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Abstract—In recent years, national economies are highly affected
by crop yield predictions. By early prediction, the market price
can be predicted, importing, and exporting plan can be provided,
social, and economic effects of waste products can be minimized,
and a program can be presented for humanitarian food aid. In
addition, agricultural fields are constantly growing to generate
products required. The use of machine learning (ML) methods in
this sector can lead to the efficient production and high-quality
agricultural products. Traditional predictive machine models were
unable to find nonlinear relationships between data. Recently, there
has been a revolution in prediction systems via the advancement of
ML, which can be used to achieve highly accurate decision-making
networks. Thus far, many strategies have been used to evaluate
agricultural products, such as DeepYield, CNN-LSTM, and Con-
vLSTM. However, preferable prediction accuracy is required. In
this study, two architectures have been proposed. The first model
includes 2D-CNN, skip connections, and LSTM-Attentions. The
second model comprises 3D-CNN, skip connections, and ConvL-
STM Attention. The Input data given from MODIS products such
as Land-Cover, Surface-Temperature, and MODIS-Land-surface
from 2003 to 2018 on the county level over 1800 counties, where
soybean is mainly cultivated in the USA. The proposed methods
have been compared with the most recent models. Then, the results
showed that the second proposed method notably outperformed the
other techniques. In case of MAE, the second proposed method,
DeepYield, ConvLSTM, 3DCNN, and CNN-LSTM obtained 4.3,
6.003, 6.05, 6.3, and 7.002, respectively.

Index Terms—3D-CNN, ConvLSTM, forecasting, LSTM
attention, skip connection.

I. INTRODUCTION

A LONG time ago, manual surveys were one of the most
widely used sources in crop forecasting [1]. Afterward,
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mathematical models have been introduced with several parame-
ters, and data are required in the original place to be collected [2].
Meanwhile, collecting data also are so expensive, and difficult
to measure. Recently, machine learning (ML) techniques were
used for accurate prediction models [3]. Indeed, it results in food
availability in the future, and also the product resources demand
can be used optimally [4]. Moreover, digital and intelligence
farming with the usage of remote sensing data leads the farmers
to get closer to new advanced innovation methods. To have
incredibly optimum lands, it requires increasingly to extract data
from satellites. Therefore, it demands several datasets such as
soil, weather, water, climate, use of fertilizers, etc. [5]. This
illustrates that crop yield forecasting is not only a straightfor-
ward assignment, but also comprises different complex stages.
After collecting the data, it is necessary to provide an optimal
decision-making system that leads to ensuring the sustainability
of human food resources [6].

Although crop yield forecasting systems can reasonably pre-
dict accurate crop yields, a higher yield forecasting quality is
always desirable [7]. ML methods, which have been utilized con-
siderably from supermarket to customer treatment evaluation,
can be used to make an accurate crop yield forecasting [8]. ML
can discover the patterns and relationships between extracted
features, and also can determine valuable information. Some
traditional ML techniques, including support vector machines,
decision trees, and artificial neural networks, have been used re-
cently in prediction applications [9]. In additional, deep learning,
which is a subset of ML, can be used to achieve high accurate
rates during the cultivation and harvesting period, because of
having deeper networks. Therefore, when a system becomes
deeper, the network’s efficiency will increasingly improve [10].

In recent years, a great number of researchers have evaluated
different ML methods in crop yield prediction field. Convolution
neural network, which is a subset of the ML, is the most usable
ML method. In [11], MLP and CNN architectures have been
used to feature extraction by authors. They have employed two
methods Watershed Segmentation and Circular Hough Trans-
form, for counting fruits from extracted features. One of the
algorithms named WS gained as best output with R2 = 0.826.
Habaragamuwa et al. [12] used region convolutional neural
network methods to detect ripe, and unripe strawberries in the
field, and 82.61% was the best accuracy. For detecting apples on
trees, Kang and Chen [13] used an RC-CNN, which is a deeper
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model. They have reached 86% accuracy. Nosratabadi et al.
evaluated the crop yield prediction performance by comparing
artificial neural networks-imperialist competitive algorithm and
artificial neural networks-gray wolf optimizer models [14]. They
found that ANN-GWO predicted better with R of 0.48, RMSE of
3.19, and MEA of 26.65 than the ANN-ICA model. Li et al. [15]
have used a prediction model, which indicated an evolutionary
method according to LSTM equipped with the attention tech-
nique. The results showed that the defined strategy reached an
excellent prediction performance compared to the other models.

LSTM, GRU, BiLSTM, and BiGRU were mostly used for
forecasting systems. Alibabaei et al. [16] used bidirectional for
both LSTM and GRU to crop yield forecasting. They employed
time series information like temperature data, irrigation plans,
and soil data in their prediction model. The results showed that
BiLSTM performs better than the LSTM, GRU, and BiGRU by
means of Tomato and Potato prediction. YiledNet was revealed
by Khaki et al. [17]. They used this model for transfer learning
between soybean and corn yield forecasting. Gong et al. [18]
combined RNN and temporal convolutional networks for tomato
yield prediction. Results proposed that RSME of their method
outperformed both classical and traditional models. Ju et al. [19]
compared seven favorite ML methods, on three products: paddy
rice in South Korea and soybean, and corn in two states of the
US, Illinois, and Iowa, 14 years were trained for prediction for
each crop. They have used a series of data indexed consisting
of vegetation indices from MODIS data, climate information,
product field measurements, and land cover data of city-level
spatial resolution. Gholizadeh et al.[20] revealed that the ANN
model was a more accurate tool than MLR for predicting fruit
yield in coriander. Alwis proposed depth smart LSTM, which
consists of DNN with environmental agents, where the data are
evaluated with such information [21]. The chemical structures
of the vegetables can be assessed with an accuracy of 89%.

In addition, few number of articles has been addressed skip
connection for the purpose of predicting. However, in the filed
of classification, lots of researchers have revealed that deeper
neural networks can extract more features. ResNet is known as
one of the most prominent deep networks [22], which is able to
remove the vanishing gradient issues. DenseNet has been offered
to tackle the ResNet problems. It has higher performance and
fewer parameters in comparison to ResNet [23]. The training
challenges of deeper systems is enormously decreased. Zhong
et al. [24] used spatial-spectral residual system and fast dense
connection spatial-spectral. Wang et al. [25] proposed to hyper-
spectral classification.

Attention mechanism has been first used for the translation du-
ties [26]. The mechanism of attention systems is such that focus
the main features and reduce effect of the incoherent data. The
convolutional block attention module is applied to HSI input for
classification tasks in [27] and [28]. The attention mechanism is
applied after each CNN in spatial-spectral attention method [29].
Two structure named double-branch multiattention [29] and
double-branch dual-attention (DBDA) mechanism systems [30]
used attention mechanism.

According to our investigations, no paper has researched the
combination of Attention ConvLSTM and 3DCNN for crop

yield prediction. Also, a network with higher accuracy and faster
speed is demanded. Therefore, in this article, more attentive
spatio-temporal feature extractions have been presented by using
the 3D-CNN, convolutional LSTM, and attention mechanism.
The proposed models show that the architectures offer more
precise crop yield prediction.

Scientists indicate that deep learning methods are the most
popular method for crop yield prediction. Therefore, the main
purpose behind this research to use satellite images and deep
learning methods, to generate yield predictions for any input
types, either full dimension images or histograms. The first
proposed model actually consists of skip connection and CNN
to extract relevant features. Then, a sequence of the 2D convolu-
tional neural networks paralleled with an LSTM equipped with
an attention mechanism. The series of CNNs can extract spatial
features from the previous stage and combine them efficiently
with a time series extractor. Attention LSTM also focuses on
those weights, which are intensely interesting. But in the second
architecture, 2D-CNNs and LSTM have been replaced by 3D-
CNN and ConvLSTM, respectively. Spectral-spatial features are
effectively execrated by 3D-CNN and ConvLSTM can extract
the Spatio-temporal features impressively. In this article, It is
presented that the proposed model will effectively predict crop
yield compared to the other competent models.

The structure of this article is organized as follows. Section II
indicates the material of some deep learning; Section II-A
describes the architecture of the proposed model; Section II-B
shows details about the datasets, which is used in this article, and
their preprocessing techniques, training details, and evaluation
metrics as well; Results and Discussion of the prediction models
are shown in Sections III and finally Section IV concludes this
article.

II. MATERIAL AND METHODS

Deep learning models have the ability to learn the extracted
information over time. These deep learning models can be as
listed below: recurrent neural networks, 2D/3D-convolutional
neural networks, attention mechanism, and skip connection. In
general, the abovementioned networks are composed of several
stacked layers, where the input of one layer is the output of the
previous layers [31]. This article has tried to use these models
efficiently.

A. Proposed Neural Network Model

1) Prediction Framework Settings: In this section, two novel
models have been proposed, which have indicated in Figs. 1 and
2, respectively. The first model contains 2D-CNN with the help
of skip connections, then it is followed by several 2D-CNNs,
then attention LSTM mechanism paralleled with multilayered
2D-CNN for final forecasting. The second method is the same
as the first model, with the difference that instead of 2D-CNN
layers and an LSTM layer, 3D-CNN and ConvLSTM are used
sequentially. The combination of the 2D-CNN and attention
LSTM was used in the first model, and 3D-CNN and atten-
tion ConvLSTM were applied for the second proposed model,
which makes a significant improvement in prediction accuracy.
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Fig. 1. Deep learning architecture of the first proposed prediction model.

Fig. 2. Deep learning architecture of the second proposed prediction model.

The purpose of this article is to estimate soybean yield in the
United States of America. It is worth noting that various types of
validation tests have been performed to confirm the best number
of layers, which will be fully explained in the following sections.
Briefly, 1–5 CNN layers were investigated in the testing phase.
The best training rate was selected.

2) Proposed Models Crop Yield Prediction Architecture:
Overview of the first proposed model has been shown in Fig. 1.

Fig. 3. Skip connections network mechanism.

The proposed prediction model includes four phases: (a) spatial
feature extractor, (b) spatial encoder, and a parallel learning deep
temporal and spatial feature extractor using attention LSTM, and
2D-CNNs which are indicated in the part (c) and (d). The process
is composed of the five-step as follows:

Step 1: In the first part, a 2-D feature extractor, which consists
of a three-layer convolution, was used, and shown in Fig. 1(a),
where each layer is made of a 3 × 3 2-D convolution layer
with 128 filters, then followed by a batch normalization layer.
The nonlinear batch normalization is performed to speed up and
sharpen the network [32].

One of the most popular deep learning modules is Con-
ventional Neural Networks which can be used as a feature
extractor. CNNs are usually combined with several stacked
layers including convolutional, activation function, pooling, and
batch normalization [33]. A convolutional layer applies filters
to create a convolution operation. Various features are extracted
and learned from previous layers. Therefore, differences in each
layer can be distinguished at the depths of the network. The
results of convolutional layers with a window size of N on input
data I can be shown as follows:

Z(x, y) = f

⎛
⎝ I∑

i=0

J∑
j=0

I(x+ i, y + j) ∗N(i, j) + b

⎞
⎠ . (1)

After convolution layers are done, a nonlinear function is applied
to the system named activation function. RLUs are the most
preferred activation function [34]. It showed a smooth behav-
ior compared with the other activation functions and also can
converge quickly [35].

This stage is also equipped with two skip connections that
make the network behavior reliable. Because the tuned weights
are adjusted to quiet the upstream layer. In fact, the use of skip
connection provides several advantages to the system. First, it
avoids saturation of the network, where higher error occurs when
the number of layers increases to deepen the models. Second, it
leads to a huge reduction in the problems of vanishing gradients.
Third, it helps to move the data to the lower layers, which
makes it easier to reach the optimal point. The scheme of skip
connections has been shown in Fig. 3. The formulation below
shows how the skip connections works

al = f(Wl−1,lal − 1 +Bl +Wl−2,lal − 2) (2)

where Wl−2,l and Wl−1,l are tuned weights from layer l − 2 and
l − 1 to layer l for connection weights which is used for forward
propagation. al indicates as activation in layer l. g represents as
activation function. Meanwhile, back-propagation is formulated
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as follows:

ΔWl−1,l = −η
σEl

σwl−1,l
(3)

ΔWl−2,l = −η
σEl

σwl−2,l
(4)

where (3) is used for the standard route and (4) is used for the
skipped route. η, here, is the learning rate.

Then, the results of the first and the second CNN block are
concatenated to create the input of the next CNN. This scenario is
repeated for the next blocks. Since padding has been adjusted to
the same, the spatial dimension of each block will be 128×32×9.

Step 2: In Fig. 1(b) represents the second part of the pro-
posed architecture. This part takes a 3-D input and gradually
compresses it into an encoded compacted feature tensor repre-
sentation. This is done by using 3×3 convolutions layers with
128, 256, and 512 filters, then followed by a batch normaliza-
tion layer. After that, a dropout layer with probability 0.5 is
placed at the end of each CNN block, which regularizes the
network in each epoch. Dropout is used to prevent networks
from overfitting. The spatial dimensions are reduced where the
stride is adjusted to 2. Then, the output of convolutional layers
is reshaped to a 2-D tensor, which makes it readable for LSTM
in step 3.

Step 3: The last two steps of the proposed method are con-
stituted for the temporal (LSTM) and spatial feature extraction.
In the LSTM networks, which are mainly used for time series
variables [21], [36], [37], [38], [39], [40], [41]. The previous
output values will be retained for a short time. Hence, it acts like
a memory unit that simplifies the feedback analysis in such a
network.

In addition, the LSTM network is associated with an atten-
tion mechanism, which works on the basis that prediction of
outcomes can be made by applying a conditional probability
distribution to the input and past sample outcomes [42]. It is
given in the equation as follows:

p(yi|x1, ..., xi−1, yi−1). (5)

A nonlinear approximation function is adopted due to the infea-
sibility of computation conditional probability distribution. So
: f = (yi, hi, Ci, ), where f is a function for LSTM, hi is the
LSTM inner state, and Ci is the present context, which means,
a vector maintaining data of which entrance data are essential
at the present stage. Context is taken from the current state, hi,
and the input string x. After the LSTM steps through the entire
input sequence, the network of attention system determines what
attention should be paid to the annotations provided at each
step. By the calculation of et, which is stated in equations, the
mechanism of attention will start.

et = vT .tanh(We.ht + Ue.dt−1 + b) (6)

where d describes the input and score of the attention are
computed by the soft-max function as follows:

at,t
.

=
exp(et)∑T
j=1 exp(et)

(7)

Fig. 4. Attention mechanism.

where t. denoted each t time.
By the weighted sum of theCi the context vector is computed.

Fig. 4 shows the mechanism of attention which is described as
follows.

Ct =

T∑
t.=1

at,t
.

.ht. (8)

As shown in Fig. 1(c), the attention systems are used for the out-
put of each LSTM module to create the corresponding long-term
dependencies, which was first implemented by Bahdanau [43].
The main idea behind the attention mechanism is to gives the
network the flexibility to use the most relevant parts of the
input sequence through a weighted combination of all encoded
input vectors. The most relevant vector is assigned the highest
weight. In the proposed method, the attention mechanism has
been used for LSTM layers to predict crop yield by making a
context vector as a weighted sum of all provided information.
All hyperparameters were calculated, such as related context,
and learned states, then weights of the attention related to states
were applied to perform the attention system.

Step 4: Multi 2D-convolutional layers have been paralleled
with attention LSTM, which consists of 3×3 convolution layers
with 128 filters, then followed by a batch normalization layer.
The main reason for doing this technique is that the prediction
model responded to superior behavior.

Step 5: The results of the attention LSTMs and 2D-CNNs
are concatenated, then flatten to a 1×12800 output. Finally, a
single layer of dense is responsible for the latest forecasting of
the predicted value.

In Fig. 2, the architecture of the second model has been
shown. Same as the previously proposed model, this method
also contains four parts: (a) spectral-spatial feature extractor,
(b) spectral-spatial encoder, a parallel learning deep model in-
cluding spectral feature extractor were applied using 3D-CNN
which is shown in (c), and (d) spectral-spatial-temporal feature
extractors have been used by attention convolutional LSTM.

The input is transformed to a 4-D matrix before entering the
network and its dimensions will be in the form 32×32× 9×1.
Unlike the first proposed method, this model used a 3-D con-
volutional neural network. 3D-convolutional neural networks
are another model of CNNs that includes an additional step.
In the year 2013, 3D-CNN model has been first released by
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Fig. 5. Architecture of a ConvLSTM.

Shuiwan [44] and it can be used efficiently in remote sensing
applications as these data include spectral and temporal features.
When 3D-CNN is applied to the hyperspectral input, the results
will be as follows:

Z(x, y, d) = f

( I∑
i=0

J∑
j=0

K∑
d=0

I

× (x+ i, y + j, d+ k) ∗N(i, j, k) + b

)
(9)

where K is demonstrated as the spectral size of the 3-D kernel.
A 3D-CNN can extract both spatial and spectral features at the

same time, which can provide more specific extracted features
in comparison with 2D-CNN [4]. The used 3D-CNN includes
a 3×3×1 kernel size, with 128 filter size, followed by batch
normalization. Fig. 2(a) shows the architecture of the first part.
The other settings are as the same the first proposed model,
the output dimension size of each 3D-CNN will be in form of
128×32× 9×1, and the padding is adjusted to the same.

In part (b), the dimension of the spectral features will be
256×16× 5×1, due to applying a 3D-CNN with 3×3×1 kernel
size of 128, 512, and 256 filter size, respectively. Since the input
data have both spectral, and spatial features, 3D-CNN can be
used efficiently. After that, it is followed by batch normaliza-
tion, and dropout is adjusted to 0.5, which leads to preventing
overfitting issues.

The results from part (b) flowed into two sections including
the convolution LSTM network, which is coupled with attention
mechanism shown in (c), and three layers of the 3D-CNN
indicted in part (d), which leads to better overall network per-
formance.

In part (c), ConvLSTM has been used. The combination
of LSTM and CNN was presented first time by Shi [45]. In
comparison to LSTM, the ConvLSTM network significantly
reduces the network’s parameters. Therefore, the model can
be deep enough during the training phase. Also, ConvLSTM
is well known to extract the inherent Spatio-temporal features
of wide-ranging input [46]. In Fig. 5, simple architecture of
the ConvLSTM has been indicated, where σ1(u), σ2(u), σ3(u),
σ4(u) are forget, input, tanh, and output gate, respectively. Here,
(10) to 14 represent the functionality of ConvLSTM architecture

TABLE I
SUMMARY OF THE SECOND PROPOSED METHOD

and * represents convolution operation

it = σ(W ∗
xixt +W ∗

aiat−1 +Wcict−1 + bi) (10)

ft = σ(W ∗
xfxt +W ∗

afat−1 +Wcfct−1 + bf ) (11)

ct = ftct−1 + ittanh(W
∗
xcxt +W ∗

acat−1 + bc) (12)

gt = σ(W ∗
xoxt +W ∗

aoat−1 +Wcoct−1 + b0) (13)

ht = ottanh(ct). (14)

Also, the attention mechanism is used to creating the corre-
sponding long-term dependencies. Then, three 3-D CNN layers
have been paralleled with attention ConvLSTM, which consists
of a 3×3×1 as kernel size layers of 128 filters, and each CNN is
followed by a batch normalizations layer. Last, a single layer of
the proposed network is responsible for the latest forecasting of
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the forecasted value. Table I, shows the summary of the second
proposed method.

B. Investigational Study

1) Datasets: This section describes the datasets, which have
been used in the experiment. The datasets consist of MODIS
satellite data (moderate resolution imaging spectroradiometer)
as the input data and the soybean products are used as observed
data. All US counties where soybeans have been grown were
selected with no product restrictions. The land products MODIS
of the NASA, surface reflectance, surface temperature, and land
cover kind are prepared by the Google Earth Engine (GEE) [47].
MODIS satellite images are collected 32 times per year, every
eight days, into about 1834 counties from 2003 to 2018.

2) Ground Truth Data: The United State Division of Agri-
culture provides open-source information for agribusiness. The
ground truth data are achieved from the USDA Quick Stats
Database [48] for years of our interest from 2003 to 2018 on
the county level. The sum of 1848 U.S. provinces cultivated
soybean products.

3) Dataset Split: Neural network training data usually split
the input data into three different phases including the training,
validating, and test phases, which are used to assess the perfor-
mance of the final model.

The training datasets were accidentally chosen. 80% of the
counties in each state were selected in training sets by random to
make sure that the cities are geomorphology equally divided. The
rest of the counties were chosen as the validation data. Twelve
training sets have been trained for the baseline repetition.

4) Evaluation Metrics: The efficiency of the forecasting
method has been measured using mean absolute error, root mean
square error, mean absolute percent error, and mean square
logarithmic error. The MAE, RMSE, MAPE, and MSLE for
these measurements are shown as follows:

RMSE =

√
1

n

∑n

t=1

(
At − Ft

At

)2

(15)

MAE =
1

n

n∑
t=1

|At − Ft| (16)

MAPE =
1

n

n∑
t=1

|At − Ft

At
| (17)

MSLE =
1

n

n∑
t=1

(log(At + 1)− log(Ft + 1))2 (18)

where observed data as ground truth data shown by At and
forecasted values depicted by Ft.

5) Feature Normalization: Minimum–Maximum normal-
ization has been applied over all features, which have been
rescaled the values between 0 and 1

Si =
gi − min(g)

max(g)− min(g)
(19)

where Si and gi are denoted normalized features and primary
data in the ith feature, and maximum and minimum values of
the features are shown as min(g) and max(g).

6) Data Preprocess: Training data directly from raw images
is impossible due to lake of labeled training data. Also, using
the other famous benchmarks for pretraining such as ImageNet,
is infeasible. Therefore, after extracting data from MODIS, In
the first step, land cover is applied to set the values to zero,
where croplands are not labeled by creating a mask. Then, a
32-bins histogram is considered for each band, in which a 32 × 9
histogram matrix was generated per image. Also, the images are
captured 32 times per annual and stacked to create a 32× 32×
9 3D-histogram per county per year. Several individual pixels
provide helpful information. Since the position of the cropland
has been illustrated, crop yield will not be changed if the position
of the image pixels changes.

III. RESULTS AND DISCUSSION

In this section, the outcome of the proposed work was pre-
sented. First, it is illustrated how the number of CNN layers
impacts the performance of the prediction systems. Second, the
results from proposed method compared with DeepYield [4],
ConvLSTM [49], 3DCNN [50], and CNN-LSTM [38].

1) Execution Details: In the experiment, models were imple-
mented by python using Tensor-flow and Keras libraries 2.8.0.
A high-performance computing platform has been used at the
Shahid Bahonar University of Kerman to accelerate compu-
tational, simulation, and modeling processes in this research.
This platform has 11 computing nodes and uses three GPUs.
This configuration provides 16TFLOPS computing power for
the university’s researchers. Our data consists of multispectral
images from 2003 to 2018. In the training phase, the data from
2003 to 2014 are selected to tuning the hyperparameters. This
means that 12 years × 1834 counties, equivalent to 22 008
data, must be trained. Also, the next four years from 2015 to
2018 were selected for the tasting phase. During the training
process, several optimizers such as Adam and SGD optimizer
were tested in this experiment. Finally, the Adam Optimizer is
selected with a learning rate of 10−5. To prevent overfitting of
the trained model, early stopping has been used in the validation.
In addition, different batch sizes such as 32, 64, 128, and 256
were used in the training phase. The training phase lasts about
4 h and 15 min.

2) Effect of the Number of Layers on the Crop Forecasting
Efficiency: One of the essential issues that should be considered
in deep learning is the optimal number of layers in the deep
neural systems. Therefore, the results will be directly affected by
changing the number of neural networks. The effects of changing
the number of layers have been measured in the proposed
method. As shown in Fig. 1(a)–(c), which includes 2D-CNN
Skip Connection and CNNs layers were paralleled with attention
LSTM, the different number of CNN layers was evaluated to
check prediction performance. Fig. 6 shows the forecasting error
by changing the layers from 1 to 5.

The results of Fig. 6 show that with the increase in the number
of layers, the error trend gradually decreases. In all tested cases
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Fig. 6. Error orientation at different number of layers on the test set.

TABLE II
ERRORS WITH VARYING LAYERS ON TEST DATA

of the error trend, the decrement process stops until the layer
number reaches three. After that, the error trend remains constant
or increases when the number of layers increases to more than
three. As shown in Fig. 6, the trends of MAE, MAPE, and
MSLE fluctuate in the first and second layers. In layer three,
the errors were significantly reduced. Although 2015 and 2018
showed slight changes, 2016 and 2017 saw a sharp drop in MAE.
In MAPE, when the layers reached three, the error reached
the lowest value in 2015, 2016, and 2017. Also, when the
network was tested with three CNN layers, the changes stopped.
Therefore, it can be concluded that when the model is simulated
with three layers of CNN, the errors are at their lowest value.

Also, Table II shows the comparative information equivalent
to Fig. 6 of the test data. As the results are shown in Table II the
MAE, MAPE, RMSE, and MSLE of the proposed method on

TABLE III
COMPARISON BETWEEN TWO PROPOSED MODELS

the test data with three layers were 4.2938, 10.2732, 5.4306, and
0.0199, respectively. Although RMSE reached the lowest error
when the number of layers is four, the other three evaluating
methods confirm that three layers show efficient performance.
Meanwhile, after the number of layers, increased to 4 and 5,
MAE, MAPE, and MSLE increased by approximately 17%,
14.43%, and 21.5%, respectively. Also, the complexity of the
network and the number of parameters increase, which leads to
the aggravation of network errors.

3) Comparing the Both Proposed Models: In Table III, two
models are compared based on evaluation metrics. The first
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TABLE IV
RMSE OF THE PROPOSED MODELS COMPARED WITH THE OTHER COMPETING MODELS

TABLE V
MAE OF THE PROPOSED MODELS COMPARED WITH THE OTHER COMPETING MODELS

Fig. 7. Box-plots of MAE and RMSE values on the training dataset.

proposed model, which used 2D-CNN can merely extract spatial
features, while the 3D-CNN-based model not only can extract
spatial features, but also spectral data can be extracted. Actu-
ally, those models using 3D-CNN are superior to 2-D based.
Therefore, spectral-spatial-feature-extractors perform much bet-
ter than spatial extractor-based models. As it is shown, Although
in 2015, the first model showed better performance in all evalua-
tion metrics, in the years 2016, 2017, and 2018 the method used
3D-CNN, and ConvLSTM had the lowest error in compared to
2-D based one. Overall, the 3D-based model performed better
MAE, RMASE, MAPE, and MSLE, and the error reduced by
approximately 2%.

Fig. 8. Loss versus the number of training epochs for training sets.

4) Crop Yield Perdition Comparing Approach: The results
from proposed methodologies compared with DeepYield [4],
ConvLSTM [49], 3DCNN [50], and CNN-LSTM [38]. Simula-
tions have been repeated in the same condition for all competitive
methods to have a fair comparison. The simulations have been
repeated under the same conditions for all competing methods to
make a fair comparison. The simulations were performed with
1834 counties as input data. Data from the years 2003 to 2104
(12 years) were considered as training sets and also unseen data
packages from 2015 to 2018 were considered as test sets. Results
are done in 5 runs.
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Fig. 9. Scatter plots of the predicted versus true yield values for different methods. (a) 3D-CNN [50]. (b) CNN-LSTM [38]. (c) ConvLSTM [49]. (d) DeepYield [4].
(e) Proposed Method 1. (f) Proposed Method 2.

RMSE and MAE prediction performances of crop yield fore-
casting at the county level are illustrated in Tables IV and
V, respectively. These tables show the comparison between
the RMSE’s and MAE’s models. For better understanding, the
average values of those models have been shown in the last
row. By introducing both proposed models, the errors decreased
rapidly. On average, the second proposed method improved
approximately 14.40% and 16.77% of prediction in terms of
RMSE and MAE compared to DeepYield [4], respectively. In
Table IV, it is observed that the proposed model is improved
from 16.5% to about 25% in compared to ConvLSTM, 3D-CNN,
and CNN-LSTM models. The same behavior is repeated in
Table V, and it outperformed better than ConvLSTM, 3D-CNN,
and CNN-LSTM, respectively by 17.47%, 26.44%, and 30.6%.
In the literature, the second proposed method notably performs
better than the stated four deep models.

In Fig. 7, the difference between the proposed methods and
the other methods is shown in a Box-Plot that shows the loss
error in the training set in terms of RMSE and MAE. It is
done over 32 itineration in every training year, which is learned
on the five runs for each network. According to RMSE and
MAE, it is clearly shown that the proposed methods have he
least error loss. MAE results show that the worst variance
belongs to 3D-CNN, ConvLSTM, and DeepYiled. However, the
second proposed model shows the lowest error. Also, from the
RMSE plot, the second proposed model showed amazing per-
formance compared to DeepYield, ConvLSTM, 3D-CNN, and
CNN-LSTM.

The convening step of the six deep neural networks is shown
in Fig. 8 during the training phase. The RMSE and MAE figure
losses show a sharp decreasing in the early stages of the starting
training for proposed methods, and will relatively stay steady on
the optimal values for the next iterations. DeepYield represented
a prolonged reduction and decreased the loss in the next three
step of year iteration (Each year has 32 iterations). Although the
other models like 3D-CNN, and ConvLSTM converged faster
than DeepYield for the first year of the training, DeepYield

reaches below them gradually after passing a long time. Last but
not least, Fig. 8 also represents that the second proposed model
had a faster convergence in comparison with the first proposed
model.

Scatter plots are another ways to show which model performs
better in an identical condition, showed In Fig. 9. In fact, it shows
forecasted against observed crop yield for the prediction models.
It demonstrated that proposed architectures have achieved the
highest correlation coefficient score, and got the lowest root
mean squared error (RMSE). By looking through plots, the other
models have relatively close results. While, DeepYield had the
highest value, which reached 0.68, comparing the rest models
including CovLSTM, 3DCNN, and CNN-LSTM. The simplest
deep learning models have relatively the lowest efficiency. By
comparing the RMSE and R2 of the models, both approach
methods had the best performance against the other models.
CNN-LSTM had the worst performance, which dropped dra-
matically to 0.54. While ConvLSTM, DeepYield, and 3D-CNN
achieved better performance compared to CNN-LSTM. As it is
expected, the correlation coefficient improved significantly by
using 3-D feature extractors, and ConvLSTM, compared with
the first proposed model, which considerably increased from
0.71 to 0.78.

In Fig. 10, prediction sharing error map of different models
has been shown from 2016 to 2018. The second proposed model
overcame remarkably the other models. The second proposed
method has the most minor prediction error, which means the
counties are in light yellow and blue. In contrast, the deviation
in the CNN-LSTM model is too high which predicts an error
of more than 15 bushels per acre. DeepYiled, 3D-CNN, and
ConvLSTM are predicting safer values in comparison with
CNN-LSTM. However, the most reliable model belongs to
the proposed models. Most counties have predicted the error
between −5 and +5 bushels per acre.

5) Discussion: Also, it should be noted that the proposed
methods have several advantages over the other models. The first
advantage is both proposed methods try to have stable outputs
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Fig. 10. Maps of forecasting error distribution of different approaches compared with proposed method. (a)–(c) 3D-CNN [50] Method predicting error distribution
from 2016 to 2018, from left to right. (d)–(f) CNN-LSTM [38] Method predicting error distribution from 2016 to 2018, from left to right. (g)–(i) ConvLSTM [49]
Method predicting error distribution from 2016 to 2018, from left to right. (j)–(l) DeepYield [4] Method predicting error distribution from 2016 to 2018, from left
to right. (m)–(o) Proposed Method predicting error distribution from 2016 to 2018, from left to right. (p)–(r) Proposed Method 2 predicting error distribution from
2016 to 2018, from left to right.
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of each convolution layer in part (a) of the architecture. They are
typically clarified by the truth that other models diminish the size
of the input tensor utilizing convolution piece with a stride of 3×
3 from the beginning of the model, then that employments a max
pooling layer. Those operations lessen the size outcomes of the
middle layers of the model significantly. As a result, the number
of multiply and-mass operations; in any case, this exceptional
diminish causes a loss of valuable spatial data that influences
the performance of the model.

The second is the use of the attention mechanism, which is
equipped with both LSTM and skip connection in CNN architec-
ture to increase the accuracy. In detail, CNN with the help of skip
connections has been defined, which made a stable model. Then,
the approach method used LSTM which were enhanced with an
attention mechanism to increase the ability of the model. The
attention mechanism is the concept of freeing the deep neural
networks from a certain length of internal representation. This is
often done by keeping the intermediate outcomes from each step
of the input sequence and training the network to learn and pay
selective attention to these inputs and relate them to performing
predation.

The third which is specifically used explicitly for the second
proposed method is the usage of 3D-CNN for extracting spectral,
spatial, and temporal features. As stated before, some remote
sensing data are captured in the rising time in the different phases
which 3D-CNN can be efficiently applied to extract spectral,
spatial, and temporal features. Therefore, the results can be more
reliable.

Last but not least, the combination of LSTM and convolution
highly decreases the network’s complexity. As a result, the
network can be deep enough to receive desirable results. Also,
since remote sensing data are high-dimensional information,
ConvLSTM has been used to handle those high-dimensional
data.

However, both proposed models suffered from a major limita-
tion in the input data. Due to hardware and software limitations,
we have not managed to generate full-size images as input data.
That is true the model has been trained by a high-performance
computing platform (HPC). Since, the university HPC resource
only works on local storage, we were having trouble generating
the input data. Because, input data can only be generated by
connecting to the cloud storage. Therefore, due to lake of Cloud
Storage and RAM, we were able only to create Histogram input
data rather than generating full-size images. By doing so, the
change in input data will lead to differences in the results from
reference papers as the spatial specifications of input data are
protected via utilizing the full image size as input. Accordingly,
the spatial correlation pixels are guarded, which raises the effi-
ciency of convolutional filters.

IV. CONCLUSION

Two novel methods have been proposed by this article, which
are the combination of the 2D-CNN and LSTM attention as the
first model, and the usage of 3D-CNN and ConvLSTM instated
of 2D-CNN and single LSTM as the second model for county-
level crop yield prediction. As the first step, multi-2D-CNNs are

used with help of the skip connection to extract features. After
that, the outputs of the previous step are used for attention LSTM
and multicascaded CNN parallelly. Attention mechanism was
used to focus on main features and disqualify the unimportant
ones. Finally, a single dense layer has been applied to make pre-
dictions. Although the second model has the same architecture
as the first model, 3D-CNN and ConvLSTM have been used
instated of the 2D-CNN and LSTM. 3D-CNNs can extract both
spectral and spatial simultaneously, and ConvLSTM is bale to
temporal and spatial-spectral together. By using these features, it
distinguishes the second model from the first model. Significant
improvements have been seen compared to the most recent
models, which are used for crop yield prediction. Remote sensed
data were used such as MODIS Land Cover, Temperature, and
MODIS Surface Reflectance. The data have been extracted over
1840 counties from 2003 to 2018. The proposed models have
been evaluated with different hyperparameters to achieve the
best performance and after that different layers of the CNN
have been used. It is found that a model with three layers of
CNN is the most effective forecasting system. Both proposed
models have been evaluated with relevant works, including
DeepYeild, ConvLSTM, 3D-CNN, and CNN-LSTM, which are
tested from 2016 to 2018 in the identical conditions to have a
fair comparison. It is finally discovered that the second proposed
model achieved the highest score in comparison with the other
methods. The results of this study can be used in different sectors
of the agencies in the US and agriculturalists. There are some
approaches for future works, which are listed below. Scientists
and researchers can add climatic data, which are important
for growing the products as input to have better accuracy for
forecastings, such as watering, genotype, rainfall information,
and environmental data. Moreover, optimal use of satellite data
with higher resolution will be strongly recommended. Last but
not least, due to the sparsity of input data the use of Spiking
neural networks is also recommended.
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