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Correction of Sea Surface Wind Speed Based on SAR
Rainfall Grade Classification Using Convolutional

Neural Network
Chaogang Guo , Weihua Ai , Xi Zhang , Yanan Guan, Yin Liu, Shensen Hu, and Xianbin Zhao

Abstract—The technology of retrieving sea surface wind field
from spaceborne synthetic aperture radar (SAR) is increasingly
mature. However, the retrieval of the sea surface wind field related
to the precipitation effect is still facing challenges, especially the
strong precipitation related to extreme weather such as tropical
cyclone will cause the wind speed retrieval error to exceed 10 m/s.
Semantic segmentation and weak supervision methods have been
used for SAR rainfall recognition, but rainfall segmentation is not
accurate enough to support the correction of wind field retrieval. In
this article, we propose to use deep learning to classify the rainfall
grades in SAR images, and combine the rainfall correction model to
improve the retrieval accuracy of sea surface wind speed. To over-
come the challenge of limited training samples, the transfer learn-
ing method in fine-tune is adopted. Preliminary results demonstrate
the effectiveness of this deep learning methodology. The model
classifies rain and no-rain images with an accuracy of 96.2%, and
classifies rainfall intensity grades with an accuracy of 86.2%. The
rainfall correction model with SAR rainfall grade identified by
convolution neural network reduces the root-mean-square error
of retrieved wind speed from 3.83 to 1.76 m/s. The combination
of SAR rainfall grade recognition and rainfall correction method
improves the retrieval accuracy of SAR wind speed, which can
further promote the operational application of SAR wind field.

Index Terms—Convolutional neural network, correction,
inception v3, rainfall, synthetic aperture radar (SAR), wind field.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) with all-day, all-weather
and high resolution is an important means to monitor the

sea surface wind field. With the continuous updating of load and
algorithm, the SAR based retrieval algorithm of sea surface wind
field is gradually mature on the sea surface without rainfall. For

Manuscript received 26 October 2022; revised 3 November 2022; accepted
7 November 2022. Date of publication 24 November 2022; date of current
version 7 December 2022. This work was supported in part by the Key Scientific
Research Projects of Jiangsu Provincial Meteorological Bureau under Grant
KZ202203 and in part by the fund of Key Laboratory of Atmosphere Sounding,
CMA under Grant 2021KLAS01M. (Corresponding author: Weihua Ai.)

Chaogang Guo, Weihua Ai, Shensen Hu, and Xianbin Zhao are with the
College of Meteorology and Oceanography, National University of Defense
Technology, Changsha 410073, China (e-mail: a1137084323@163.com; awhz-
jax@126.com; hushensen18@nudt.edu.cn; zhaoxianbin@nudt.edu.cn).

Xi Zhang and Yanan Guan are with the First Institute of Oceanog-
raphy, Ministry of Natural Resources, Qingdao 266061, China (e-mail:
xi.zhang@fio.org.cn; b19010076@s.upc.edu.cn).

Yin Liu is with the Jiangsu Meteorological Observation Center, Key
Laboratory of Atmosphere Sounding, Nanjing 210044, China (e-mail: li-
uyin200421@163.com).

Digital Object Identifier 10.1109/JSTARS.2022.3224438

example, National Oceanic and Atmospheric Administration
(NOAA) used Sentinel-1 to launch the Alaska coastal SAR
program [1]. The Canadian Space Agency used Radarsat-2 to
launch the Canadian National SAR wind program [2]. However,
it is still a challenge to overcome the effect of rainfall on the
retrieval of sea surface wind field, especially the extreme weather
such as tropical cyclones accompanied by heavy rainfall, which
has a great effect on human life [3]. Although according to
electromagnetic theory, atmospheric attenuation, and volume
scattering caused by rainfall are more obvious in Ku band and
can be almost ignored in C-band. However, it is more difficult
to determine the scattering changes caused by the interaction
of rainfall and sea surface in C-band [4]. The theoretical simu-
lation research shows that when the rainfall intensity does not
exceed 15 mm/h, the effect of rainfall on the normalized radar
cross-section (NRCS) of vertical transmit/vertical receive (VV)
polarization is mainly attenuation, which leads to the under-
estimate of wind speed. However, when the rainfall intensity
exceeds 20 mm/h, the contribution of surface backscattering to
effective NRCS is far less than the volume scattering of rainfall.
Therefore, it is almost impossible to use NRCS to retrieve
the surface wind vector under heavy rainfall conditions if the
rainfall rate is not accurately understood [5]. The attenuation of
scatterometer signal and volume backscattering by rainfall, as
well as the disturbance of raindrops on the sea surface, indicate
that rainfall is an important factor in SAR wind speed retrieval
[6]. In the previous work, the scatterometer data showed that
when the wind speed exceeds 30 m/s and the rainfall intensity
exceeds 15 mm/h, the error of wind speed retrieval may exceed
10 m/s [7]. In addition, Reppucci et al. estimated the impact of
heavy rain on C-band ocean backscattering based on the existing
radiative transfer model. The results show that when the rainfall
is 30 mm/h, the NRCS attenuation may exceed -1 dB. When
the rainfall intensity exceeds 50 mm/h, the attenuation of NRCS
will reach -2 dB [8].

Melsheimer et al. [9], [10] analyzed images of concurrent
data of European Remote Sensing Satellite and weather sta-
tions, indicating that the C-band radar features of rain cells
with rainfall rates below 50 mm/h comprised two main parts:
volume scattering and attenuation of the SAR signals caused
by raindrops and snow particles in the atmosphere, and an
increase or decrease in the sea-surface roughness owing to the
comprehensive effects of splashing raindrops. Retrieval of the
sea-surface wind field is based on the empirical relationship
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between the sea-surface roughness and sea-surface wind speed,
and changes in the sea-surface roughness are an important factor
that affects the NRCS measured by SAR [11]. The empirical
relationship between the NRCS and sea-surface wind speed was
used to establish geophysical model functions (GMFs) between
the VV polarization NRCS and sea-surface wind speed at low
wind speeds [12] and between the vertical transmit/horizontal
receive (VH) polarization NRCS and sea-surface wind speed at
high wind speeds [13]. In the absence of rainfall, these GMFs
can accurately retrieve the sea-surface wind field. Rainfall will
affect the retrieval accuracy of GMFs. Especially in the complex
environment of hurricane wind, rainfall will cause the wind
speed error to reach 100% [14]. However, almost all existing
GMFs do not include rainfall parameters or fully consider the
effect of rainfall.

Correcting the effect of rainfall on SAR signals is very im-
portant for wind field retrieval. However, there is no instrument
available on the SAR satellite platform to monitor rainfall syn-
chronously. The high-resolution rainfall measurement provided
by ground weather radar is limited to coastal areas, and its range
is only a few hundred kilometers. Its detection height changes
with the increase of the distance from the station, so it cannot
provide accurate near ground rainfall rate. In places far from the
coast, rainfall measurement mainly depends on satellite remote
sensing [15]. The microwave radiometer SSMI/S can provide
continuous observation covering almost half the earth, but its
spatial resolution is low (8–14 km) [16].

Zhou et al. [17] used ASCAT scatterometer data and Tropical
Rainfall Measuring Mission (TRMM) rainfall data to establish a
C-band active microwave radiation transfer model under rainfall
conditions, effectively improving the scatterometer wind field
retrieval accuracy. Then, the rainfall of SAR observation time is
calculated using geostationary IR images and nonsimultaneous
passive microwave rainfall observation. Finally, the rainfall cor-
rection model is used to correct the SAR image, the corrected
wind field is in good agreement with the NOAA Hurricane
Research Division reanalysis data. Yu et al. [18] used Radarsat-2
data and quasi synchronous TRMM PR rainfall data to establish
a fitting model of rain induced sea surface damped backscatter-
ing coefficient affected by rainfall intensity, incidence angle and
other factors, which effectively improved the retrieval accuracy
of SAR wind field under rainfall conditions.

Although the spaceborne SAR platform does not carry the
precipitation measurement load at the same time, SAR can
also capture rainfall and many other atmospheric and marine
phenomena with its special imaging mode. In 1978, after the first
ocean satellite SEASAT-A was launched, its L-band SAR cap-
tured rainfall [19]. In 1994, the space shuttle Endeavour carried
the Spaceborne Imaging Radar-C/X-Band SAR (SIR-C/X-SAR)
that was also used to capture rain cells. In SAR images, rain cells
comprise bright and dark patches of irregular shapes, and the
patch structure is closely related to the working frequency band
and polarization mode of the radar [20]. Further developments
of SAR have allowed the capture of radar features of rainfall in
the C-band and X-bands. Analysis of SAR images has shown
that heavy rainfall at sea increases the NRCS of the C-band and
X-band and reduces the NRCS of the L-band [9].

The rainfall rate is an important parameter for analyzing the
effect of rainfall on the SAR NRCS. However, the sea-surface
wind field under rainfall conditions involves many physical
processes of sea-air interactions. At present, no systematic
theory has been established, and retrieving rainfall based on
physical methods is still a challenge [18], [22]. Wang et al.
[23] used convolutional neural network (CNN) to classify 10
geophysical phenomena including rainfall from SAR images.
Colin et al. [24] realized semantic segmentation of ten oceanic
processes in the context of a large quantity of image-level ground
truths. Zhao et al. [25] used Sentinel-1 data and filters to realize
automatic rainfall detection. Colin et al. [26] used Next Gener-
ation Weather Radar data and a CNN to segment the rainfall in
SAR images with thresholds of 1, 3, and 10 mm/h. Incorporating
ground reference data provides a reliable method for studying
precipitation using SAR images. Lin et al. [27] estimated the
rainfall rate according to the attenuation characteristics of NRCS
in SAR images, and the results are consistent with the weather
radar rainfall.

Since SAR cannot directly retrieve the rainfall rate, the current
method of correcting the impact of rainfall on SAR signals is
to use rainfall data of other loads, or use nonrainfall areas in
SAR images to compare and analyze the impact of rainfall on
SAR signals. But in fact, SAR and other loads can match in
relatively few areas, and the coverage of meso and small-scale
phenomena with the intensity reaching tropical cyclone is very
large. The existing methods have limitations. The Sentinel-1
satellites of the European Space Agency (ESA) provide a large
amount of reliable data for studying the interaction between
the wind field and rainfall. The Global Precipitation Mission
(GPM) dual-frequency precipitation radar (DPR) can provide
the near-surface rainfall rate with a 5 km resolution as well as a
vertical profile of the rainfall rate, and the minimum measurable
rainfall rate is accurate to 0.2 mm/h, which is useful for rainfall
research on using SAR. In this article, we propose to use deep
learning to identify rainfall levels in SAR images, and com-
bine existing rainfall correction models to correct wind speed
retrieval of SAR images. The rest of this article is organized
as follows. Section II introduces the data and products of the
Sentinel-1 and GPM satellites as well as the data preprocessing.
Section III introduces the CNN model and rainfall correction
model. Section IV presents the results of the experiment and
validation. Finally, Section V concludes this article.

II. DATA AND PREPROCESSING

A. Sentinel-1 Data and Preprocessing

Sentinel-1 is part of ESA’s Copernicus program, and it is a dual
constellation system comprising polar orbiting satellites A and
B, which were launched on April 3, 2014 and April 25, 2016, re-
spectively. Sentinel-1 operates in a near-polar solar synchronous
orbit at an altitude of 679 km. Each of the two satellites carries
a C-band SAR with a working frequency of 5.405 GHz. Each
satellite has a revisit period of 12 days. Sentinel-1 was launched
to provide observation data for research and applications in land,
ocean, atmosphere, maritime search and rescue, and climate
change [28].
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Fig. 1. Flowchart of Sentinel-1 IW data processing with SNAP.

Sentinel-1’s SAR has four imaging modes: strip map, in-
terferometric wide swath (IW), extra wide swath, and wave
(WV). The core products of Sentinel-1 are provided at levels
0, 1, and 2. In this article, we used the VV polarization data
of the level 1 ground range detected high-resolution product
of IW mode. The resolution in range and azimuth is 20 m ×
22 m and a cutting width of 250 km. This mode acquires three
sub band images acquired by progressive terrain scanning that
are then synthesized by corresponding algorithms [29]. This
data is projected by multiview and World Geodetic System 84
projection on an ellipsoid model of earth. The pixel information
indicated the detected amplitude, and the phase information was
lost. The resolution of the generated product was almost the
same in both directions, and speckle was reduced at the cost of
reducing the spatial resolution.

The Sentinel Application Platform (SNAP) is software pro-
vided by the ESA for preprocessing Sentinel-1 data [30]. SNAP
can process the data by creating a preprocessing flow chart,
setting the processing and parameters required for the data,
and directly entering the data can obtain the processed data.
The flow chart of Sentinel-1 IW mode processing is shown in
Fig. 1, including 8 steps. The image drawn by SAR VV NRCS is
single channel, but the input of the Inception v3 model requires
three channels of images. We fill the other two channels of the
single channel image with single channel data.

B. Global Precipitation Mission Data and Products

The GPM satellite program is the successor to the TRMM.
The core observation platform of GPM was launched on Febru-
ary 27, 2014, and it carried the GPM microwave imager and
DPR. The DPR includes a Ku precipitation radar with a working
frequency of 13.6 GHz and a Ka precipitation radar with a work-
ing frequency of 35.5 GHz. Its latitudinal coverage is 65°N–65°
S, and it can detect weak precipitation and snowfall at a minimum
rate of 0.2 mm/h [31]. GPM data products are divided into four
levels, which are distributed by NASA Space Flight Center, and
the 1–3 level products are public. In this article, we used data
obtained by the normal scanning method of DPR products in
the 6th edition. In this product, 49 points are scanned under the
satellite at a time with a resolution of 5 km, scanning width of
245 km, and vertical resolution of 250 m.

C. Data Matching

To ensure that areas of different datasets were matched in
the same time and space, we only retained data for which the
difference between the GPM and SAR time tags did not exceed
±15 min. Fig. 2 shows a schematic diagram of the data matching.

Fig. 2. Matching the areas of the GPM DPR (color) and Sentinel-1 (grayscale).

TABLE I
RAINFALL INTENSITY GRADES

The grayscale image shows the Sentinel-1 VV polarization
NRCS, and the color image shows the GPM near-ground rainfall
rate. To comply with the input requirements of the CNN and
making the subimage resolution consistent with that of the
GPM data, we cut the subimage to 224 pixels×224 pixels. Each
subimage covered an area of 5 km × 5 km in the longitude and
latitude directions.

D. Dataset

The GPM near-ground rainfall rate was used to obtain the
initial labels of the subimages. As given in Table I, the data
were divided into four rainfall intensity grades according to
a meteorological standard [32]: light rain (LR), moderate rain
(MR), heavy rain (HR), and torrential rain (TR). The standard
considers the maximum rainfall rate for a rainstorm as 32 mm/h,
but such instances were very scarce. Thus, we classified all
rainfall rates greater than 16 mm/h as TR.

We matched Sentinel-1 and GPM data for the eastern Pacific
and Atlantic Oceans from 2017 to 2018 and obtained 125
matches. Most of the matches were in the LR range, so few
instances of data with rainfall intensities above LR were col-
lected. We first built the dataset and only divided the subimages
into two categories: rain and no rain (NR). This dataset was
used to test whether the transfer-learning model could recognize
rainfall in SAR images. Subsequently, we established a dataset
that included NR and the four grades of rainfall intensity. For the
first dataset, we set the number of subimages in the rain and NR
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Fig. 3. Number of data types.

Fig. 4. Example subimages and corresponding rainfall intensity grades.

Fig. 5. Flow chart of wind field retrieval based on deep learning and rainfall
correction mode.

categories to be consistent to avoid errors caused by the sample
size. For the second dataset, Fig. 3 shows the number of data
types. Examples of sub images of different rainfall grades are
shown in Fig. 4. Both datasets were divided into a training set,
validation set, and test set at a ratio of 7:2:1.

III. RAINFALL GRADE IDENTIFICATION AND WIND FIELD

RETRIEVAL CORRECTION

The flow chart of retrieving sea surface wind speed based on
deep learning and rainfall correction model is shown in Fig. 5.
First, match the data according to the time and space information
of Sentinel-1 SAR and GPM DPR, and preprocess the matched
SAR data using SNAP to obtain the calibrated NRCS (dB).
Second, according to the input demand of the deep learning

model and GPM DPR near surface rainfall rate, the rainfall grade
dataset is made. Then, combining the rainfall grade recognized
by the training model and the rainfall correction model, the
NRCS of SAR images in the rain area is corrected. Finally,
the Uncorrected/Corrected SAR wind speed and ECMWF wind
speed are compared, and the correction model parameters are
determined to obtain the corrected sea surface wind speed.

SAR images can capture a lot of atmospheric and marine
phenomena, and dozens of sea surface phenomena have been
recognized based on CNN. However, the number of collected
sea surface phenomena is limited, and the new model is trained
by means of transfer learning. In this article, the data that meets
the time and space requirements of Sentinel-1 SAR and GPM
DPR is even rarer, and it is still unable to establish a dataset with
rich data, so transfer learning is also our best choice. Based on
the radiative transfer model, several rainfall correction models
related to rainfall rate have been established based on ASCAT,
Radarsat-1, Radarsat-2 and Envisat SAR. After comparing these
models, we choose the model with the best correction effect
as the correction model for this article. Because the accurate
rainfall rate cannot be obtained from SAR images, we input the
intermediate value of the identified rainfall grade into the model
for NRCS correction.

A. Convolutional Neural Network and Transfer Learning

The CNN concept was first proposed by LeCun. This neural
network is good at extracting color, texture, and shape features
of images, and it has obvious advantages for image processing.
Inception Net is one of many CNN models [33], which was first
used by Google in the ImageNet Large Scale Visual Recognition
Challenge in 2014 [34]. Inception Net includes four types of
models, and the Inception v3 model was adopted in this article.
Inception v3 disassembles a large two-dimensional (2-D) convo-
lution kernel into two smaller 1-D convolution kernels using the
Inception v2 model and optimizes the structure of the Inception
module. This method effectively reduces the number of model
parameters, which suppresses overfitting and reduces the top-5
error rate from 4.8% to 3.5% [35].

The optimized Inception v3 is still a very deep network with
a 48-layer network structure and more than 23 million network
parameters [36]. Therefore, training a new Inception v3 model
would require a large number of datasets, a long time, and high-
performance hardware. However, we can use transfer learning
to obtain the recognition function while avoiding this arduous
process. The model is retrained by using the known dataset for
application to small datasets. Wang et al. [23] used the Inception
v3 model to classify geophysical phenomena in the Sentinel-1
WV data and achieved an overall accuracy of over 93% in 10
categories. Xia et al. [37] used Inception v3 and transfer learning
to recognize nearly 20 kinds of flowers according to color, shape,
and texture.

CNN is a multilevel deep structure, which is similar to other
deep learning models. In the structure, many convolution layers
are alternately distributed with pooling layers or subsampling
layers, and at the end of the structure is one or more fully
connected layers [38]. Its hierarchical structure helps to learn
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Fig. 6. Pretrained Inception v3 network structure (black connections) and the
modified network structure (red connections).

invariant features and capture the hierarchical representation of
features from low layers to high layers. The input is feedforward
through two-stage convolution and subsampling operations to
obtain the feature representation, and then the Gaussian classifier
is used to generate the probability distribution [39]. For CNN,
it usually contains three key components: convolution layer,
pooling layer, and fully connected layer.

The function of the convolution layer is to extract different
features of the input by using the convolution kernel. The distri-
bution in the Inception v3 structure is shown in Fig. 6. Then,
based on the nonlinear activation operation of the activation
function, better eigenvalues are retained and scattered features
are discarded. One of the most effective activation functions
in the nonlinear activation layer is the rectification linear unit,
which is a non-negative piecewise function that always obtains
the maximum value between zero and input, as described in [40]

f (x) = max (x, 0) =

{
x, x > 0
0, x ≤ 0

. (1)

The role of pooling layer is to reduce the amount of network
parameters and computation without losing image features.
There are two common pooling methods: average pooling and
maximum pooling. The most used is maximum pooling, which
is generally better than average pooling. Pooling layer is mainly
used to reduce the feature space dimension of CNN, but it will
not reduce the deep. In addition, the pooling layer can effectively
prevent the over fitting of the model and effectively improve the
generalization ability of the model.

The full connection layer is at the network outlet, followed
by the network output. Its function is mainly to complete the
summary of eigenvalues and classify images according to the
situation of eigenvalues. After fully extracting and compressing
image features, the CNN will input all feature values to the
full connection layer. The full connection layer will flatten
the multidimensional feature map obtained in one dimension
and then carry out activation operation. For object recognition,
SoftMax classifier is commonly utilized to normalize the label

probability, as mathematically described in [40]

softmax (yi) =
eyi∑n
j=1 e

yi
. (2)

The research shows that Inception v3 model can well realize
the recognition and classification of new images by changing the
structure of the full connection layer and retaining the settings
of all convolution layers. Transfer learning involves migrating
the weights of a network pretrained on a large dataset to small
datasets and then fine-tuning the network. The black connections
part of Fig. 6 is a model trained by Imagenet dataset, which has
1000 categories and more than 1 million picture data. Then, we
remove the last three layers of the original model, and input
the feature output results of the original model to a new full
connection for classification. The pretrained Inception v3 model
has been successfully applied to extracting general features such
as curves and edges of SAR images. In this article, we applied
it to grading rainfall intensities. The default input image size
of Inception-v3 is 299 pixels×299 pixels; however, the image
size in the dataset was 224 pixels×224 pixels. We did not resize
the images to 299 pixels×299 pixels when training and testing
Inception-v3. This did not change the number of channels but
instead changed only the size of the feature maps generated
during the procedure, and the result was satisfactory.

B. Rainfall Correction Model

The effect of rainfall on SAR signals can be divided into three
parts: the attenuation of rainfall on signals in the atmosphere,
the volume scattering of raindrops in the atmosphere and the
impact of raindrops on the sea surface, which change the sea
surface roughness [6]. The rain-modified measured backscatter
σm is

σm = (σwind + σsurf )αatm + σatm (3)

where σm is the SAR-measured NRCS, σwind is the wind-
induced surface backscatter predicted by the ECMWF and
CMOD5, σsurf is the rain-induced surface perturbation
backscatter, αatm is the two-way rain-induced atmospheric at-
tenuation, and σatm is the rain-induced atmospheric backscat-
ter. The net two-way atmospheric attenuation factor αatm is
expressed as

αatm = 10−0.2
∫ H
0 kdr (4)

where H is the height of melting layer, k = 0.0031R is the atmo-
spheric attenuation coefficient (dB/km) for 5.7 cm wavelength
[17], where R is rain rate (mm/h). σatm is expressed as

σatm =

∫ H

0

10−10π
5

λ4
|Kw|2Ze · αatmdr (5)

where λ is the wavelength (cm) of SAR; Kw =
(n2 − 1)/(n2 + 2) is a coefficient related to the absorption
properties of water, which is assumed to be 0.93 for rain.
Ze = 210R1.6 is the effective reflectivity (mm6/m3)) of the
atmospheric rain. σwind is derived from (3)

σwind = σm α−1
atm − σrain (6)
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TABLE II
RELATION BETWEEN FITTED COEFFICIENTS AND INCIDENCE ANGLES AND RAINFALL INTENSITY FOR EQUATION (7)

TABLE III
RELATION BETWEEN FITTED COEFFICIENTS AND INCIDENCE ANGLES AND RAINFALL INTENSITY FOR EQUATION (8)

Fig. 7. Results of model training set (blue line) and validation set (red line).
(a) Rain and NR dataset. (b) Dataset of different rainfall intensity grades.

where σrain = (σatmα−1
atm + αsurf ), α−1

atm, and σrain can be
fitted with SAR data and rainfall rate

α−1
atm (θ) =

3∑
n = 0

pn (θ)R(θ)n (7)

σrain (θ) =

3∑
n = 0

qn (θ)R(θ)n (8)

where R is rainfall (dB·mm/h), p and q are fitting coefficients, and
θ is the angle of incidence. The observation range of spaceborne
SAR is about 15° to 50°. Considering that the incidence angle
ranges of ASCAT and Sentinel-1 are similar, we use the coeffi-
cients fitted by the rainfall rates of ASCAT and TRMM. Table II
shows the fitting coefficients of (7) with different incident angles.
Table III shows the fitting coefficients of (8) with different
incident angles.

IV. RESULTS AND VALIDATION

Fig. 7 shows the changes in the model accuracy over epochs
with the training and validation sets. Fig. 7(a) shows the results
with the rain and NR dataset. The accuracy tended to stabilize
after 10 epochs with both the training and validation sets. The
accuracy was close to 100% with the training set, about 98% with
the validation set, and 96.2% with the test set. Fig. 7(b) shows

Fig. 8. Example recognition results using retrained models: (a) NR, (b) LR.

the results with the dataset of different rainfall intensity grades.
The accuracy increased rapidly with more epochs for both the
training and validation sets. After 20 epochs, the trend slowed
rapidly, and the accuracy fluctuated within a certain range. The
model was trained for 30 epochs. The accuracy was mostly stable
for the training set and fluctuated within a certain range for the
validation set. The accuracy was about 99% for the training set,
85% for the validation set, and 86.2% for the test set.

Fig. 8 shows the recognition results of the rainfall intensity.
Fig. 8(a) shows the NR recognition results, and Fig. 8(b) shows
the LR recognition results. For each subimage, the first line
gives the classification results of the model, and the second to
sixth lines give the probability that the model would classify the
subimage into a certain rainfall intensity grade.

Table IV presents the confusion matrix for the results with
the test set. The retrained transfer-learning model was effective
at recognizing NR and TR. Among LR subimages, 9.52% were
wrongly classified as MR, and 4.76% were wrongly classified
as NR. Among MR subimages, 6.66% were wrongly classified
as LR, and 6.66% were wrongly classified as HR. Among HR
subimages, 20% were wrongly classified as TR.

LR subimages may have been wrongly classified as NR if
they lacked obvious features. The wrong classification of LR
subimages as MR and MR subimages as LR and HR may be
because the rainfall rate was at the threshold between these
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TABLE IV
CONFUSION MATRIX OF THE CLASSIFICATION RESULTS USING THE MODEL

Fig. 9. LR subimages wrongly classified as MR.

Fig. 10. Wind fields estimated from SAR versus reanalyzed data from
ECMWF.

grades, and the differences between two adjacent grades were not
particularly obvious. As shown in Fig. 9 shows two example LR
subimages recognized as MR. The model assigned very similar
probabilities to MR and LR. In addition, the rainfall ratios of
these two subimages were 2.16 and 2.28 mm/h, respectively,
which are very close to the threshold value of 2.5 mm/h between
LR and MR. The wrong classification of HR subimages as TR
was mainly because not enough HR data were collected, so the
model was not sufficiently trained to extract HR features.

The Inception v3 model can only obtain the rainfall grade of
SAR subimages, but not the accurate rainfall rate. Therefore,
we input the intermediate values of all rainfall grades into the
rainfall correction model. The comparison between the corrected
SAR wind speed and the ECMWF wind speed is shown in
Fig. 10. Fig. 10(a) contains the scatter plot of uncorrected SAR
sea surface wind speed and ECMWF wind speed at all rainfall
grades. The root-mean-square error of uncorrected rainfall af-
fecting wind speed is 3.83 m/s. Fig. 10(b) shows the scatter plot

of SAR sea surface wind speed and ECMWF wind speed after
correction for the impact of rainfall. The root-mean-square error
of the corrected wind speed is 1.76 m/s. It can be seen that the sea
surface wind speed after rainfall correction is more consistent
with the ECMWF wind speed.

V. CONCLUSION

Owing to the increasingly serious effects of climate change,
monitoring the changes to extreme weather and meso- and
small-scale phenomena in the oceans is of great importance to
ensuring the safety of economic production and human lives.
Conventional ground-based radar can only monitor land and off-
shore areas, so remote sensing is the main means of large-scale
ocean monitoring. Although global wind-field and precipitation
products are already available, there are still many challenges to
improving the monitoring resolution and simultaneously moni-
toring the wind field and precipitation. Advances in SAR-related
technology have led to the gradual application of SAR products
to wind farms. Precipitation is an important factor that affects
wind-field retrieval, but combining SAR and other loads is
not practical. Therefore, we considered using deep learning to
extract rainfall information from SAR images to eliminate their
influence on wind-field retrieval.

In this article, we used the GPM near-surface rainfall rate as
the reference data and labeled data according to the standard for
rainfall intensity grades. We then used established datasets to
train fine-tune a pretrained Inception v3 model. These results
indicate that a CNN based on transfer learning can be used to
recognize rainfall in SAR images. The model was then trained
by using a dataset containing different rainfall intensities. The
accuracy with the training and validation sets was lower than
with the previous dataset containing only rain or NR but re-
mained above 80%. These results are a preliminary confirmation
that the rainfall intensity can be graded according to features
captured by SAR images. However, at present, there are not
many Sentinel-1 data and GPM near surface precipitation data
that can be matched, leading to the recognition effect of the
retrained model around some rainfall level threshold still needs
to be further improved. Finally, it is verified that the median
value of rainfall grade identified by CNN is input into the exist-
ing rainfall correction model, which can effectively reduce the
impact of rainfall on wind field retrieval. However, the modified
correction model is more suitable for the area with higher wind
speed, and it needs to be improved or fitted with a new model in
the area with lower wind speed.
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Our next step is to match more Sentinel-1 and GPM DPR data.
On the one hand, it is to further improve the generalization rate
and classification accuracy of the model. On the other hand, it is
to fit a rainfall correction model based on Sentinel-1 and GPM
DPR near ground rainfall rate, so as to realize automatic recog-
nition of SAR rainfall phenomena and wind field correction.
Retrieval of the sea-surface wind field based on remote sensing
is a relatively mature technology for conventional applications,
but the interaction between the sea-surface wind field and pre-
cipitation has not yet been established as a complete physical
model. If more rainfall and wind information can be obtained
from SAR images at the same time, it will be helpful to this part
of the article.
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