325–3342, 1996,
doi: 10.1080/01431169608949154.

[15] S. Ou, K. Liou, M. King, and S. Tsay, “Remote sensing of cirrus cloud
parameters based on a 0.63-3.7 µm radiance correlation technique applied
to AVHRR data,” Geophys. Res. Lett., vol. 26, no. 16, pp. 2437–2440,
1999, doi: 10.1029/1999GL900554.

[16] P. Rolland, K. Liou, M. King, S. Tsay, and G. McFarquhar, “Remote
sensing of optical and microphysical properties of cirrus clouds using
moderate-resolution imaging spectroradiometer channels: Methodology
and sensitivity to physical assumptions,” J. Geophys. Res. Atmos., vol. 105,
no. D9, pp. 11721–11738, 2000, doi: 10.1029/2000JD900028.

[17] P. Rolland and K. Liou, “Surface variability effects on the remote sensing of
thin cirrus optical and microphysical properties,” J. Geophys. Res. Atmos.,
vol. 106, no. D19, pp. 22965–22977, 2001, doi: 10.1029/2001JD900160.

[18] B.-C. Gao, P. Yang, W. Han, R.-R. Li, and W. J. Wiscombe, “An
algorithm using visible and 1.38-/spl mu/m channels to retrieve cir-
rus cloud reflectances from aircraft and satellite data,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 8, pp. 1659–1668, Aug. 2002,
doi: 10.1109/TGRS.2002.802454.

[19] J. Roskovensky and K. Liou, “Detection of thin cirrus from 1.38 µm/0.65
µm reflectance ratio combined with 8.6–11 µm brightness temperature
difference,” Geophys. Res. Lett., vol. 30, no. 19, 2003, Art. no. 1985,
doi: 10.1029/2003GL018135.

[20] B.-C. Gao and R.-R. Li, “Removal of thin cirrus scattering effects in
Landsat 8 OLI images using the cirrus detecting channel,” Remote Sens.,
vol. 9, no. 8, p. 834, 2017, doi: 10.3390/rs9080834.

[21] J. Wei et al., “Cloud detection for Landsat imagery by combining the ran-
dom forest and superpixels extracted via energy-driven sampling segmen-
tation approaches,” Remote Sens. Environ., vol. 248, 2020, Art. no. 112005,
doi: 10.1016/j.rse.2020.112005.

[22] E. Ben-Dor, “A precaution regarding cirrus cloud detection from air-
borne imaging spectrometer data using the 1.38 µm water vapor
band,” Remote Sens. Environ., vol. 50, no. 3, pp. 346–350, 1994,
doi: 10.1016/0034-4257(94)90084-1.

https://dx.doi.org/10.1175/JAS3459.1
https://dx.doi.org/10.1175/penalty -@M JCLI3929.1
https://dx.doi.org/10.1175/penalty -@M JCLI3929.1
https://dx.doi.org/10.1029/2008JD009972
https://dx.doi.org/10.1029/2007JD009481
https://dx.doi.org/10.1029/2008JD009838
https://dx.doi.org/10.1029/93GL00106
https://dx.doi.org/10.1080/01431169608949154
https://dx.doi.org/10.1029/1999GL900554
https://dx.doi.org/10.1029/2000JD900028
https://dx.doi.org/10.1029/2001JD900160
https://dx.doi.org/10.1109/TGRS.2002.802454
https://dx.doi.org/10.1029/2003GL018135
https://dx.doi.org/10.3390/rs9080834
https://dx.doi.org/10.1016/j.rse.2020.112005
https://dx.doi.org/10.1016/0034-4257(94)90084-1


PARK et al.: HYPOTHETICAL CIRRUS BAND GENERATION FOR AHI SENSOR USING D2D TRANSLATION WITH AMI OBSERVATIONS 367

[23] J. M. Sieglaff and T. J. Schmit, “Vegetation monitoring and thin cirrus
detection on the next generation GOES imager,” in Proc. 12th Conf. Satell.
Meteorol. Oceanogr., Long Beach, CA, USA, 2003, p. 5.4.

[24] C. O. Justice et al., “The moderate resolution imaging spectroradiome-
ter (MODIS): Land remote sensing for global change research,” IEEE
Trans. Geosci. Remote Sens., vol. 36, no. 4, pp. 1228–1249, Jul. 1998,
doi: 10.1109/36.701075.

[25] S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller,
and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,”
J. Geophys. Res. Atmos., vol. 103, no. D24, pp. 32141–32157, 1998,
doi: 10.1029/1998JD200032.

[26] L. Di Girolamo and R. Davies, “A band-differenced angular signature
technique for cirrus cloud detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 32, no. 4, pp. 890–896, Jul. 1994, doi: 10.1109/36.298017.

[27] A. A. Prasad and R. Davies, “Detecting tropical thin cirrus using multian-
gle imaging spectroradiometer’s oblique cameras and modeled outgoing
longwave radiation,” J. Geophys. Res. Atmos., vol. 117, no. D6, 2012,
Art. no. D06208, doi: 10.1029/2011JD016798.

[28] K. D. Hutchison et al., “Automated cloud detection and classification
of data collected by the visible infrared imager radiometer suite (VI-
IRS),” Int. J. Remote Sens., vol. 26, no. 21, pp. 4681–4706, 2005,
doi: 10.1080/01431160500196786.

[29] C. Cao et al., “Suomi NPP VIIRS sensor data record verification, valida-
tion, and long-term performance monitoring,” J. Geophys. Res. Atmos.,
vol. 118, no. 20, pp. 11664–11678, 2013, doi: 10.1002/2013JD020418.

[30] J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham, and J. A. Pedelty, “The
spectral response of the Landsat-8 operational land imager,” Remote Sens.,
vol. 6, no. 10, pp. 10232–10251, 2014, doi: 10.3390/rs61010232.

[31] M. Drusch et al., “Sentinel-2: ESA’s optical high-resolution mission for
GMES operational services,” Remote Sens. Environ., vol. 120, pp. 25–36,
2012, doi: 10.1016/j.rse.2011.11.026.

[32] K. Bessho et al., “An introduction to Himawari-8/9—Japan’s new-
generation geostationary meteorological satellites,” J. Meteorol. Soc. Jpn.,
vol. 94, no. 2, pp. 151–183, 2016, doi: 10.2151/jmsj.2016-009.

[33] J. Gurka and G. J. Dittberner, “The next generation GOES instruments:
Status and potential impact,” in Proc. 5th Symp. Integr. Observ. Syst., 2001,
pp. 237–241.

[34] T. J. Schmit, M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A.
S. Bachmeier, “Introducing the next-generation advanced baseline imager
on GOES-R,” Bull. Amer. Meteorol. Soc., vol. 86, no. 8, pp. 1079–1096,
2005, doi: 10.1175/BAMS-86-8-1079.

[35] T. J. Schmit, P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and
W. J. Lebair, “A closer look at the ABI on the GOES-R series,” Bull. Amer.
Meteorol. Soc., vol. 98, no. 4, pp. 681–698, 2017, doi: 10.1175/BAM-
S-D-15-00230.1.

[36] J. Park, J. Bok, H. Oh, and H. Lim, “Development of radiometric cal-
ibration system for AMI,” in Proc. 14th Int. Conf. Space Oper., 2016,
Art. no. 2325.

[37] CEOS, “Non-meteorological applications for next generation
geostationary satellites study,” 2016. [Online]. Available: http:
//ceos.org/document_management/Meetings/Plenary/30/Documents/
6.1_Schroeder_NMA_Report_2016-09-05_v.2.00.pdf

[38] T. Y. Nakajima et al., “Theoretical basis of the algorithms and
early phase results of the GCOM-C (Shikisai) SGLI cloud prod-
ucts,” Prog. Earth Planet. Sci., vol. 6, no. 52, pp. 1–25, 2019,
doi: 10.1186/s40645-019-0295-9.

[39] H. Letu et al., “Ice cloud properties from Himawari-8/AHI next-generation
geostationary satellite: Capability of the AHI to monitor the DC cloud
generation process,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 6,
pp. 3229–3239, Jun. 2019, doi: 10.1109/TGRS.2018.2882803.

[40] H. Letu et al., “A new benchmark for surface radiation products over
the East Asia-Pacific region retrieved from the Himawari-8/AHI next-
generation geostationary satellite,” Bull. Amer. Meteorol. Soc., vol. 103,
no. 3, pp. E873–E888, 2022, doi: 10.1175/BAMS-D-20-0148.1.

[41] Y. Li and Y. Zhang, “Robust infrared small target detection using local
steering kernel reconstruction,” Pattern Recognit., vol. 77, pp. 113–125,
2018, doi: 10.1016/j.patcog.2017.12.012.

[42] D. A. Morgan, “Deep convolutional neural networks for ATR from SAR
imagery,” in Proc. Algorithms Synth. Aperture Radar Imagery, 2015,
vol. 9475, Art. no. 94750F.

[43] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778–782, May 2017,
doi: 10.1109/LGRS.2017.2681128.

[44] Z. Wu, X. Chen, Y. Gao, and Y. Li, “Rapid target detection in high
resolution remote sensing images usingYolo model,” Int. Arch. Pho-
togrammetry Remote Sens. Spatial Inf. Sci., vol. 42, pp. 1915–1920, 2018,
doi: 10.5194/isprs-archives-XLII-3-1915-2018.

[45] Y. Zhen, H. Liu, J. Li, C. Hu, and J.-S. Pan, “Remote sensing
image object recognition based on convolutional neural network,”
in Proc. 1st Int. Conf. Electron. Instrum. Inf. Syst., 2017, pp. 1–4,
doi: 10.1109/EIIS.2017.8298722.

[46] W. He and N. Yokoya, “Multi-temporal sentinel-1 and-2 data fusion for
optical image simulation,” ISPRS Int. J. Geo-Inf., vol. 7, no. 10, p. 389,
2018, doi: 10.3390/ijgi7100389.

[47] J. J. Hopfield, “Artificial neural networks,” IEEE Circuits Devices Mag.,
vol. 4, no. 5, pp. 3–10, Sep. 1988, doi: 10.1109/101.8118.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Proc. Adv. Neural Inf. Process.
Syst., vol. 25, pp. 1097–1105, 2012.

[49] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014.
[Online]. Available: http://arxiv.org/abs/1411.1784

[50] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 1125–1134.

[51] K. Kim et al., “Nighttime reflectance generation in the visible band
of satellites,” Remote Sens, vol. 11, no. 18, 2019, Art. no. 2087,
doi: 10.3390/rs11182087.

[52] Y. Kim and S. Hong, “Deep learning-generated nighttime reflectance
and daytime radiance of the midwave infrared band of a geostation-
ary satellite,” Remote Sens., vol. 11, no. 22, 2019, Art. no. 2713,
doi: 10.3390/rs11222713.

[53] J.-H. Kim, S. Ryu, J. Jeong, D. So, H.-J. Ban, and S. Hong, “Impact of
satellite sounding data on virtual visible imagery generation using condi-
tional generative adversarial network,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 13, pp. 4532–4541, Aug. 2020, doi: 10.1109/JS-
TARS.2020.3013598.

[54] J.-E. Park, G. Kim, and S. Hong, “Green band generation for ad-
vanced baseline imager sensor using Pix2Pix with advanced baseline
imager and advanced Himawari imager observations,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 8, pp. 6415–6423, Aug. 2021,
doi: 10.1109/TGRS.2020.3032732.

[55] S. Ryu and S. Hong, “Hypothetical product generation of geostationary
ocean color imager bands over the Yellow Sea and Bohai Sea using deep
learning technique,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 14, pp. 7528–7543, Jul. 2021, doi: 10.1109/JSTARS.2021.3098781.

[56] Y. Kim and S. Hong, “Very short-term rainfall prediction using ground
radar observations and conditional generative adversarial networks,” IEEE
Trans. Geosci. Remote Sens., vol. 60, no. 4104308, pp. 1–8, Sep. 2021,
Art. no. 4104308, doi: 10.1109/TGRS.2021.3108812.

[57] K. Tao and A. P. Barros, “Using fractal downscaling of satel-
lite precipitation products for hydrometeorological applications,”
J. Atmos. Ocean. Technol., vol. 27, no. 3, pp. 409–427, 2010,
doi: 10.1175/2009JTECHA1219.1.

[58] Y.-J. Choi, H.-J. Ban, H.-J. Han, and S. Hong, “A maritime cloud-
detection method using visible and near-infrared bands over the Yel-
low Sea and Bohai Sea,” Remote Sens., vol. 14, no. 3, p. 793, 2022,
doi: 10.3390/rs14030793.

[59] J. Huang et al., “Susceptibility of aerosol optical thickness retrievals
to thin cirrus contamination during the BASE-ASIA campaign,” J.
Geophys. Res. Atmos., vol. 116, no. D8, 2011, Art. no. D08214,
doi: 10.1029/2010JD014910.

[60] I. J. Goodfellow et al., “Generative adversarial networks,” in Proc. 27th
Int. Conf. Neural Inf. Process. Syst., Montreal, Canada, Dec. 2014,
pp. 2672–2680.

[61] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” in Proc. Int.
Conf. Learn. Representations, May 2016.

[62] V. Nguyen, T. F. Y. Vicente, M. Zhao, M. Hoai, and D. Samaras, “Shadow
detection with conditional generative adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 4510–4518.

[63] Y.-C. Lin, “Pix2Pix-tensorflow,” 2017. [Online]. Available: https://github.
com/yenchenlin/pix2pix-tensorflow

[64] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Proc. Med. Image Comput.
Comput.-Assist. Interv., 2015, pp. 234–241.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

https://dx.doi.org/10.1109/36.701075
https://dx.doi.org/10.1029/1998JD200032
https://dx.doi.org/10.1109/36.298017
https://dx.doi.org/10.1029/2011JD016798
https://dx.doi.org/10.1080/01431160500196786
https://dx.doi.org/10.1002/2013JD020418
https://dx.doi.org/10.3390/rs61010232
https://dx.doi.org/10.1016/j.rse.2011.11.026
https://dx.doi.org/10.2151/jmsj.2016-009
https://dx.doi.org/10.1175/BAMS-86-8-1079
https://dx.doi.org/10.1175/BAMS-D-15-00230.1
https://dx.doi.org/10.1175/BAMS-D-15-00230.1
http://ceos.org/document_management/Meetings/Plenary/30/Documents/6.1_Schroeder_NMA_Report_2016-09-05_v.2.00.pdf
http://ceos.org/document_management/Meetings/Plenary/30/Documents/6.1_Schroeder_NMA_Report_2016-09-05_v.2.00.pdf
http://ceos.org/document_management/Meetings/Plenary/30/Documents/6.1_Schroeder_NMA_Report_2016-09-05_v.2.00.pdf
https://dx.doi.org/10.1186/s40645-019-0295-9
https://dx.doi.org/10.1109/TGRS.2018.2882803
https://dx.doi.org/10.1175/BAMS-D-20-0148.1
https://dx.doi.org/10.1016/j.patcog.2017.12.012
https://dx.doi.org/10.1109/LGRS.2017.2681128
https://dx.doi.org/10.5194/isprs-archives-XLII-3-1915-2018
https://dx.doi.org/10.1109/EIIS.2017.8298722
https://dx.doi.org/10.3390/ijgi7100389
https://dx.doi.org/10.1109/101.8118
http://arxiv.org/abs/1411.1784
https://dx.doi.org/10.3390/rs11182087
https://dx.doi.org/10.3390/rs11222713
https://dx.doi.org/10.1109/JSTARS.2020.3013598
https://dx.doi.org/10.1109/JSTARS.2020.3013598
https://dx.doi.org/10.1109/TGRS.2020.3032732
https://dx.doi.org/10.1109/JSTARS.2021.3098781
https://dx.doi.org/10.1109/TGRS.2021.3108812
https://dx.doi.org/10.1175/2009JTECHA1219.1
https://dx.doi.org/10.3390/rs14030793
https://dx.doi.org/10.1029/2010JD014910
https://github.com/yenchenlin/pix2pix-tensorflow
https://github.com/yenchenlin/pix2pix-tensorflow


368 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[66] L. Palchetti, G. Di Natale, and G. Bianchini, “Remote sensing of cirrus
cloud microphysical properties using spectral measurements over the full
range of their thermal emission,” J. Geophys. Res. Atmos., vol. 121, no. 18,
pp. 10804–10819, 2016, doi: 10.1002/2016JD025162.

[67] P. Yang et al., “Radiative properties of cirrus clouds in the
infrared (8–13µm) spectral region,” J. Quantitative Spectrosc.
Radiative Transfer, vol. 70, no. 4–6, pp. 473–504, 2001,
doi: 10.1016/S0022-4073(01)00024-3.

[68] D. L. Mitchell, “Effective diameter in radiation transfer: General def-
inition, applications, and limitations,” J. Atmos. Sci., vol. 59, no. 15,
pp. 2330–2346, 2002.

[69] B. A. Baum, A. J. Heymsfield, P. Yang, and S. T. Bedka, “Bulk scattering
properties for the remote sensing of ice clouds. Part I: Microphysical data
and models,” J. Appl. Meteorol. Climatol., vol. 44, no. 12, pp. 1885–1895,
2005, doi: 10.1175/JAM2308.1.

[70] B. A. Baum et al., “Bulk scattering properties for the remote sensing of ice
clouds. Part II: Narrowband models,” J. Appl. Meteorol. Climatol., vol. 44,
no. 12, pp. 1896–1911, 2005, doi: 10.1175/JAM2309.1.

[71] A. J. Baran, “A review of the light scattering properties of cirrus,” J. Quan-
tiative Spectrosc. Radiative Transfer, vol. 110, no. 14–16, pp. 1239–1260,
2009, doi: 10.1016/j.jqsrt.2009.02.026.

[72] B. A. Baum, P. Yang, S. Nasiri, A. K. Heidinger, A. Heymsfield, and J. Li,
“Bulk scattering properties for the remote sensing of ice clouds. Part III:
High-resolution spectral models from 100 to 3250 cm− 1,” J. Appl. Meteo-
rol. Climatol., vol. 46, no. 4, pp. 423–434, 2007, doi: 10.1175/JAM2473.1.

[73] T. Inoue, “On the temperature and effective emissivity determination of
semi-transparent cirrus clouds by bi-spectral measurements in the 10µm
window region,” J. Meteorol. Soc. Jpn., vol. 63, no. 1, pp. 88–99, 1985,
doi: 10.2151/jmsj1965.63.1_88.

[74] A. K. Heidinger et al., “ABI cloud products from the GOES-R series,” in
The GOES-R Series: A New Generation of Geostationary Environmental
Satellites, S. J. Goodman, T. J. Schmit, J. Daniels, and R. J. Redmon, Eds.
Amsterdam, The Netherlands: Elsevier, 2020, pp. 43–62.

[75] I. Lensky and D. Rosenfeld, “Clouds-aerosols-precipitation satellite anal-
ysis tool (CAPSAT),” Atmos. Chem. Phys., vol. 8, no. 22, pp. 6739–6753,
2008, doi: 10.5194/acp-8-6739-2008.

[76] B. Thies, T. Nauss, and J. Bendix, “First results on a process-oriented rain
area classification technique using meteosat second generation SEVIRI
nighttime data,” Adv. Geosci., vol. 16, pp. 63–72, 2008, doi: 10.5194/ad-
geo-16-63-2008.

[77] J. Roskovensky and K. Liou, “Detection of thin cirrus using a combina-
tion of 1.38-µm reflectance and window brightness temperature differ-
ence,” J. Geophys. Res. Atmos., vol. 108, no. D18, 2003, Art. no. 4570,
doi: 10.1029/2002JD003346.

[78] B. Purbantoro et al., “Comparison of cloud type classification with split
window algorithm based on different infrared band combinations of
Himawari-8 satellite,” Adv. Remote Sens., vol. 7, no. 3, pp. 218–234, 2018,
doi: 10.4236/ars.2018.73015.

[79] H. Shang, L. Chen, H. Letu, M. Zhao, S. Li, and S. Bao, “Development
of a daytime cloud and haze detection algorithm for Himawari-8 satellite
measurements over central and eastern China,” J. Geophys. Res. Atmos.,
vol. 122, no. 6, pp. 3528–3543, 2017, doi: 10.1002/2016JD025659.

[80] N. Hayatbini et al., “Conditional generative adversarial networks (cGANs)
for near real-time precipitation estimation from multispectral GOES-16
satellite imageries—PERSIANN-cGAN,” Remote Sens, vol. 11, no. 19,
2019, Art. no. 2193, doi: 10.3390/rs11192193.

[81] D. S. Wilks, “Univariate statistics,” in Statistical Methods in the Atmo-
spheric Sciences, D. S. Wilks, Ed. San Diego, CA, USA: Academic, 2011.
pp. 21–455.

[82] N. Engerer and F. Mills, “Validating nine clear sky radiation
models in Australia,” Sol. Energy, vol. 120, pp. 9–24, 2015,
doi: 10.1016/j.solener.2015.06.044.

[83] T. J. Schmit, S. S. Lindstrom, J. J. Gerth, and M. M. Gunshor, “Applica-
tions of the 16 spectral bands on the advanced baseline imager (ABI),”
J. Oper. Meteorol., vol. 6, no. 4, pp. 33–46, 2018, doi: 10.15191/nwa-
jom.2018.0604.

[84] J.-M. Yeom, J.-L. Roujean, K.-S. Han, K.-S. Lee, and H.-W. Kim, “Thin
cloud detection over land using background surface reflectance based on
the BRDF model applied to geostationary ocean color imager (GOCI)
satellite data sets,” Remote Sens. Environ., vol. 239, 2020, Art. no. 111610,
doi: 10.1016/j.rse.2019.111610.

[85] R. A. Frey, S. A. Ackerman, R. E. Holz, S. Dutcher, and Z. Griffith, “The
continuity MODIS-VIIRS cloud mask,” Remote Sens., vol. 12, no. 20,
Art. no. 3334, 2020, doi: 10.3390/rs12203334.

[86] S. Lee and J. Choi, “Daytime cloud detection algorithm based on a
multitemporal dataset for GK-2A imagery,” Remote Sens., vol. 13, no. 16,
2021, Art. no. 3215, doi: 10.3390/rs13163215.

[87] X. Y. Zhuge, F. Yu, and Y. Wang, “A new visible albedo
normalization method: Quasi-Lambertian surface adjustment,”
J. Atmos. Ocean. Technol., vol. 29, no. 4, pp. 589–596, 2012,
doi: 10.1175/JTECH-D-11-00191.1.

Jeong-Eun Park received the B.S. degree in environ-
mental engineering in 2019 from Sejong University,
Seoul, South Korea, where she is currently working
toward the integrated M.S. and Ph.D. degrees in en-
vironmental sciences.

Her research interests include remote sensing and
deep learning techniques in Earth’s environment.

Yun-Jeong Choi received the B.S. degree in environ-
mental engineering from Sejong University, Seoul,
South Korea, in 2020, where she is currently work-
ing toward the integrated M.S. and Ph.D. degrees in
environmental sciences.

Her research interests include optical satellite re-
mote sensing for cloud detection algorithm develop-
ments or meteorological, oceanic, and environmental
satellites based on the radiative transfer model, and
deep learning techniques.

Jaehoon Jeong received the Ph.D. degree in geoin-
formatics engineering from Inha University, Incheon,
South Korea, in 2014.

He is currently a Senior Researcher with Environ-
mental Satellite Center, National Institute of Environ-
mental Research. His research interests include pho-
togrammetric engineering and remote sensing data
processing.

Sungwook Hong received the B.S. and M.S. degrees
in earth science education from the Seoul National
University, Seoul, South Korea, in 1997 and 2000,
respectively, and the M.S. and Ph.D. degrees in at-
mospheric sciences from the Texas A&M University,
College Station, TX, USA, in 2002 and 2006, respec-
tively

From 2006 to 2008, he was a Research Scientist
with the National Oceanic and Atmospheric Adminis-
tration. From 2008 to 2015, he was a Senior Research
Scientist with the Korea Meteorological Administra-

tion. From 2015 to 2019, he was an Assistant Professor with the Department
of Environment, Energy and Geoinformatics, Sejong University, Seoul, South
Korea. Since 2019, he has been an Associate Professor with the Department
of Environment, Energy and Geoinformatics, Sejong University, Seoul, South
Korea. He has authored more than 65 articles, and more than 20 inventions. His
research interests include satellite remote sensing algorithm developments based
on physical methods and artificial intelligence techniques, sensor development,
and various applications in atmosphere, ocean, surface, and environment.

https://dx.doi.org/10.1002/2016JD025162
https://dx.doi.org/10.1016/S0022-4073(01)00024-3
https://dx.doi.org/10.1175/JAM2308.1
https://dx.doi.org/10.1175/JAM2309.1
https://dx.doi.org/10.1016/j.jqsrt.2009.02.026
https://dx.doi.org/10.1175/JAM2473.1
https://dx.doi.org/10.2151/jmsj1965.63.1_88
https://dx.doi.org/10.5194/acp-8-6739-2008
https://dx.doi.org/10.5194/adgeo-16-63-2008
https://dx.doi.org/10.5194/adgeo-16-63-2008
https://dx.doi.org/10.1029/2002JD003346
https://dx.doi.org/10.4236/ars.2018.73015
https://dx.doi.org/10.1002/2016JD025659
https://dx.doi.org/10.3390/rs11192193
https://dx.doi.org/10.1016/j.solener.2015.06.044
https://dx.doi.org/10.15191/nwajom.2018.0604
https://dx.doi.org/10.15191/nwajom.2018.0604
https://dx.doi.org/10.1016/j.rse.2019.111610
https://dx.doi.org/10.3390/rs12203334
https://dx.doi.org/10.3390/rs13163215
https://dx.doi.org/10.1175/JTECH-D-11-00191.1.


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


