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Abstract—Detection and vectorization of windows from building
façades are important for building energy modeling, civil engineer-
ing, and architecture design. However, current applications still
face the challenges of low accuracy and lack of automation. In
this article we propose a new two-steps workflow for window seg-
mentation and vectorization from façade images. First, we propose
a cross field learning-based neural network architecture, which
is augmented by a grid-based self-attention module for window
segmentation from rectified façade images, resulting in pixel-wise
window blobs. Second, we propose a regression neural network
augmented by squeeze-and-excitation (SE) attention blocks for
window vectorization. The network takes the segmentation results
together with the original façade image as input, and directly
outputs the position of window corners, resulting in vectorized
window objects with improved accuracy. In order to validate the
effectiveness of our method, experiments are carried out on four
public façades image datasets, with results usually yielding a higher
accuracy for the final window prediction in comparison to baseline
methods on four datasets in terms of intersection over union score,
F1 score, and pixel accuracy.

Index Terms—Deep learning, façade parsing, vectorization,
window segmentation.

I. INTRODUCTION

THE location of windows is crucial for semantic and ge-
ometric understanding of building façades, and is often

demanded in applications such as urban planning and building
information modeling (BIM) [1]. However, window segmen-
tation remains a challenging task due to the complexity of
building scenes. For example, windows in different buildings
have different styles and shapes, and the existence of curtains
introduces ambiguities in the windows detection process. Addi-
tionally, window detection from street-view images suffers from
occlusion caused by trees and vehicles, among other objects [2].
As rectified façade images are more commonly used in BIM
applications, we focus in this article merely on rectified façade
images, with the assumption that all windows have rectangular
shapes.

In recent years, convolutional neural network (CNN)-based
methods outperformed traditional segmentation algorithms and
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are widely applied in a variety of vision-tasks such as face
recognition, speech recognition, and vehicle detection. Deep
neural network (DNN) models have been used for building-
related image segmentation tasks as well [2], [3]. Although
window detection approaches based on deep learning generally
outperform traditional methods in terms of standard accuracy,
these methods suffer from the limited localization ability of
CNNs, often resulting in blob-like segments, smooth corners,
and noisy object boundaries. This in turn results in an inaccurate
representation of the regular shapes of windows, propagating
these errors to the vectorization step. In order to achieve more ac-
curate building prediction in the segmentation step, we introduce
a novel DNN architecture adding a smooth cross field output to
a fully convolutional segmentation network. The integration of
the cross field can substantially improve segmentation quality
and generate more regular window boundaries.

Typically, CNN-based window detection methods generate
pixel-wise window blobs. However, these window segments
have to be converted into vector formats (e.g. CityGML) before
they can be directly used in building modeling at or above Level
of Detail 3 (LoD3), i.e., an architecturally detailed model with
openings such as windows and doors. Traditional vectorization
approaches simply apply post-polygonization algorithms such
as Douglas–Peucker [4] on rasterized building segmentation
results. However, segmentation errors are also taken into account
during polygonization, i.e., the quality of input segmentation
mask directly affects the quality of the polygonization. For
example, a minor segmentation error may lead to a wrong
number of vertices or wrong building shapes. Rather than run-
ning a post-polygonization regularizer, we propose a regression
network learning the location of window corners. The network
takes the pixel-wise window prediction from semantic segmen-
tation as well as the original façade image as input, and outputs
the coordinates of window corners. While most polygonization
methods only consider the geometric distance to the original
pixel boundary, and have therefore negligible influence on the
semantic accuracy [5], our method both improves the regularity
of window shapes and their semantic accuracy, as it takes image
features into consideration when predicting vertices. In addition,
our vectorization method converts the window representation
from pixels into a set of exactly four corners. Fig. 1 depicts a
sample result of the proposed window detection and vectoriza-
tion method.

In summary, our main contributions are:
1) Modeling the rectified façade image as a cross field aligned

to object tangents, which improves segmentation accuracy
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Fig. 1. Sample result of the proposed window detection method: (a) Original
image. (b) Cross field overlaid on image. (c) Window segmentation result. (d)
Window vectorization result, with red dots representing vectorized window
corners.

by enforcing the alignment between segmentation results
and the cross field.

2) Integrating grid-based gating into the CNN model, further
improving the segmentation accuracy.

3) A regression neural network learning the position of win-
dow corners from rectified façade images based on the
window segmentation result, yielding a vectorized repre-
sentation of the windows.

The article is organized as follows. We give an overview of
related research work in Section II, and explain in depth the
proposed window detection pipeline including window segmen-
tation and vectorization in Sections III and IV, respectively.
Experiments and implementation details are explained in Sec-
tion V. Finally, Section VI concludes this article.

II. RELATED WORK

This section reviews previous related studies on window
segmentation and object vectorization.

A. Window Segmentation

Existing window detection methods are broadly divided into
three categories: 1) grammar-based; 2) traditional machine
learning based; 3) deep learning based.

Grammar-based methods first generate pixel or object hy-
potheses, and then use shape grammars to extract window
segments from the façade image. They rely on hand-crafted

rules which represent structured geometries of buildings or
façade objects. Zhao et al. [6] proposed to parse registered
ground-view images into architectural units for large-scale city
modeling. They first decompose the environment into buildings,
ground, and sky using a joint 2-D–3-D segmentation method,
and then parse buildings into individual façades. Müller et al. [7]
combined procedural modeling pipelines of shape grammars
with image analysis in order to derive a meaningful hierarchical
façade subdivision. Han and Zhu [8] present an attribute graph
grammar for parsing images by maximizing a Bayesian posterior
probability, or equivalently minimizing a description length.
These grammar-based methods usually achieve a pixel-wise
accuracy below 85% [9] on the ecole centrale paris (ECP)
benchmark [10] and suffer from low efficiency in the training
and inference steps [11].

Traditional machine learning based façade segmentation ap-
proaches mainly rely on empirically designed features such as
spatial, spectral, and textual features; subsequently, windows
are extracted using machine learning classifiers such as RF [12],
SVM [13], or a combination of several classifiers [14]. Although
a significant progress has been made with respect to previously
described methods, these methods are restricted by their limited
generalization ability, as they mainly rely on manual feature
engineering, with the complex shape and texture properties of
façades being difficult to model empirically [12], [13].

Recent advances in DNNs have significantly boosted the
performance of object detection and semantic image analysis,
going beyond traditional explicit feature design and being able
to learn discriminative features for image representation. The
fully convolutional network (FCN) proposed by Long et al. [15]
extended the CNNs to pixel-wise classification and has thus
became widely used in building segmentation tasks. For ex-
ample, Liu et al. [3], [16] proposed a FCN-8s-based network
with a novel symmetric loss function and a region proposal
network for façade parsing. In [17], two semantic segmentation
networks based on the U-Net [18] are designed for two types of
façade structures respectively, and assembled to handle class
imbalance. Ma et al. [19] proposed a pyramid atrous large
kernel network (ALKNet) for façade parsing, fully employing
the regular structures of façades to aggregate nonlocal structural
information, and therefore being able to deal with challenging
scenarios such as occlusions and appearance ambiguities. Other
CNN-based network structures widely used in façade parsing
applications include SegNet [20] and Mask R-CNN [21].

In recent years, a series of techniques such as the attention
module [22] and the transformer [23] have been proposed to
complement the CNNs. In particular, attention modules can
be integrated into backbones [24], [25] or head networks [26],
[27] to encode distant dependencies or heterogeneous interac-
tions, thus boosting the segmentation quality. Zhang et al. [28]
employed a dual attentional network (DAN) module to model
long-range dependencies, and introduce a novel symmetric loss
function to encode prior knowledge improving the predictions of
façade elements. To the best of the authors’ knowledge, this work
is the actual state-of-the-art for façade semantic segmentation.

Though CNN and its variants are still the primary network
architectures for semantic segmentation tasks, other backbone



ZHUO et al.: CROSS FIELD-BASED SEGMENTATION AND LEARNING-BASED VECTORIZATION 433

structures such as generative adversarial network (GAN) [29]
and recurrent neural network (RNN) [30] are also widely used
in façade parsing. Yu et al. [31] employed an improved version
of GAN to learn image data with similar characteristics and
generate façade images, while Abdulnabi et al. [32] proposed a
RNN-based network for RGB-D scene semantic segmentation,
where two RNNs are crossly connected through transfer layers
and trained simultaneously to extract cross-modality features.

In recent years, multimodal techniques are gaining attention in
deep learning-based semantic segmentation domain, especially
for the applications to remote sensing. In [33] and [34], CNNs
are taken as a backbone and augmented by an advanced cross-
channel reconstruction module. By means of fusing multiple
features across modalities, the assembled network architecture
learns more comprehensive representations of different remote
sensing data. In [35], CNNs and GCNs are fused to improve
the performance of hyperspectral image classification as they
can extract different types of hyperspectral features. Although
these methods are targeted at multimodal data, whereas our
study focuses on RGB façade imagery, they demonstrate the
effectiveness of the fusion of multiple information.

A new trend in façade parsing research exploiting various
features in the image is to combine geometric and spectral
information. Girard et al. [5] proposed a network that learns
a frame field from the image and enforces its alignment to
ground-truth contours. The additional structural information can
effectively improve segmentation quality in building extraction,
which motivates us to employ field theory in window segmen-
tation applications. It has to be noted that although windows
have generally more regular shapes than buildings, window
segmentation is still challenging due to the existence of reflec-
tion, occlusion, and varying illumination conditions. Since the
frame field cannot well represent the structural characteristics of
rectangular windows in rectified façade images, we propose in
this article to learn a cross field with constraints on orthogonal-
ity to incorporate the structural characteristics of windows. In
addition, we augment the segmentation network with attention
gates to further improve the segmentation quality.

B. Window Vectorization

Representing windows as vectors is an essential step for
building model generation at LoD3 or higher. Existing window
vectorization methods can be broadly divided into two cate-
gories, based on either polygonization or keypoints detection.

Polygonization is a popular topic in computer vision and
has many well known implementations. The most basic poly-
gonization pipeline extracts the object contours as a chain of
pixels, and then simplifies the resulting shape as a polygon.
Popular simplification methods include the Douglas–Peucker
algorithm [4] and Delaunay triangulation [36]. These only con-
sider the pixel distance to the initial object contour rather than
the geometric properties of the object, often introducing severe
losses in accuracy in practice. More advanced polygonization
methods, such as the Hough transform [37] and the active
contour [38] algorithms, exploit geometric primitives such as
line segments, and then assemble them into a polygon. In recent

years, several DNN-based polygonization methods have been
developed. Hatamizadeh et al. [39] proposed a neural network
intimately combining the CNN with an active contour model
(ACM). Parameters of the ACM energy model are learnable, and
can be used to precisely delineate buildings from aerial images.

Directly predicting vertices using neural networks is a new
strategy in this field. Compared with traditional polygonization
methods, only few vertices are required to represent regions with
a large number of pixels. A variety of vertices prediction methods
have been proposed. RNN-based networks such as Polygon-
RNN [40], Polygon-RNN++ [41], and PolyMapper [42], em-
ploy a CNN to extract image features and an RNN to decode
vertices. However, they perform beam search while predicting
vertices, requiring more predictions than the number of out-
put vertices, resulting in a relevant increase of computational
burden. Besides, RNNs are usually more difficult to train. Li
et al. [43] proposed a novel window corner detection framework,
employing a ResNet [44] to learn image features and generate
heatmaps, from which locations and relationships of keypoints
are decoded; finally, the keypoints are grouped together into
final windows. However, this method suffers from frequent cross
mismatching of keypoints, as adjacent windows usually exhibit
similar patterns. Zorzi et al. [45] proposed a CNN-based method
for building polygonization and regularization. First, a CNN is
employed for building segmentation, and then a GAN is used
to regularize the initial segmentation boundaries and learn a
building corner probability map, used to predict final vertices.
Girard et al. [5] proposed a novel method for building poly-
gonization. They employ a CNN to learn a frame field, which
provides additional geometric information to regularize building
boundaries. To the best of the authors’ knowledge, this is the
actual state-of-the-art approach for building polygonization.

III. WINDOW SEGMENTATION

Unlike organic objects, windows have in most cases rectan-
gular shapes with sharp corners, especially in rectified façade
images. In order to capture this defining geometric information,
we propose a neural network to learn a smooth cross field which
is aligned to the tangent direction along window boundaries. In
addition, we incorporate attention gates to further improve the
segmentation quality.

The workflow of the proposed segmentation method is il-
lustrated in Fig. 2. Given an RGB façade image as input, we
firstly learn feature maps using the attention-U-ResNet model;
the feature maps are then passed on to a segmentation head and
a cross field learning head, resulting in a segmentation map and
a cross field prediction, respectively. It is to be noted that the
actual cross field is pixelwise, i.e., each pixel is described with
four vectors. For the sake of clarity, Fig. 2 shows a sparse cross
field plotted with an interval of 10 pixels.

A. Feature Extraction

In the last decade, CNNs have been widely used for feature
extraction in classification and segmentation tasks [15]. Several
excellent neural network architectures have been proposed to
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Fig. 2. Workflow of the proposed method. The segmentation model takes an RGB façade image as input and predicts a segmentation mask and a cross field. The
predicted window mask and the original façade image are then fed as input to the regression neural network, resulting in rectangular window objects represented
by the top left and bottom right corners.

further improve segmentation quality, such as U-Net [18], mod-
ified U-Net [18], and DenseNet [46]. Generally, our approach
can use any deep segmentation model as backbone for feature
extraction. For comparison, we tested different neural network
architectures, ranging from small models such as U-Net16, a
modified U-Net [18] model whose feature vectors are reduced
from the original 64 to 16, to large models like UResNet-101,
a modified U-Net [18] model whose encoder is replaced by a
ResNet101 [47] pretrained on the ImageNet dataset [48]. As the
latter achieves the best performance, we use it as backbone in
our experiments as described in Section V.

B. Attention Module

In order to capture sufficient semantic information, feature
maps in standard CNN models are gradually downsampled to
increase the receptive field. Despite their good representative
ability, these architectures suffer from redundant use of model
parameters and lead to high computational burdens. In order
to solve this problem, we propose to incorporate an attention
gate (AG) model into the CNN architecture. The integration of
AG can suppress irrelevant regions and focus on salient features
by increasing the model sensitivity to foreground pixels. As a
result, it can significantly improve segmentation accuracy while
preserving computational efficiency.

In this article we adopt the attention model proposed in [22],
which involves grid-based gates to make attention coefficients
more specific to local regions, leading to higher segmentation
accuracy with respect to the gating based on global feature vec-
tors [49]. Fig. 3 shows a block diagram of the attention U-ResNet
segmentation model. It is to be noted that we have modified
the original attention U-Net model [22] to fit our backbone.
Particularly, in the encoding part of the model, the input image
is first downsampled by a factor of 4 via convolution, and then
progressively downsampled by a factor of 2 via max-pooling.
Then, the propagated features are filtered by attention gates via
skip connections. Since the image has been downsampled by
4 in the first step, the last attention gate is omitted.

C. Cross Field

In computer vision many algorithms aim at representing a
surface with various features, and direction fields are developed
to solve the problem of orienting the features on the surface [50].
Cross fields, as proposed by Hertzmann and Zorin, are maps
defined on a surface of which each point is assigned a smoothly
varying pair of orthogonal directions on the tangent plane [51].
The topology of a cross field is determined by singular points
and separatrix lines connecting them: The singularities divert
the flow of tangential directions, and the separatrices divide the
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Fig. 3. Architecture of the integrated attention segmentation model. H,W,C denote height, width, and depth, respectively, while Nc denotes the number of
classes.

Fig. 4. Comparison of (a) frame field and (b) cross field.

surface into uniform patches [52]. Due to the arrangement of
these topological features, cross fields can not only be used
to represent certain surface characteristics, such as curvature
extrema and principal curvature directions, but can also be used
with given constraints [50], [53]. By contrast, frame fields are a
nonorthogonal and nonunit-length generalization of cross fields,
and can represent smoothly varying linear transformations on
tangent spaces of a surface [54]. Fig. 4 depicts a comparison of
the cross field and the frame field: Directions in the cross field
are orthogonal, whereas such constraint does not apply for the
frame field.

In computer vision applications, both cross fields and frame
fields can be used to model the tangents of objects. When
it comes to rectified façade images, most windows appear as
rectangles with orthogonal corners. As cross fields are invariant
to the rotation of π/2 while frame fields are not, we propose to
represent the image tangent plane as a cross field, as it can better
capture the orthogonality of windows.

Following the setting in [55], with u ∈ C representing the
curve tangent near a given pixel, a cross field at this pixel is
defined as set of four vectors 〈w,w⊥,−w,−w⊥〉 in cyclic
order. In order to avoid relabeling and sign changes, we represent
the direction using the following complex polynomial [55]:

f(z) = z4 − w4 = z4 + c0. (1)

In (1), c0 = −w4 uniquely determines a cross field by its
root set { 4

√|c0|exp(ikπ2 ) | 0 ≤ k ≤ 3}. In the following text,
we denote the function in (1) as f(z; c0). In order to avoid
sign and ordering ambiguity, we learn c0 instead of the vectors
〈w,w⊥,−w,−w⊥〉.

In order to compute a smooth cross field, Bessmeltsev
et al. [56] proposed a variational computation approach using
the limited-memory BFGS (L-BFGS) algorithm. Furthermore,
Taktasheva et al. [57] proposed a deep learning-based approach
for computation. In our work, we solve the cross field variation-
ally by regressing the value of direction vectors at each pixel with
a neural network, similarly as what has been explored in [57].

D. Segmentation Network Architecture

Our segmentation network takes a RGB image with size
H ×W as input and computes a segmentation map and a cross
field as output. In this part, we follow the general network
architecture design of [5], which can take any DNN model as
a backbone, such as DeepLabV3 [58] and ResNet [59], and
output a N-dimensional feature map ŷfeature ∈ RN×H×W . This
feature map is then appended to two blocks, one for segmentation
and the other for cross field computation. We integrate the
segmentation losses and the alignment losses proposed by [5],
but replace the frame field losses by cross field losses. Fig. 5
shows the loss functions in the segmentation network, which
can be divided into three categories: 1) segmentation losses; 2)
cross field losses; 3) coupling losses.

D. Segmentation losses: For the purpose of segmentation,
feature maps are passed on to a fully convolutional block, which
consists of a 3× 3 convolutional layer, a batch normalization
layer, an exponential linear unit (ELU) layer, another 3× 3
convolutional layer, and a sigmoid layer. The final output of this
segmentation head is a segmentation map ŷseg ∈ R2×H×W . The
segmentation map has two channels, one is window interiors
denoted by yint and the other is window boundaries denoted
by ybnd, and the corresponding losses of window interiors and
window boundaries are Lint and Lbnd, respectively. It needs to
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Fig. 5. Loss functions in segmentation network. Lint and Lbnd are segmenta-
tion losses, Lsmooth and Lalign are cross field losses, Lbnd_field and Lint_field are
coupling losses.

be noted that the training data are also prepared in two sets, one
is the ground-truth for the window interiors and the other for
window boundaries.

Cross field losses: In addition to the segmentation head, we
append another block to the backbone to compute the cross
field. This takes the concatenation of the feature map and the
segmentation map [ŷfeature, ŷseg] ∈ R(N+2)×H×W as inputs, and
outputs parameters ĉ0 representing the cross field as output.
The ground-truth for training is the tangent direction θτ of the
contour. Following [56], we take the following three losses into
consideration.

1) Alignment. The alignment loss is defined as

Lalign = 1
HW

∫
I ybnd(x)|f(eiθτ ; ĉ0(x))|2dx. (2)

This loss function enforces the alignment of the cross field
with the tangent directions. This loss has a lower value
when the polynomial has a root near eiθτ , implying that
at least one of the field directions 〈w,w⊥,−w,−w⊥〉 is
aligned with the tangent direction τ .

2) Smoothness. The smoothness loss is defined as

Lsmooth =
1

HW

∫
I

‖∇ĉ0(x)‖2dx. (3)

This term is a Dirichlet energy which enforces the value
of c0 to vary smoothly in order to yield a smooth cross
field.

Coupling losses: It has been proved in [5] that coupling the
losses of segmentation and frame field can increase segmentation
accuracy, therefore we also consider the alignment between the
segmentation output and the cross field output by minimizing
the coupling losses, as follows:

1) Alignment between the predicted interior map and the
cross field. This loss is defined as

Lint_field = 1
HW

∫
I |f(∇ŷint(x); ĉ0(x))|2dx. (4)

This loss function measures the consistency between the
spatial gradient of the output interior map ŷint and the
tangent direction of the output cross field.

2) Alignment between the predicted boundary map and the
cross field. This loss is defined as

Lbnd_field = 1
HW

∫
I |f(∇ŷbnd(x); ĉ0(x))|2dx. (5)

This term aligns the spatial gradient of the output window
boundary map ŷbnd with the tangent direction of the output
cross field.

Finally, we normalize the losses above and sum them. This
results in a final loss function, similar to the one described in [5].

IV. WINDOW CORNERS REGRESSION

A common problem of CNNs is their low localization ac-
curacy, as the output of semantic segmentation is usually pixel
blobs with blurred object boundaries and smooth corners. In
the case of window segmentation, blob-like window segments
cannot well represent regular window shapes and thus need
to be vectorized. Traditional window vectorization methods
simply apply polygonization algorithms (e.g., Douglas–Peucker
algorithm [4]) on the input segmentation masks alone, and
have two main disadvantages. First, the spectral information
of images is not utilized in the vectorization step, therefore
the vectorization has only subtle influence on the segmentation
accuracy, and in some cases higher regularization even leads
to a slightly lower intersection over union (IoU) score than
the initial segmentation blobs. Second, traditional vectorization
methods also take segmentation errors into account, with the
polygonization accuracy greatly relying on the quality of the
input segmentation mask. By contrast, we propose to learn the
position of window corners using a regression neural network,
which learns to predict window corners by taking both image
features and initial window predictions into account.

A. Vectorization Network

For the vectorization network architecture, we use a SE-
ResNet [27] to extract deep features from original images. As
a variant of squeeze-and-excitation networks (SE-Nets), the
SE-ResNet consists of a ResNet as backbone, and integrates SE
blocks after the nonlinearity layer following each convolution.
The SE block transformation is used as the nonidentity branch
of the residual module. Fig. 6 illustrates a typical schema of
SE-ResNet used in our experiment. It should be stressed that we
modified the output layer of the SE-ResNet to a four-channel
fully connected layer, as we formulate the rectified window as
a rectangle which can be represented by its top left and bottom
right corners.

The workflow for window corner prediction is illustrated in
Fig. 2. Particularly, the output of the segmentation network is
taken together with the original RGB image as input. For each
window instance, a region of interest (ROI) is cropped from the
original façade image. The size of the ROI is proportional to
the size of the window instance, indicating the possible area
where the actual window may be located. Then, feature maps
are extracted from the ROIs by the SE-ResNet, and passed on
to the fully connected layer, resulting in four regressed values
(x1, y1, x2, y2) corresponding to the top left (x1, y1), and the
bottom right corners (x2, y2) of the window, respectively.
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Fig. 6. Schema of the SE-ResNet module.

Whereas traditional polygonization methods take merely bi-
nary window masks as input and are prone to segmentation
errors, our network utilizes image features in addition and is
therefore more robust to such errors. Given an imperfect window
segmentation blob as input, our method can refine the position of
window corners, resulting in a more accurate window prediction.

B. Network Implementation

In our experiment we increase the ROI of each individual
window prediction by 10%, and then crop the corresponding
patch from the original façade image as input. All input patches
are resized to 128× 128 for consistency. When passed on to the
SE-ResNet, these image patches are firstly downsampled by a
factor of three to a size of 42× 42, and then passed on to the
residual module as input. Fig. 6 illustrates an attention module
in the SE-ResNet, where x denotes the input features with a
shape of 42× 42× 128. Such schema repetitively occurs in the
network for gating, and the input image is progressively filtered
and downsampled at each stage from 128 to 42, 14, 7, 3 and 1
pixel(s).

Fig. 7 demonstrates the loss calculation in the network. Since
we modify the last layer of the SE-ResNet as a four-channel
fully connected layer, the output of the network is four scalars
(x1, y1, x2, y2), standing for the top left (x1, y1) and the bottom
right (x2, y2) corners of the window, respectively. In order to
measure the prediction errors, we compare the regressed val-
ues with ground-truth values, namely the four window corners
(x̂1, ŷ1, x̂2, ŷ2) extracted from the ground-truth window mask.
We use the smooth L1 loss as defined in (6), where Y denotes
the predicted corners vector (x1, y1, x2, y2) and Ŷ denotes

Fig. 7. Loss calculation for vectorization network.

the ground-truth corners vector (x̂1, ŷ1, x̂2, ŷ2). Here beta is
a hyper-parameter that needs to be manually tuned. As beta
approaches 0, smooth L1 loss converges to L1 Loss; as beta
approaches +∞, smooth L1 loss converges to a constant 0 loss.
In practice, the hyper-parameter beta is usually set to 1, and
we follow the same settings in our experiments. We also tested
MSE loss and MAE loss, which resulted in similar accuracy as
the smooth L1 loss and therefore not reported in details in this
article

Lδ =

{
1
2 (Y − Ŷ )2/beta, if

∣∣∣(Y − Ŷ )
∣∣∣ < beta

|Y − Ŷ | − 1
2beta, otherwise

. (6)

V. EXPERIMENT

A. Experiment Design

In order to explore the performance of the proposed method,
we test our segmentation model on four benchmark façade
datasets containing the window class. In addition, we compare
the segmentation results with several state-of-the-art approaches
using various evaluation metrics.

Our method is implemented in PyTorch [60] trained on four
NVIDIA 2080Ti GPUs. During the training, the network is
initialized with weights that were pretrained on ImageNet. Then,
the network is fine-tuned and tested on the four window datasets.
We employed Adam as optimizer for both the segmentation
and regression networks. As the ECP dataset, Graz50 dataset,
and Paris Artdeco dataset are relatively small, the training, and
validation losses converge quickly to a small value after c.a. 20
epochs. The CMP dataset has a larger size and converges to a
small loss after c.a. 50 epochs.

B. Dataset

The ECP dataset [10] was published in 2010, it consists of 104
façade images in solely Hausmannian style buildings in Paris
with highly regular structures. Unlike most datasets where the
façades are in the same plane, the ECP dataset contains several
cases of roof windows that stretch out of or behind the façade
plane, as shown in Fig. 8(a). Images in this dataset are rectified
and manually annotated in the following eight classes:

1) window;
2) wall;
3) balcony;
4) door;
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Fig. 8. Sample annotations in (a) ECP dataset, (b) CMP dataset, (c) Graz50 dataset, and (d) ParisArtDeco dataset. Red rectangles represent the projection of
window annotations on the original images.

5) shop;
6) sky;
7) chimney;
8) roof.
The annotation rule follows uniform Haussmanian-style

grammar, i.e., all windows are annotated as rectangles, even
though some of them are arc-shaped. This dataset has been
widely used to evaluate window detection or façade segmen-
tation approaches [3], [28], [61], [62].

The CMP dataset [63] was assembled in 2013 at the Center
for Machine Perception. It is comprised of two sub-datasets:
1) the CMP base dataset contains 378 images featuring pla-
nar façades with dense/strong regularity; 2) the CMP ex-
tended dataset contains 228 images featuring irregular, non-
planar, sparse or substantially occluded façades. These façades
images are collected from different cities around the world,
portraying diverse architectural styles and various resolutions.
Fig. 8(b) depicts a modern-style building in the CMP dataset.
All 606 images are rectified and manually annotated in 11
classes:

1) façade;
2) molding;
3) cornice;
4) pillar;
5) window;
6) door;
7) sill;
8) blind;
9) balcony;

10) shop;
11) deco.

All objects are annotated as rectangles, limited by the image
scope in size and position, while overlap is allowed. This dataset
has been widely used as benchmark for window detection or
façade segmentation tasks [64], [65], [66].

The Graz50 dataset [67] was published in 2012, and contains
50 rectified images at different spatial resolutions. The images
are taken from various locations in the historical Austrian city
of Graz and portray buildings of various architectural styles
such as Classicism, Biedermeier, Historicism, Art Nouveau,
and several modern styles. This dataset shows more complex
façade layouts with respect to other façade datasets. Besides,
unlike the ECP, CMP, and ParisArtDeco datasets, roof windows
in Graz50 dataset are not annotated, as shown in Fig. 8(c). The
images are generated automatically by extracting a piecewise
planar geometry from about 30 perspective images. The dataset
includes four classes: wall, door, window, sky and has been
widely used for window detection or façade segmentation
studies [3], [17], [28], [66].

The ParisArtDeco dataset [68] was published in 2014, and
consists of 79 images acquired at different spatial resolutions
showing Art Deco-style buildings in Paris. Façades in this
dataset are similar to the Hausmannian architecture, but win-
dows are here generally larger. All images are rectified, resulting
in some layout inconsistencies, as some windows are protruding
in the Art-deco style, as in the case of roof windows in the
ECP dataset [see example in Fig. 8(d)]. The dataset contains the
following seven classes:

1) door;
2) shop;
3) balcony;
4) window;
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5) wall;
6) sky;
7) roof.
A large part of the ParisArtDeco dataset is densely occluded

by trees or street signs, making it more challenging than other
façade segmentation benchmarks. Therefore, it is specifically
used to validate the robustness of the segmentation methods in
presence of occlusions [2], [3], [62], [69].

The described datasets are designed for façade parsing and
contain multiple categories such as doors and balconies. As
we are only interested in windows in this study, we converted
the multiclass labels into binary window masks. A common
problem for these datasets is that they do not take occlusions in
consideration and annotate arc-shaped windows as rectangles,
therefore the annotations are not precise for these cases. As
original images in each dataset have different shapes, we resize
all images as well as masks into patches of 300× 300. For each
dataset, we follow the same design proposed in [28], i.e., data
are randomly split into 80% for training and 20% for testing.
The comparison experiments are carried out on each dataset.

C. Metrics

We use two types of metrics for evaluation purposes: area-
based for segmentation accuracy, and shape-based for vectoriza-
tion accuracy. regarding area-based metrics, the traditional one
to evaluate semantic segmentation is Pixel accuracy (also named
as overall accuracy) [70], which simply reports the percentage
of correctly classified pixels in the image, as defined in

Pixel accuracy =
TP + TN

TP + TN + FP + FN
(7)

where, for a given class X , TP denotes true positive, namely
the number of pixels classified correctly as X , FP denotes false
positive, namely the number of pixels classified incorrectly as
X , TN denotes true negative, namely the number of pixels
classified correctly as notX ,FN denotes false negative, namely
the number of pixels classified incorrectly as not X .

Besides, F1 score [71] is the harmonic mean of precision and
recall and gives a better measure of the incorrectly classified
cases with respect to Pixel accuracy. The F1 score is defined as

F1 score = 2× Precision×Recall

Precision+Recall
(8)

where Precision is the fraction of the correctly identified positive
cases over all the predicted positive cases, while Recall is the
fraction of the correctly identified positive cases over all the
actual positive cases, as defined, respectively, as

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
. (10)

In addition, a widely used metric for evaluating image seg-
mentation accuracy is the IoU, also referred to as the Jaccard
index. The IoU value is defined as

IoU =
Area of Overlap

Area of Unioin
=

TP

TP + FN + FP
. (11)

As the datasets used in our experiments involve a relevant
number of images, we employ mean IoU to evaluate the aver-
age performance of the segmentation accuracy among multiple
images. The definition of mIoU is given as

mIoU =

∑N
i=1 TPi∑N

i=1(TPi + FPi + FNi)
(12)

where N is the number of images involved in evaluation, TPi

the number of TPs of the ith image, FPi the pixel number of
FPs of the ith image, and FNi the pixel number of FNs of the
ith image. The IoU metric used in the following text refers to the
mean IoU value.

Usually, a prediction with IoU > 0.5 is considered as TP
prediction, but a change in the threshold may introduce a bias
in the evaluation metric. One way to solve the problem is to
use a range of IoU threshold values. For example, in COCO
evaluation [72], the IoU threshold ranges from 0.5 to 0.95 [72].
In our experiments, we calculate the average precision (AP) and
average recall (AR) at fixed IoUs such as IoU = 0.5 and IoU =
0.75, which we refer to as AP50, AR50, AP75, and AR75,
respectively.

Higher IoU and F1 values do not always indicate more accu-
rate object representation, especially when assessing vectorized
results. In order to better evaluate the position accuracy of the
vectorized window corners, we propose to use the Hausdorff
distance [73], a metric defined between two finite point sets
A = {a1, . . ., ap} and B = {b1, . . ., bq} as

H(A,B) = max(h(A,B), h(B,A)) (13)

where

h(A,B) = max
a∈A

max
b∈B

||a− b|| (14)

|| · || is an underlying norm on the points of A and B, and
we use Euclidean norm in our experiments. A and B stand for
the coordinates of predicted window corners and ground-truth
window corners, respectively.

D. Segmentation Results

We compare the segmentation accuracy of our segmentation
model (denoted as Ours) with other state-of-the-art methods, in-
cluding the DeepFacade network [3] (denoted as DeepFacade),
the refined DAN-PSPNet with symmetric loss function [28] (de-
noted as DAN-PSPNet-Lsym), the frame field polygonization net-
work [5] (denoted as frame field polygonization network (FFP))
and the DeepWindows network [74] (denoted as DeepWindows).
Among them, we use the source code provided by the authors to
implement the FFP [5] and the DeepWindows [74] networks. We
cannot reproduce results of the DeepFacade [3] and PSPNet [28]
networks, as their codes are either not open-source or written in
an outdated deep learning framework. Thus, we directly report
their numerical results from the original papers, which, however,
do not completely cover all the datasets regarding all metrics. For
the FFP and DeepWindows methods, we reproduce the networks
and test them on all datasets in order to have complete results.

In addition, in order to demonstrate the improvement in
semantic accuracy of our vectorization method, we rasterized
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Fig. 9. Segmentation results on ECP dataset. (a) Original image. (b) Results of DeepWindows network. (c) Results of FFP network. (d) Results of our segmentation
model. (e) Ground-truth.

TABLE I
ACCURACY COMPARISON ON ECP DATASET IN METRICS OF IOU SCORE, F1

SCORE, AND PIXEL ACCURACY

the vectorization result for area-based evaluation, indicated as
Ours-refine in the tables below.

1) ECP Dataset: The numeric evaluations of the segmenta-
tion results are listed in Table I, where the results of DeepFacade
and PSPNet are reported from the original papers, and therefore
some values are missing. It can be seen that our model ranks
first in terms of IoU score, and achieve about the same F1 score
and pixel accuracy as the DAN-PSPNet-Lsym.

The qualitative results on the ECP dataset is illustrated in
Fig. 9. Column (a) is the input image; column (b) is the seg-
mentation result of the DeepWindows network overlaid on the
original image; column (c) is the segmentation result of the
FFP network overlaid on the original image; column (d) is

TABLE II
ACCURACY COMPARISON ON CMP DATASET IN METRICS OF IOU SCORE, F1

SCORE, AND PIXEL ACCURACY

the result of the proposed segmentation network overlaid on
the original image; column (e) is the ground-truth overlaid on
the original image. It can be seen that our method can make
more accurate and regular predictions with respect to FFP and
DeepWindows. DeepFacade achieves a higher pixel-accuracy,
while DAN-PSPNet-Lsym reaches a higherF1 score with respect
to our segmentation approach, but Ours has a higher IoU value.
Furthermore, after the vectorization step, the accuracy results
further improved.

2) CMP Dataset: The quantitative evaluation results are
listed in Table II. Our segmentation method ranks already first in
comparison with previous methods in all metrics. To be specific,
our method outperforms DeepWindows by c.a. 7% in terms of
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Fig. 10. Segmentation results on CMP dataset. (a) Original image. (b) Results of DeepWindows network. (c) Results of FFP network. (d) Results of our
segmentation model. (e) Ground-truth.

TABLE III
ACCURACY COMPARISON ON GRAZ50 DATASET IN METRICS OF IOU SCORE, F1

SCORE, AND PIXEL ACCURACY

IoU score and FFP by c.a. 4% in terms of both IoU score and F1
score. Fig. 10 shows qualitative comparison of the segmentation
results. It can be seen that our method detects fewer FPs with
respect to the FFP method and generates more regular and
visually pleasing segmentation results. For example, the second
and third row show building façades with doors, which have
similar appearance as windows. DeepWindows and FFP tend to
make false predictions on such scenarios, whereas our method
is more robust and can distinguish between windows and doors.

3) Graz50: Table III lists the accuracy evaluations on the
Graz50 dataset. Our method achieves 73.1% in terms of IoU
score, outperforming the previous best, i.e., DeepFacade by c.a.
2% and FFP by c.a. 3.5%. Besides, our method ranks first in
terms of F1 score and outperforms the best competitor by c.a.

TABLE IV
ACCURACY COMPARISON ON ARTDECO DATASET IN METRICS OF IOU SCORE,

F1 SCORE AND PIXEL ACCURACY

3%. Fig. 11 presents the qualitative comparison of our method
with state-of-the-art methods. It is to be noted that the Graz50
dataset has inconsistent annotations for windows on raised
ground floor, e.g., in the first and second rows, where openings
on the building bottom are not annotated as windows; however,
in the third row, similar openings are annotated as windows.
Such inconsistent class definition may confuse the network and
lead to vulnerable performance on such scenarios. Nevertheless,
our method still outperforms FFP and DeepWindows in overall
accuracy and achieves more visually pleasing results.

4) ParisArtDeco Dataset: Table IV lists the quantitative
evaluation results on the ParisArtDeco dataset. Our method
achieves an accuracy of 96.6% while the previous best, Deep-
Windows, has an accuracy of 95.1%. Besides, the F1 score of
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Fig. 11. Segmentation results on Graz50 dataset. (a) Original image. (b) Results of DeepWindows network. (c) Results of FFP network. (d) Results of our
segmentation model. (e) Ground-truth.

our method is 87.7%, only 0.3% smaller than the previous best
result. As for other experiments, after the additional refinement,
we achieve the highest accuracy for all evaluation metrics.

Fig. 12 depicts the qualitative comparison of segmentation
results for our method and previous methods. It needs to be
noted that the ParisArtDeco dataset is more challenging than
other datasets as it is largely occluded by vegetation. Typically, it
is difficult for neural networks to learn such hidden information.
However, our method has successfully learnt the patterns of
window layout and can well predict windows that are occluded
by vegetation. As can be seen in Fig. 12, the sample façades are
all partially occluded by trees. For the façade in the third row,
even more than half of it is blocked by trees. Despite the presence
of large occlusions, our method makes reasonable predictions for
the hidden windows. Although the other methods can also cope
with occlusions to some extent, our method is the most robust
and yields more regularized shapes for windows.

5) Ablation Study of Segmentation Performance: In addition
to the comparison to state-of-the-art approaches, we carry out
an ablation study to assess the effectiveness of our network
architecture. As our method can take any segmentation
model as backbone, we test different ones including U-Net16
(namely a small U-Net [18] with 16 starting hidden features)
and UResNet101 (namely a U-Net whose encoder part
is replaced by a ResNet-101). In our implementation, the
U-Net is randomly initialized whereas the UResNet101 is
pretrained on ImageNet [48]. Besides, we also compare our
segmentation model to other baseline methods, including the
Mask R-CNN [21], UResNet101 and FFP.

In order to have a larger dataset available, we merge the ECP,
CMP, Graz50, and ParisArtDeco datasets and randomly split the
combined dataset into a 80% training set and a 20% testing set.
We conduct the ablation experiments on the merged dataset, with
a quantitative assessment reported in Table V. Mask R-CNN
and UResNet101 are used as baseline segmentation methods:
Both of them are pretrained on ImageNet [48], and it can be
seen that UResNet101 achieves higher segmentation accuracy
with respect to Mask R-CNN. FFPunet refers to the FFP imple-
mentation with standard U-Net as backbone; Oursunet (without
attention) refers to our model using as backbone the standard
U-Net without attention gates; finally, Oursunet refers to our
model with the standard U-Net as backbone and with attention
gates. As the U-Net is not pretrained, this setting yields generally
lower precision and recall score compared to the mask R-CNN
and UResNet101, which use pretrained weights. However, when
using the same backbone, our method outperforms the FFP
method in all metrics, demonstrating the effectiveness of our
cross field structure. Besides, Oursunet (with attention) achieves
higher AP and AR scores in all metrics with respect to Oursunet

(without attention), proving that the integration of attention gates
can effectively improve the segmentation accuracy.

FFPuresnet101 refers to the FFP implementation with URes-
Net101 as backbone; Oursuresnet101 (without attention) refers to
our model using as backbone the UResNet101 without attention
gates; Oursuresnet101 refers to our model with the UResNet101
as backbone and with attention gates. It can be seen that these
models achieve much higher AP and AR scores than URes-
Net101 itself. By comparing Oursuresnet101 (without attention)
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Fig. 12. Segmentation results on ParisArtdeco dataset. (a) Original image. (b) Results of DeepWindows network. (c) Results of FFP network. (d) Results of our
segmentation model. (e) Ground-truth.

TABLE V
AP AND AR RESULTS ON THE MERGED DATASET OF OUR METHOD AND OTHER MODELS (UNIT: %)

and FFPuresnet101, it can be seen that the integration of cross
field can effectively improve the segmentation accuracy. Further
more, Oursuresnet101 (with attention) achieves higher scores
than Oursuresnet101 (without attention), showing the effective-
ness of attention gates.

Overall, the ablation study proves that the integration of both
cross field and attention gates can effectively improve segmen-
tation accuracy, especially when employing their combination.

E. Vectorization Results

The window segmentation results are vectorized using the
proposed vectorization network. The vectorization accuracy is
evaluated using both point-based metrics and area-based met-
rics. For the former class, we evaluate the accuracy of the
vectorized window corners using Hausdorff distance [73] and

compare the results with baseline vectorization methods, includ-
ing the ACM polygonization model used in the FFP network [5],
PolyRNN+ model [75], and the Douglas–Peucker method [4].
In order to eliminate the influence of the input mask, we use the
same segmentation results as input for all the three vectorization
methods. For the latter class, we convert the vectorized window
objects back into rasters, and then compare their semantic ac-
curacy with the aforementioned baseline segmentation methods
using IoU score, F1 score, and pixel accuracy.

The quantitative comparison of different vectorization meth-
ods using the Hausdorff distance metric is shown in Table VI,
where DP refers to the Douglas–Peucker algorithm, ACM refers
to the active contour model-based polygonization algorithm
used in [5], and PolyRNN+ refers to the PolyRNN++ network
used in [75]. The window vertices predicted by our network
have significantly lower error with respect to DP, ACM, and
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Fig. 13. Sample results of window vectorization. (a) Results of Douglas–Peucker algorithm. (b) Results of ACM algorithm. (c) Results of PolyRNN+ algorithm.
(d) Results of our vectorization model. (e) Ground-truth.

TABLE VI
COMPARISON OF HAUSDORFF DISTANCE WITH DIFFERENT VECTORIZATION

METHODS ON FOUR DATASETS (UNIT: PIXEL)

PolyRNN+ on all datasets. Especially on the ECP dataset, our
method achieves a very low average Hausdorff distance of only
2.9 pixels.

The qualitative results of the vectorized windows are illus-
trated in Fig. 13. The Douglas–Peucker method exhibits several
redundant vertices, and often a not regularized shape. ACM
and PolyRNN+ yields more regular shapes, yet the number of
vertices is still redundant at some spots, and the positions of
vertices are not accurate. By contrast, our method achieves the
most regular window shapes and accurate vertices. It should be
noted that the proposed vectorization approach is able to correct
some FPs introduced in the segmentation step, as shown at the
bottom of the façade. Our vectorization network can well handle
such cases and does not make prediction at these spots, while
the other baseline methods cannot correct or improve wrong
segmentations.

As our method takes both segmentation masks and original
images into consideration, it can amend for the initial segmen-
tation errors, achieving a more accurate window prediction.
Fig. 14 depicts an example of the visual improvement in se-
mantic accuracy, where the blue contour represents the contour
of the input window mask. The vectorized window vertices are
represented as yellow dots and connected by red lines. The
Douglas–Peucker algorithm has a negligible influence on the
semantic segmentation, while the ACM method exhibits minor

improvements, with the results still largely shifted from the
ground-truth. By contrast, our method substantially improves
the accuracy of the window predictions.

It has been shown that our vectorization method can amend for
errors introduced in the input segmentation step, therefore, when
the vectorized window objects are converted back to rasters,
these exhibit higher semantic accuracy with respect to the initial
segmentation masks. In order to validate such improvement, we
conducted quantitative comparisons with other segmentation
methods on the four data benchmarks, with results listed in
Table I, Table II, Table III, and Table IV, respectively. Therein,
the results of our vectorization method is named Ours_refine,
which achieve the highest semantic accuracy on all benchmarks.

In order to further demonstrate the capacity and limitations of
our vectorization method, we report some difficult cases. Fig. 15
shows the vectorization results for special window types. The
first row shows windows with half-drawn blinds, where the input
window mask contains many over-segmentation errors due to the
blinds. Our method eliminates several errors in the segmentation,
but still has difficulty in fully revising the segmentation errors
at the blinds.

It should be noted that our method only predicts rectangular
windows for all kinds of inputs, which may cause problem for
nonrectangular shapes. The second row in Fig. 15 shows an ex-
ample of arc-shaped windows, which are annotated as rectangles
in ground-truth as well. It can be seen that the Douglas–Peucker,
ACM, and PolyRNN+ network do not show higher accuracy than
our method, though their outputs are not restricted by the number
of vertices.

F. Experiment Discussion

The experimental results demonstrate the effectiveness of our
method. Regarding semantic segmentation, our model achieves
the highest or second highest accuracy compared to state-of-
the-art methods, on all datasets and according to all evaluation
metrics. The performance on the ParisArtDeco dataset proves
that our segmentation network is able to learn the window layout
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Fig. 14. Improvement in semantic accuracy of our vectorization method. (a) Results of Douglas–Peucker algorithm. (b) Results of ACM algorithm. (c) Results
of our vectorization model. (d) Ground-truth. Blue contour represents the original segment contour, while the vectorized window vertices are represented as yellow
dots that are connected by red lines.

Fig. 15. Vectorization results for special window types. (a) Results of Douglas–Peucker algorithm. (b) Results of ACM algorithm. (c) Results of PolyRNN+. (d)
Results of our vectorization model. (e) Ground-truth.

pattern and make correct predictions even in spite of severe
occlusions. Regarding window corner vectorization, our vec-
torization model not only makes regular and sparse predictions
for window corners, but also further improves the segmentation
accuracy by considering the image features. When compared to
the Douglas–Peucker, ACM, and PolyRNN+ method, our vec-
torization network achieves both the highest semantic accuracy
and the highest position accuracy on all datasets.

However, the experiments also have some limitations. First,
annotations of the four datasets are not precise in some samples.
For example, all windows including arc-shaped ones are anno-
tated as rectangles, and a number of annotations are obviously

shifted from the actual window locations. Fig. 16 illustrates some
sample annotation errors in window detection benchmarks,
Fig. 16(a), (f), and (g) show inaccurate annotations for arc-
shaped windows, Fig. 16(b) and (c) depict inaccurate position
of the annotation, and Fig. 16(e) shows wrong annotations for
windows that do not exist. Fig. 16(d) and (h) show windows with
large occlusions. Second, the annotation policy is not consistent
within each dataset. For example, only in some cases French
balconies are annotated as windows. Third, the Graz50 and
ParisArtDeco datasets contain only a small number of training
samples for the network to learn useful features comprehen-
sively. Furthermore, images can have different sizes, therefore
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Fig. 16. Sample errors in window detection benchmarks.

we had to resize all images to the same size and deformed images
may vary from the actual appearance, introducing additional
challenges for the network.

In this study, we assume that all windows have rectangular
shapes, and therefore represent them only by their top-left and
bottom-right corners. Such assumption holds for most windows
in rectified images: However, when it comes to ground-view
images where windows are deformed due to affine transform, the
proposed method is no longer applicable. In order to handle such
situations, we can modify the output layer of the vectorization
network and let it predict four corners instead of only two, so
that it can work with any windows having quadrilateral shape.

The source codes for the DAN-PSPNet-Lsym and DeepFa-
cade are respectively not available and only compatible with
an outdated deep learning framework. Therefore, the original
methods cannot be reproduced for comparison and we report
their quantitative experimental results from the original papers.

VI. CONCLUSION AND OUTLOOK

In this article we proposed a semantic segmentation network
to predict window masks, and a regression network to vectorize
the pixel-wise window blobs relying on their corners.

In the segmentation network, we learn a cross field which
represents the geometric information of the images in addition
to the typical segmentation head, thus improving the overall
geometric integrity; secondly, we add attention gates to further
improve the learning efficiency. Our segmentation network is
efficient as it is constituted by a single FCN. Unlike the training
in GANs or RNNs, which is expensive in terms of efforts in

tuning and computational resources required, the training of
the cross field is straightforward and adds virtually no cost to
inference time.

In the window vectorization module, we use the window pre-
diction of the segmentation network together with the original
façade image as input, and directly learn the coordinates of the
top-left and bottom-right window vertices using a regression
neural network adopting a SE-ResNet for feature extraction. The
training of the regression network is straight-forward and effi-
cient as it is constituted by a single CNN architecture: However,
during the inference, the trained model is applied on the ROI of
each window individually rather than on the whole image, thing
which adds to the computational burden of the inference step.

The quantitative experiments on the benchmark datasets
demonstrate that the vectorization network further improves the
accuracy and the final results outperform state-of-the-art models
significantly. The qualitative experimental results show that our
method can achieve more regular and visual pleasing window
predictions with respect to other methods.

Although our method has achieved promising results, there
are still several challenges left to tackle. First, the vectorization
network can only predict the top-left and bottom-right corners,
forcing the window to have a rectangular shape, and restricting
its application to rectified façade images in which the windows
are all rectangular. In order to meet the demands on more diverse
street-view images or oblique aerial-view images with hetero-
geneous window types, we intend to adapt our vectorization
network to predict four or more than four vertices of the window,
so that any quadrilateral or free-formed windows can be repre-
sented. Second, the image data used in our study is acquired from
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close-range photogrammetry. In the future, we aim to extend it
to aerial imagery. Since remote sensing data usually tends to
suffer from various degradation, noise effects, or variabilities in
the process of imaging [76], coping with the introduced sources
of variability will be the focus of our future research.
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