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Abstract—The low rank and sparse representation (LRSR) tech-
nique has attracted increasing attention for hyperspectral anomaly
detection (HAD). Although a large quantity of research based on
LRSR for HAD is proposed, the detection performance is still
limited, due to the unsatisfactory dictionary construction and insuf-
ficient consideration of global and local characteristics. To tackle
the above-mentioned concern, a novel HAD method, termed dual
collaborative constraints regularized low-rank and sparse repre-
sentation via robust dictionaries construction, is proposed in this
article. Concretely, a robust dictionary construction strategy, which
thoroughly excavates the potential of the density estimation model
and local outlier factor, is proposed to yield pure and representative
dictionary atoms. To fully exploit the global and local charac-
teristics of hyperspectral images, dual collaborative constraints
corresponding to the background and anomaly components are
imposed on the LRSR model. Notably, two weighted matrices are
further exerted on the representation coefficients to improve the
effect of collaborative constraints, considering the fact that the sur-
rounding pixels similar to the testing pixel should be given a large
weight, otherwise the weight is expected to be small. In this way,
the background and anomaly components can be well modeled.
Additionally, a nonlinear transformation operation, which com-
bines the output of the density estimation model and local outlier
factor with the detection result derived from the LRSR model, is
developed to suppress the background. The experiments conducted
on one simulated dataset and three real datasets demonstrate the
superiority of the proposed method compared with the four typical
methods and four state-of-the-art methods.

Index Terms—Anomaly detection, dual collaborative
constraints, hyperspectral images (HSIs), low-rank and sparse
representation (LRSR), robust dictionaries construction.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have been widely used
in the field of band selection [1], [2], [3], image clas-

sification [4], [5], [6], hyperspectral pansharpening [7], [8],
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[9], hyperspectral unmixing [10], [11], anomaly detection [12],
[13], [14], [15], and target detection [16], [17], [18], owing to
the rich spectral information. Hyperspectral anomaly detection
(HAD), which aims to search for spectral signatures deviating
from the background, has become a research hot topic due to
its widespread application in military defense, maritime rescue,
and mineral exploration. Compared with hyperspectral target
detection, HAD brings more challenges because of the absence
of prior information about the anomaly.

In recent years, many researchers proposed various methods
to detect anomalies in the HSIs. The most typical method is the
RX detector [19], which is proposed by Reed and Yu. Also, it is
regarded as the milestone of the statistic theory-based methods
for HAD. The RX detector holds that the background conforms
to the multivariate Gaussian distribution, and the mean value
vector and covariance matrix of all pixels belonging to the HSI
are estimated to calculate the Mahalanobis distance of each
testing pixel. Different from the RX detector, which utilizes the
global statistic characteristics, the Local RX [20] employs dual
windows to acquire the local statistic characteristics for a better
background model. Nevertheless, two-aspect challenges, which
consist of the improper multivariate Gaussian assumption of
background and the inaccurate background model in the interfer-
ence of anomaly, exist in the aforementioned methods for the real
hyperspectral scenes. To resolve the above-mentioned issues,
various extensions of RX detector, containing subspace RX [21],
kernel RX [22], random-selection-based anomaly detector [23],
multiwindow RX [24], [25], and fractional Fourier entropy RX
[12], are gradually proposed to promote the detection accuracy.
However, these methods can hardly accurately model the back-
ground, with the interference of the anomalies and noise.

To model the background as accurately as possible, the
representation-based methods, which can well represent the
background pixels and poorly express the anomalous pixels, are
widely used for HAD. The residual of the representation-based
methods can be employed to measure the anomalies. In general,
the larger the residual of a testing pixel, the higher the possi-
bility of a testing pixel being an anomaly. The representation-
based methods can be separated into three categories: sparse
representation-based methods, collaborative representation
(CR)-based methods, and low-rank representation-based meth-
ods, considering the different regularization constraints imposed
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on the representation models. The sparse representation assumes
that the background pixels can be linearly expressed by the atoms
belonging to the overcomplete dictionary, whereas the represen-
tation effect for the anomalous pixels is terrible. The background
joint sparse representation detector, which is a typical represen-
tative to explore the sparse model, models the background by
selecting the representative atoms in the local regions [26]. Ad-
ditionally, constructing a reliable overcomplete dictionary is the
other key research direction for the sparse representation-based
methods. The discriminative feature learning with multiple-
dictionary sparse representation detector, proposed by Ma et al.
[27], is an effective strategy to construct a reliable overcom-
plete dictionary for HAD. However, due to the lack of prior
information, it is hard to completely prevent interference from
anomalies, constructing an accurate overcomplete dictionary.

The classical CR detector (CRD), proposed by Li and Du [28],
holds that background pixels can be linearly represented by the
pixels within the dual windows, whereas the anomalous pixels
could not. Unfortunately, the pixels located in the dual windows
are vulnerable to being contaminated by the anomalous pixels,
resulting in unsatisfactory detection performance. To alleviate
this problem, a large number of variants, including dual CR [29],
self-weighted CR [30], and outlier removal-based CR [31], are
proposed to enhance detection performance. With regard to the
CR-based methods, the local characteristics are considered in
modeling the background, whereas the global attributes fail to
be exploited, leading to limited detection performance.

In recent years, the low-rank representation-based methods
play a vital role in HSI processing, such as denoising [32],
[33], clustering [34], [35], classification [36], [37], and anomaly
detection [38], [39]. Different from the CR-based methods,
the low-rank representation-based methods assume that the
background has a low-rank attribute and the anomalies are
treated as sparse. The low-rank and sparse matrix decomposition
(LSMAD) method proposed by Zhang et al. [40] is an early
attempt to model the background with the low-rank property
of background and sparsity of anomalies. Further, the low-rank
and sparse decomposition method with a mixture of Gaussian
(LSDM-MoG) [41] is proposed to better characterize data dis-
tribution. Furthermore, the background component is converted
into the product of the background dictionary and the repre-
sentation coefficient matrices, which has attracted increasing
attention due to the great potential in the construction of the
background dictionary. The low-rank and sparse representation
(LRASR) method [42] can be regarded as a successful explo-
ration for expressing the background part with the background
dictionary and representation coefficient matrices. However,
the purity of the background dictionary cannot be guaranteed
for LRASR. To tackle this issue, Jiang et al. [43] proposed
a low-rank embedded network to detect anomalies under the
condition of the sample-free. Xie et al. [44] proposed a weakly
supervised low-rank representation method for constructing a
representative and discriminative background dictionary. To
further effectively detect anomalies and lower the influence of
noise, Huyan et al. [45] proposed a novel dictionary construction
strategy, termed potential anomaly and background dictionary
construction (PAB-DC), to describe the anomaly and

background characteristics. Notably, the above low-rank
representation-based methods only consider the global infor-
mation, and the local attributes are ignored. To fully consider
the local geometrical structure information and global property,
Cheng and Wang [46] imposed the graph and total variation regu-
larized terms on the low-rank representation model. In addition,
Su et al. [47] proposed a low-rank and CRD (LRCRD), con-
sidering both the global attribute and local property. Although
the global attribute and local property are considered in LRCRD,
the collaborative constraint related to the anomaly component in
the dual dictionaries-based low-rank and sparse representation
model fails to be considered. Clearly, the anomalous pixels in
HSIs can be represented by the potential anomaly dictionary,
indicating that CR is suitable for the anomaly component. Be-
sides, the purity and representativeness of dictionaries are vital
to detection performance.

To achieve this goal, a novel HAD method, termed as dual
collaborative constraints regularized low-rank and sparse rep-
resentation via robust dictionaries construction, is proposed in
this article, as illustrated in Fig. 1. First, a robust dictionaries
construction strategy is proposed, jointly leveraging the den-
sity maps generated by density estimation model and local
outlier factor (LOF). Dual collaborative constraints are then
imposed on the low-rank and sparse representation model, in the
comprehensive consideration of the global property and local
attribute of the HSI. Furthermore, two weighted matrices are
exerted on the representation coefficients considering the fact
that different atoms should have different importance. Finally,
a nonlinear transformation operation is introduced to perform
the background suppression, expanding the difference between
the background and anomaly. Compared with the existing HAD
methods, the main contributions of our method are as follows.

1) A novel dual dictionaries construction strategy based on
two-stream density maps is proposed in this article. With
the dictionary construction strategy, the pure and represen-
tative pixels can be selected to act as the dictionary atoms.

2) The dual collaborative constraints, which consider both
background and anomaly components, are imposed into
the low-rank and sparse representation model. In this way,
global and local information can be fully exploited.

3) To carry out the background suppression, a nonlinear
transformation operation, in consideration of the two-
stream density maps, is developed to exert on the detection
result generated by the low-rank and sparse representation
model.

The remainder of this article is organized as follows. Section II
presents the related work. The proposed method is presented in
Section III. Section IV introduces the experiments. Finally, the
conclusions are outlined in Section V.

II. RELATED WORK

This section is to introduce the classical models utilized in
this article. The detailed description of these classical models,
consisting of low rank representation (LRR) model and CR
model, is as follows.
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Fig. 1. Schematic of the proposed method. Dm1 and Dm2 separately denote the density maps generated by the density estimation model and local outlier
factor. D1, D2, and D3 represent the background suppression map, anomalies enhancement map, and initial detection result, respectively. B1 and B2 indicate
binary maps generated from D1 and D2.

A. Low-Rank and Sparse Representation Model

In HSIs, the background is regarded as low rank, whereas
the anomalies are sparse [42]. Inevitably, noise with stochastic
or deterministic characteristics should be considered due to
its corruption for HSIs [40]. Based on the above-mentioned
analysis, the HSI Y can be decomposed into three components,
i.e., the low-rank component B, sparse component A, and noise
component N, which are expressed as follows:

Y = B+A+N. (1)

Considering the fact that there is a strong correlation between
background pixels [42] in HSIs, indicating that each of them
can be linearly represented by some representative background
pixels. Similarly, each anomalous pixel can be expressed by the
potential prior of anomalies in HSIs [45]. In this way, the (1)
can be converted into the following equation:

Y = DBWY +DASY +N (2)

where DBWY and DASY separately symbolize the low-rank
term and sparse term. DB and DA stand for the background and
potential anomaly dictionaries, respectively. WY and SY refer
to the representation coefficient matrices corresponding to the
low-rank term and sparse term, respectively.

To model the problem mentioned above, an optimization
objective function is expressed as follows:

min
WY ,SY ,N

‖WY ‖∗ + ν1‖SY ‖1 + ν2‖N‖2,1
s.t. Y = DBWY +DASY +N

(3)

where ||·||∗, ||·||1, and ||·||2,1 separately indicate the nuclear norm,
l1 norm, and l2,1 norm. ν1 > 0 and ν2 > 0 are the regularization
coefficients to balance the contribution of each term.

B. Collaborative Representation Model

The core idea of CR model is that the background pixels can be
represented by the surrounding pixels, whereas the anomalous
pixels cannot [28]. Let x denote the testing pixel, DS represent
the background dictionary, andϕ indicate the weight vector. The
goal of the CR is to determine the weight vectorϕ by minimizing
both ‖x−DSϕ‖22 and ‖ϕ‖22. As a result, the objective function
can be described as

argmin
ϕ
‖x−DSϕ‖22 + υ ‖ϕ‖22 (4)

whereυ indicates the regularization parameter. Generally speak-
ing, the surrounding pixels that are similar to the testing pixel
should be given a large weight, whereas the surrounding pixels
which are different from the testing pixel should have a smaller
weight. Accordingly, the distance-weighted-based optimization
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problem becomes

argmin
ϕ
‖x−DSϕ‖22 + υ ‖Γx ·ϕ‖22 (5)

where Γx = diag(‖x− d1‖2, ‖x− d2‖2, . . . , ‖x− ds‖2) in-
dicates the diagonal regularization matrix, each item of which
denotes the diagonal entry, and diag( · ) represents the operation
to construct a diagonal matrix. d1,d2, . . . ,dS are the columns
of DS .

III. PROPOSED METHOD

Generally speaking, the 3-D HSI cubic can be converted into a
2-D matrix denoted as X ∈ Rd×N , in which d and N signify the
number of spectral bands and pixels in an HSI, respectively. For
an HSI, the background and anomalies are separately deemed
as low rank and sparse [42]. To distinguish the background and
anomaly, the dual dictionaries-based representation method is
adopted, which can be expressed as X = XBW +XAS+E,
where XBW ∈ Rd×N , XAS ∈ Rd×N , and E ∈ Rd×N sepa-
rately symbolize the low-rank term, sparse term, and noise term.
XB ∈ Rd×m and XA ∈ Rd×n separately stand for the back-
ground and potential anomaly dictionaries, where m and n sep-
arately represent the number of atoms in background dictionary
and potential anomaly dictionary. W ∈ Rm×N and S ∈ Rn×N

refer to the representation coefficient matrices corresponding to
the low-rank term and sparse term, respectively.

In an HSI, the CR theory is widely used to characterize
the background [28], [30]. With this situation, to exploit the
global low-rank and local collaborative attributes, Su et al. [47]
regularized the low-rank representation model with l2 norm
of each column of the representation coefficient matrix corre-
sponding to the low-rank component. Motivated by this, dual
collaborative constraints, which are composed of the l2 norm
of each column of representation coefficient matrices belonging
to the background and anomaly components, are imposed on
the low-rank and sparse representation model to act as the
regularization terms. In this case, the optimization objective
function in the consideration of dual collaborative constraints
can be reformulated as

min
W,S,E

‖W‖∗ + α‖S‖1 + β‖E‖2,1 + λ

N∑
i=1

‖wi‖22

+ γ

N∑
i=1

‖si‖22

s.t. X = XBW +XAS+E (6)

where α > 0, β > 0, λ > 0, and γ > 0 stand for the regular-
ization coefficients to tradeoff each term. wi and si refer to the
ith column of W and S, respectively. Note that

∑
i||wi||22 =

||W||2F and
∑

i||si||22 = ||S||2F in (6). Therefore, the optimiza-
tion objective function can be converted into

min
W,S,E

‖W‖∗ + α‖S‖1 + β‖E‖2,1 + λ ‖W‖2F + γ ‖S‖2F
s.t. X = XBW +XAS+E.

(7)

Fig. 2. Schematic of the density estimation model. N(μq ,Σq) and ωq sepa-
rately indicate the qth Gaussian component and corresponding weight.

In general, the CR-based methods assume that the surround-
ing pixels that are similar to the center pixel should be given a
large weight, whereas the surrounding pixels which are different
from the center pixel should have a smaller weight [28]. To this
end, two weighted matrices are imposed on the background and
anomaly representation coefficients to adjust the contribution of
each atom in the dictionary. Therefore, (7) can be written as

min
W,S,E

‖W‖∗ + α‖S‖1 + β‖E‖2,1 + λ ‖WB ◦W‖2F

+ γ ‖WA ◦ S‖2F
s.t. X = XBW +XAS+E (8)

where WB={wB(i,j)}i=m,j=N
i=1,j=1 and WA={wA(i,j)}i=n,j=N

i=1,j=1

represent the weighted matrices corresponding to background
and anomaly terms, respectively, in which w∗(i,j) indicates the
Euclidean distance between the ith dictionary atom and the jth
pixel of HSI. ◦ denotes the Hadamard product.

A. Density Estimation via Gaussian Mixture Components

In the existing HAD task, the HSIs are generally consid-
ered to follow a single multivariate Gaussian distribution [19],
[22]. Apparently, this assumption is not applicable to the real
scene due to the highly complicated characteristics of the back-
ground of HSIs [43]. As a result, we consider the mixture
of Gaussian distribution to characterize the HSIs. There are
twofold effects for Gaussian mixture model (GMM), which
can be not only for density estimation but also for cluster-
ing. A detailed description of GMM-based density estimation
is as follows, and the GMM-based clustering is recounted in
Section III-C.

To implement GMM-based density estimation, a density es-
timation model, which contains nH fully connected layers, is
established, as illustrated in Fig. 2. Clearly, there is no direct
relation between the density estimation model and GMM. To
cope with this concern, the output of the density estimation
model is set to the number of Gaussian mixture components. In
this way, the density estimation model can be closely combined
with GMM.

Let f(x) represent the probability density function (pdf),
which can be expressed as

f(x) =
1√

2π |Σ|e
− 1

2 (x−μ)TΣ−1(x−μ) (9)
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where μ and Σ are the mean vector and covariance matrix,
respectively. | · | indicates the determinant of a matrix. Clearly,
f(x) can be determined by μ and Σ. Therefore, we termed it as
f(x|μ,Σ). In this case, the pdf of GMM can be defined as

fM (x) =

nM∑
q=1

ωqf(x|μq,Σq) (10)

where ωq > 0 denotes the coefficient to balance the Gaussian
components, and the sum of all coefficients is 1.μq andΣq repre-
sent the mean vector and covariance matrix corresponding to the
qth Gaussian mixture component, respectively. nM signifies the
number of Gaussian mixture components. It is worth noting that
ωq , μq, and Σq are unknown, indicating that these parameters
should be estimated. Generally speaking, the parameters of pdf
can be estimated by the maximum-likelihood estimation, which
can be formulated as follows:

max
ω,μ,Σ

N∑
i=1

ln

(
nM∑
q=1

ωqf(xi|μq,Σq)

)

s.t.

{
0 ≤ f(xi|μq,Σq) ≤ 1∑nM

q=1 ωq = 1,ωq ≥ 0
. (11)

To train the density estimation model, the maximum-
likelihood function of GMM is employed to act as the loss func-
tion. However, the maximum-likelihood function is to calculate
the maximum value, whereas the loss function of the density
estimation model should be minimized. To this end, the inverse
of the maximum-likelihood function of GMM is adopted to act
as the loss function to learn the density estimation model. The
detailed loss function can be formulated as

l = −
b∑

i=1

ln

(
nM∑
q=1

ωqf(xi|μq,Σq)

)
(12)

ωq =
b∑

i=1

oiq

b
(13)

μq =

∑b
i=1 oiqxi∑b
i=1 oiq

(14)

Σq =

∑b
i=1 oiq(xi − μq)(xi − μq)

T∑b
i=1 oiq

(15)

where oi = softmax(Ndem(xi; θdem)) signifies the output of the
density estimation model corresponding to the ith training sam-
ple, in which Ndem represents the mapping operation of the den-
sity estimation model, and θdem symbolizes the parameters of the
density estimation model. b indicates the batch size of training
samples. Once the training process finished, the HSI can be fed
into the density estimation model to obtain the output, which can
be employed to calculate the parameters of GMM by (13)–(15).
With this condition, we can acquire the density map through
utilizing pdf under the estimated parameters. Nevertheless, there
is low density value for the position corresponding to anomalous
pixels, which is contrary to our original intension. To tackle this
concern, the negative log pdf is employed to act as the indicator

for obtaining the density map, which can be formulated as

dim1 = − log

(
nM∑
q=1

ωqf(xi|μq,Σq)

)

= − log

(
nM∑
q=1

ωq√
2π |Σq|

e−
1
2 (xi−μq)

TΣ−1q (xi−μq)

)
(16)

where dim1 denotes the density value of the ith pixel in HSI.
When all pixels of an HSI are considered, a 2-D density map
Dm1 can be obtained.

B. Density Evaluation Based on Local Outlier Factor

LOF [48], which is first proposed for outlier detection, is
an effective strategy to evaluate the anomalous degree of each
sample. Clearly, this technique can serve as a performance
indicator to determine the probability that each sample belongs
to an anomaly. In addition, the LOF can also be regarded as a
kind of density evaluation without any distribution assumptions.
Based on these aspects, the LOF can be employed to evaluate the
density of each pixel in HSI. Taking the testing pixel xt in HSI
as an example, the detailed description of LOF can be expressed
as follows.

1) Compute the Euclidean distance of testing pixel xt and
other pixels and define the kth nearest pixel of xt as k-
distance.

2) Set the collection to the pixels whose distance from xt is
less than k as Nk(xt).

3) Define the reachability distance of xt to a pixel xo
t in

Nk(xt) as

reach− distk(xt,x
o
t ) = max {k−distance(xo

t ),

d(xt,x
o
t )} (17)

where d(xt,x
o
t ) denotes the Euclidean distance of xt and xo

t .
4) Calculate the local reachability density of xt (i.e.,

lrdk(xt)) in Nk(xt), which can be defined as

lrdk(xt) =

(
Σxo

t∈Nk(xt)reach− distk(xt,x
o
t )

|Nk(xt)|
)−1

(18)
where |Nk(xt)| represents the number of pixels in Nk(xt).
5) Compute the LOF of xt with the following formula:

LOF(xt) =
Σxo

t∈Nk(xt)lrdk(x
o
t )

|Nk(xt)| · 1

lrdk(xt)
. (19)

In the above case, the pixel whose LOF value approaches 1
is more likely to be the same class as k-nearest neighbors. In
addition, the pixel whose LOF value is much greater than 1 will
be reckoned as an anomaly, owing to the sparse characteristics
of the anomalies in HSI. Through the above way, the anomaly
degree of each pixel in HSI can be calculated. Eventually, the
2-D density map Dm2 is formed.
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Fig. 3. Example to illustrate the process of anomaly judgment. Here, the
points with the same color represent the same cluster, and each cluster obeys the
Gaussian distribution.

C. Dual Collaborative Constraints Regularized Low-Rank
and Sparse Representation

1) Dual Dictionaries Construction: In the field of HAD, the
GMM-based density estimation approach or LOF-based density
evaluation method is generally used to detect anomalies [49],
[50], whereas there is a limited capability for each of them to
measure the anomalous degree of testing pixels in HSIs. As a
result, we jointly consider both GMM and LOF to estimate the
anomalous degree of each pixel. Concretely, the elementwise
product of Dm1 and Dm2 is employed to search for the most
representative anomalies. In this way, the anomaly degree of
anomalous pixels will be highlighted, whereas that of back-
ground pixels will be suppressed. Similarly, the addition op-
eration pixel by pixel of Dm1 and Dm2 is executed to reinforce
the potential anomalies. The above description can be expressed
as

D1 = Dm1 �Dm2 (20)

D2 = Dm1 ⊕Dm2. (21)

As stated in Section III-A, the Gaussian mixture distribution
can be used to cluster the HSIs, which can be expressed as

ci = argmax(oi1, . . . ,oinM
) (22)

where ci ∈ {1, 2, 3, . . . , nM} indicates the cluster to which the
ith sample belongs to. argmax(·) refers to the index of the
maximum value. oik stands for the kth output of the density
estimation model for the ith sample. With this circumstance,
each cluster can be deemed to obey a Gaussian distribution. In
terms of the Gaussian distribution, normal samples fall into the
interval of 3σ principle, i.e., (μ0 − 3× σ, μ0 + 3× σ), whereas
the outlier samples are outside of the aforementioned range,
where μ0 and σ are the mean value and standard deviation of
the samples, respectively. For better comprehension, an example
is exhibited in Fig. 3. Based on the above-mentioned analysis,
the output can be represented by “0” and “1,” corresponding to
the normal samples (i.e., background) and outlier samples (i.e.,
anomaly), respectively. Nevertheless, it is hard to directly adopt
the intensity values of pixels in an HSI to calculate μ0 and σ,
due to the fact that there is a wealth of bands for each pixel in an
HSI, so we utilize the value of D1 and D2 to act as the intensity
value of the HSI. Through the aforementioned way, two binary
maps, i.e., B1 and B2, are obtained.

To construct the background and potential anomaly dictionar-
ies as accurately as possible, B1 and B2 are jointly combined

to assist in selecting the atoms of background and potential
anomaly dictionaries. Similar to D1 and D2, the elementwise
product of B1 and B2 acts as the indicator to sift the potential
anomaly atoms, and the sum of B1 and B2 is used to be the
director to choose the background atoms. Notably, to reduce
the computation complexity, the principal component analysis
is first utilized to reduce the dimensionality of the HSI, and then
the simple linear iterative clustering (SLIC) [51] is performed
on the first three principal components to obtain the superpixels.
Finally, the background atoms can be acquired through the
superpixels and the sum of B1 and B2, whereas the potential
anomaly atoms can be obtained via elementwise product of B1

and B2. The details can be formulated as

XA = {x(i−1)∗w+j |(B1 �B2)i,j = 1→ (i, j)} (23)

XB = {xc
i′ |ΣSi′

i′′=1(B1 ⊕B2)i′′ = 0→ i′} (24)

whereXA andXB represent the collection of potential anomaly
pixels and background pixels, respectively. i ∈ [1, h] and j ∈
[1, w] are separately the indexes corresponding to the row and
column, in which h and w refer to the height and width of an
HSI, respectively. i′ ∈ [1, ns] denotes the index of superpixels,
where ns represents the number of predefined superpixels. Si′

indicates the number of pixels in the i′th superpixel. ΣSi′
i′′=1(·)i′′

signifies the sum of response value of all pixels belonging to the
i′th superpixel. xc

i′ refers to the centroid of the i′th superpixel.
2) Low-Rank and Sparse Representation: As stated in (8),

our goal is to solve the optimization problem in the consideration
of the dual collaborative constraints, with the constructed back-
ground dictionary XB and potential anomaly dictionary XA. To
tackle the aforementioned low-rank and sparse representation
problem, four auxiliary variables P, Q, R, and V are introduced
to make the objective function separable. Consequently, the
problem (8) can be converted into the following form:

min
W,S,E,P,Q,R,V

‖P‖∗ + α‖Q‖1 + β‖E‖2,1 + λ ‖WB ◦R‖2F

+ γ ‖WA ◦V‖2F
s.t.X=XBW +XAS+E,W=P,S=Q,W=R,S=V.

(25)

The augmented Lagrange function of problem (25) is

l = ‖P‖∗ + α‖Q‖1 + β‖E‖2,1 + λ ‖WB ◦R‖2F
+ γ ‖WA ◦V‖2F +tr[YT

1 (X−XBW −XAS−E)]

+ tr[YT
2 (W −P)] + tr[YT

3 (S−Q)] + tr[YT
4 (W −R)]

+ tr[YT
5 (S−V)] +

η

2
(‖X−XBW −XAS−E‖2F

+ ‖W −P‖2F ‖S−Q‖2F + ‖W −R‖2F + ‖S−V‖2F )
(26)

where Y1, Y2, Y3, Y4, and Y5 are the Lagrange multipliers and
η is a penalty parameter. tr[·] represents the trace of the matrix.
The problem (26) can be solved with the alternating direction
method of multipliers (ADMM) method [52], of which the core
idea of this is to fix other variables while updating one variable.
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1) Update P while fixing other variables. The objective func-
tion can be derived as

min
P
‖P‖∗ +

η

2

∥∥∥∥P−
(
W +

Y2

η

)∥∥∥∥
2

F

. (27)

2) Update Q while fixing other variables. The objective func-
tion can be derived as

min
Q

α‖Q‖1 +
η

2

∥∥∥∥Q−
(
S+

Y3

η

)∥∥∥∥
2

F

. (28)

3) Update E while fixing other variables. The objective func-
tion can be derived as

min
E

β‖E‖2,1+
η

2

∥∥∥∥E−
(
X−XBW −XAS+

Y1

η

)∥∥∥∥
2

F

.

(29)
4) Update R while fixing other variables. The objective func-

tion can be derived as

min
R

λ ‖WB ◦R‖2F +tr[YT
4 (W −R)]+

η

2
‖W−R‖2F

(30)

⇒ R =

(
1

2λWB ◦WB + η

)
◦ (Y4 + ηW). (31)

5) Update V while fixing other variables. The objective func-
tion can be derived as

min
V

γ ‖WA ◦V‖2F + tr[YT
5 (S−V)] +

η

2
‖S−V‖2F

(32)

⇒ V =

(
1

2γWA ◦WA + η

)
◦ (Y5 + ηS). (33)

6) Update W while fixing other variables. The objective
function can be derived as

min
W

tr[YT
1 (X−XBW−XAS−E)]+tr[YT

2 (W−P)]

+tr[YT
4 (W −R)] + η

2 (‖X−XBW −XAS−E‖2F
+ ‖W −P‖2F + ‖W −R‖2F )

(34)

⇒W=(XT
BXB+2I)

−1
[XT

B(X−XAS−E+Y1/η)
+(P−Y2/η) + (R−Y4/η)].

(35)

7) Update S while fixing other variables. The objective func-
tion can be derived as

min
S

tr[YT
1 (X−XBW−XAS−E)]+tr[YT

3 (S−Q)]

+tr[YT
5 (S−V)] + η

2 (‖X−XBW −XAS−E‖2F
+ ‖S−Q‖2F + ‖S−V‖2F )

(36)

⇒ S=(XT
AXA+2I)

−1
[XT

A(X−XBW−E+Y1/η)
+(Q−Y3/η) + (V −Y5/η)].

(37)

The solution of the optimization process is outlined in Algo-
rithm 1. Note that Φ, Ω, and Θ used in Algorithm 1 separately

Algorithm 1: Solve (26) by ADMM.

Input: HSI X = {xi}i=N
i=1 ∈ Rd×N , regularization

parameter α, β, λ and γ.
Initialize: W = S = P = Q = R = V = 0, E = 0, Y1 = Y2

= Y3 = Y4 = Y5 = 0, η = 10−6, ηmax = 1010, ρ = 1.2, ε
= 10−6.

1: While max(‖X−XBW−XAS−E‖F , ‖W−P‖F ,
‖S−Q‖F , ‖W −R‖F , ‖S−V‖F ) ≥ ε do

2: Update P while fixing other variables by (27):
P← Φ1/η(W +Y2/η)

3: Update Q while fixing other variables by (28):
Q← Ωα/η(S+Y3/η)

4: Update E while fixing other variables by (29):
E← Θβ/η(X−XBW −XAS+Y1/η)

5: Update R while fixing other variables by (31):
R← [1/(2λWB ◦WB + η)] ◦ (Y4 + ηW)

6: Update V while fixing other variables by (33):
V← [1/(2γWA ◦WA + η)] ◦ (Y5 + ηS)

7: Update W while fixing other variables by (35):
W← (XT

BXB + 2I)
−1
[XT

B(X−XAS−E+Y1/η)
+(P−Y2/η) + (R−Y4/η)]

8: Update S while fixing other variables by (37):
S← (XT

AXA + 2I)
−1
[XT

A(X−XBW −E+Y1/η)
+(Q−Y3/η) + (V −Y5/η)]

9: Update the five Lagrange multipliers:
Y1 ← Y1 + η(X−XBW −XAS−E)
Y2 ← Y2 + η(W −P)
Y3 ← Y3 + η(S−Q)
Y4 ← Y4 + η(W −R)
Y5 ← Y5 + η(S−V)

10: Update the balance parameter η:
η ← min(ρη, ηmax)

11: End While
Output: W, S, E

refer to the singular value thresholding [53], soft thresholding
[54], and l2,1 norm minimization operator [55].

Once the optimization process is terminated, the detection
result D3 can be determined by the sparse component XAS as

T (xi) =
∥∥∥[XAS]:,i

∥∥∥
2
=

√∑d

j=1
([XAS]j,i)

2 (38)

where [·]:,i denotes the ith column of a matrix.
To suppress the background interference in the detection

result, a nonlinear transformation, which considers both D1 and
D2, is performed on D3 for better detection performance. The
nonlinear transformation can be formulated as

DF = D3(1− e−τ1D1)(1− e−τ2D2). (39)

where DF denotes the final detection result. τ1 > 0 and τ2 > 0
indicate the parameters to adjust the shape of nonlinear trans-
formation.
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Fig. 4. Visualization of the experimental datasets. (a) Pseudocolor image. (b)
Reference map. (I) Salinas. (II) Pavia. (III) HYDICE. (IV) Gulfport.

IV. EXPERIMENTS

In this section, we conducted a flurry of experiments to vali-
date the effectiveness and superiority of the proposed method.

A. Datasets and Evaluation Metrics

1) Data Description: One simulated dataset and three real
datasets, acquired by three different sensors, are used to evaluate
the performance of the proposed method. The anomalies existed
in the datasets appear in different forms, and the details are
described in the following.

Salinas Dataset [56]: The first dataset, generated by exerting
the target implantation method [57] on a real dataset captured by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensors, covering the area of Salinas Valley, CA, USA, is the
simulated dataset. There are 204 spectral bands in total for the
dataset, and each of them contains 120×120 pixels. The spatial
resolution of the dataset is 3.7 m. The pseudocolor image and
corresponding reference map are displayed in Fig. 4(I-a) and
(I-b), respectively.

Pavia Dataset [40]: The second dataset, collected by the
Reflective Optics System Imaging Spectrometer (ROSIS-03)
sensor, covers the area of the center of Pavia city located in
northern Italy. The number of spectral bands is 102 for the
dataset, ranging from 0.43 to 0.86μm. There are 100×100 pixels
and a 1.3-m spatial resolution for the dataset. The pseudocolor
image and corresponding reference map are separately shown
in Fig. 4(II-a) and (II-b), respectively.

HYDICE Dataset [58]: The third dataset was obtained by
the Hyperspectral Digital Imagery Collection Experiment (HY-
DICE) airborne sensor, covering an urban area of CA, USA.
There are 80×100 spatial pixels and 175 spectral bands ranging
from 0.4 to 2.5 μm for the dataset, and its spatial resolution is
1 m. The pseudocolor image and corresponding reference map
are exhibited in Fig. 4(III-a) and (III-b), respectively.

Gulfport Dataset [47]: The fourth dataset with a size of
100×100×191 was acquired by the AVIRIS sensor at Gulfport,
with a spatial resolution of 3.4 m. The pseudocolor image
and corresponding reference map are separately illustrated in
Fig. 4(IV-a) and (IV-b).

2) Evaluation Metrics: To evaluate the performance of the
proposed method, three commonly utilized evaluation metrics,
containing the receiver operating characteristic (ROC) curve
[59], the area under the curve (AUC) [60], and the separability
map [61], are employed. The ROC curve depicts the relationship
between the true positive rate (PD) and false positive rate
(PF ) at different thresholds. The commonly used ROC curves
are (PD, PF ) and (PF , τ), which are separately employed to
characterize the detection rate and false alarm rate. For the
ROC curve of (PD, PF ), the higher the curve, the better the
performance. Inversely, the low ROC curve of (PF , τ) means
a low false alarm rate, indicating superior performance. Corre-
spondingly, two kinds of AUC scores are adopted, which can be
expressed as AUC score of (PD, PF ) and AUC score of (PF , τ),
respectively. A detector whose AUC score of (PD, PF ) closely
approaches to 1 is viewed as an excellent one. Conversely, the
AUC score of (PF , τ) for a superior detector should be close to
0. The separability map, which is generated from the boxplot,
characterizes the ability of the detector to extract anomalies from
background. The better the detector, the larger the separation
distance between the background and anomalies.

B. Experimental Setup

1) Implementation Details: The running environment of our
method is Python 3.6.13, Pytorch-GPU 1.8.2, and CUDA 10.2,
which are executed on an Intel Core i7-9700T CPU 2.00GHz ma-
chine with 16GB of RAM and a GeForce RTX 2080Ti graphics
card with 11GB memory. Other compared methods are carried
out on a running environment with MATLAB R2017b except
for PAB-DC, which is conducted on a running environment with
Python 3.6.13. We optimize the density estimation model via the
Adagrad [62] optimizer with a learning rate of 0.0001, and the
number of iterations is 1000. The number of hidden nodes is
empirically set to 128. The batch size of the density estimation
model is set to N, which is the number of total pixels in HSI.
For the proposed method, we empirically set the parameters to
fixed values, which are expressed as nH = 1, nM = 8, k = 20,
ns = 400, α = 0.1, β = 0.1, λ = 0.1, γ = 0.1, τ1 = 1, and
τ2 = 1, respectively. In our experiments, the above parameters
are configured by default, and the optimal detection results can
be obtained by tuning these parameters by the user.

2) Compared Methods: To validate the superiority of the
proposed method, eight widely cited methods, consisting of RX
[19], CRD [28], LRASR [42], LSMAD [40], MLW_LRRSTO
[63], PAB-DC [45], LSDM-MoG [41], and KIFD [58], are
utilized for comparison. Among them, RX, CRD, LRASR, and
LSMAD are typical methods, and the last four methods are
proposed recently.

C. Parameter Sensitivity Analysis

This section aims to analyze the performance of the proposed
method with different parameters. There are ten parameters to
be considered, which are separately the number of hidden layers
nH , the number of Gaussian mixture components nM , the num-
ber of k-nearest neighbors k, the number of superpixels ns, the
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Fig. 5. Parameter analysis on the experimental datasets. (a) Number of hidden layers. (b) Number of Gaussian mixture components. (c) Number of k-nearest
neighbors. (d) Number of superpixels. (e) α. (f) β. (g) λ. (h) γ. (i) Effect of τ1 and τ2 on Pavia dataset.

regularization coefficients α, β, λ, γ, and transformation coeffi-
cients τ1 and τ2. In our experiments, we fix the other parameters
when a certain parameter is analyzed, and the other parameters
are set to the preconfigured values, as stated in Section IV-B1.
The details of parameter analysis are illustrated in Fig. 5, in
which the abscissa represents the range of the parameters and
the ordinate indicates the AUC scores of (PD, PF ).

1) Number of Hidden Layers nH : To analyze the influence
of the number of hidden layers in the density estimation model
on the detection performance, a group of numbers, ranging from
1 to 5 at an interval of 1, are set, as displayed in Fig. 5(a). By
observing Fig. 5(a), we can notice that the proposed method
performs well when nH is equivalent to 1 or 5 on all experi-
mental datasets. Clearly, the computation burden of the density
estimation model with five hidden layers is higher than that of
the density estimation model with one hidden layer. Therefore,
it is considered to be very wise to set the number of hidden layers
of the density estimation model as 1.

2) Number of Gaussian Mixture Components nM : Fig. 5(b)
shows the effect of nM with different values on the detection
performance. Concretely,nM spans from 1 to 10 with an interval
of 1. For the Gaussian mixture components, a proper parameter
nM is helpful to characterize the background of HSI and isolate

the anomalies. Through Fig. 5(b), we can find that the proposed
method has an obvious fluctuation with the change of nM for
Pavia dataset, while it keeps stable on the other datasets. Notably,
the proposed method can achieve excellent results whennM = 8
for all experimental datasets.

3) Number of K-Nearest Neighbors k: For the number of
k-nearest neighborsk, ifk is relatively small, the central region of
the anomalies occupying a large area will reside in a low-density
area. Inversely, the computation burden is quite high when k is
particularly large. Therefore, the value of k is set as {10, 20, 30,
40, 50}, as illustrated in Fig. 5(c). From Fig. 5(c), we can see
that the detector can achieve satisfactory detection performance
when k = 20.

4) Number of Superpixels ns: The effect of the number of
superpixels on the detection performance is analyzed, as exhib-
ited in Fig. 5(d). For the detector, fewer superpixels mean that
fewer pixels participate in the construction of the background
dictionary, resulting in low detection performance. Contrarily,
the more superpixels will lead to heavy calculation consumption.
To this end, we set ns as {200, 300, 400, 500, 600} to tradeoff
the detection performance and calculation burden. By observing
Fig. 5(d), it is can be found that the detection performance of the
proposed method maintains stable with the variation of ns for
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TABLE I
OPTIMAL PARAMETERS SETTINGS FOR EXPERIMENTAL DATASETS

the HYDICE dataset. Different from the above, there is a certain
degree of change for the remaining three datasets, especially
for the Gulfport dataset. Evidently, it is intuitively plausible to
achieve the excellent detection performance when ns is equal to
400.

5) Regularization Coefficients α, β, λ, and γ: For the regu-
larization coefficients, all of them are configured as {10−4, 10−3,
10−2, 10−1, 100}, and the corresponding detection results under
different values are displayed in Fig. 5(e)–(h), respectively. As
a whole, the detector has an obvious change in detection perfor-
mance for Pavia dataset compared with that of other datasets over
all regularization coefficients. Through Fig. 5(e)–(h), we can find
that the detector can obtain gratifying detection performance
when the overall regularization coefficients are equivalent to
10−1, 10−1, 10−1, and 10−1, respectively.

6) Transformation Coefficients τ1 and τ2: With regard to the
transformation coefficients, both of them are configured as {1, 5,
10, 15, 20, 50}, considering the fact that the high response values
in (38) are expected to be reinforced, while the corresponding
low response values should be suppressed. Taking the Pavia
dataset as an example, the detection results plotted in a 3-D
manner are visualized in Fig. 5(i). By observing

Fig. 5(i), it can be found that the detection performance
remains stable and at a high level. Notably, the detection perfor-
mance achieves the optimal result when τ1 = 1 and τ2 = 5. To
obtain the optimal performance, a great quantity of experiments
is executed on all experimental datasets, and the corresponding
parameter settings are listed in Table I.

D. Component Analysis

1) Effectiveness Evaluation of Dual Dictionaries Construc-
tion Strategy: To validate the effect of dual dictionaries con-
struction strategy based on two-stream density maps, the pro-
posed method is compared with the typical dual dictionaries-
based method (i.e., PAB-DC), as displayed in Fig. 6. Here, the
postprocessing operation, i.e., the nonlinear transformation in
(39), is ignored in the proposed method for a fair comparison.
By observing Fig. 6, we can notice that the detection perfor-
mance of the proposed method outperforms that of the typical
method on all experimental datasets. Concretely, the detection
performance of the proposed method is much higher than that
of the typical method on Salinas, Pavia, and Gulfport datasets.
For the HYDICE dataset, the improvement is limited for the
proposed method relative to PAB-DC, owing to the fact that
the detection performance of both detectors is quite close to
1. Furthermore to clearly show the superiority of the proposed
method, the background and potential anomaly dictionaries
belonging to the proposed method and PAB-DC are visualized in

Fig. 6. 2-D histogram of detection performance with different dictionaries
construction.

Fig. 7. Visualization of the selected atoms in background dictionary and
potential anomaly dictionary for the proposed method and PAB-DC on ex-
perimental datasets. (I) Salinas. (II) Pavia. (III) HYDICE. (IV) Gulfport. (a)
Selected atoms in background dictionary for the proposed method. (b) Selected
atoms in background dictionary for PAB-DC. (c) Selected atoms in potential
anomaly dictionary for the proposed method. (d) Selected atoms in potential
anomaly dictionary for PAB-DC. The red areas refer to the anomalies existed
in the reference map, and the green dots represent the selected atoms in the
background and potential anomaly dictionaries.

Fig. 7. Compared with the background dictionary constructed in
PAB-DC, that constructed in the proposed method is hardly con-
taminated by the anomalous pixels. Similarly, the interference
degree of background pixels to potential anomaly dictionaries in
the proposed method is much lower than that of PAB-DC. This
means that the proposed method can acquire more pure and
representative dictionary atoms relative to those of PAB-DC,
achieving more excellent detection performance.
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Fig. 8. 2-D histogram of detection performance with or without collaborative
constraints. Note that “wo/CC” represents the proposed method without collabo-
rative constraints, “w/BCC” indicates the proposed method with the background
collaborative constraint, and “w/DCC” signifies the proposed method with dual
collaborative constraints.

Fig. 9. Visualization of the detection results under different constraint terms
for the Salinas dataset. (a) Reference map. (b) Proposed method without
collaborative constraints. (c) Proposed method with background collaborative
constraint. (d) Proposed method with dual collaborative constraints.

2) Effectiveness Evaluation of Dual Collaborative Con-
straints: To verify the effect of the dual collaborative constraints
imposed on the low-rank and sparse representation model, three
aspects, containing the proposed method without collaborative
constraints, the proposed method with background collaborative
constraint, and the proposed method with dual collaborative
constraints, are considered, as plotted in Fig. 8. Similar to Sec-
tion IV-D1, the nonlinear transformation is also omitted for fully
excavating the effect of the dual collaborative constraints. As we
can see in Fig. 8, the detection performance of the proposed
method far exceeds that of other aspects of Salinas, Pavia,
and Gulfport datasets. Clearly, the improvement with regard
to the detection performance is not obvious for the HYDICE
dataset, which is mainly because the detection performance of
the proposed method is nearly close to the limitation. Taking
the Salinas dataset for example, the detection maps separately
corresponding to the three comparative components are visu-
alized, as illustrated in Fig. 9. Through Fig. 9, it can be found
that the detection performance of the proposed method with
dual collaborative constraints is remarkably higher than those of
other types, indicating the effectiveness of the dual collaborative
constraints.

E. Detection Performance

We employ detection maps and three evaluation metrics (i.e.,
ROC curve of (PD, PF ) and ROC curve of (PF , τ), AUC

score of (PD, PF ) and AUC score of (PF , τ), and separabil-
ity maps) to assess the performance of the proposed method.
Fig. 10 displays the detection maps of the proposed method and
compared methods. The ROC curves of (PD, PF ) and (PF , τ)
with respect to the proposed method and compared methods
are separately shown in Figs. 11 and 12. Correspondingly, the
AUC scores of (PD, PF ) and (PF , τ) are exhibited in Tables II
and III, respectively. In addition, the separability maps between
the proposed method and compared methods are illustrated in
Fig. 13. It is worth noting that the bold numbers and underlined
numbers indicate the best result and worst result, respectively.

For the Salinas dataset, there is the highest AUC score of
(PD, PF ) (i.e., 0.9982) and the lowest AUC score of (PF , τ)
(i.e., 0.0003) for the proposed method relative to the compared
methods. The KIFD achieves the first rank over AUC score
of (PD, PF ) among compared methods, whereas superiority
over the AUC score of (PF , τ) is not conspicuous enough for
KIFD. Notably, the LSDM-MoG has the lowest AUC score of
(PD, PF ), which is much lower than the proposed method,
indicating that the localization capability of LSDM-MoG is
insufficient for the simulated dataset. In terms of PAB-DC,
AUC score of (PF , τ) is the highest among all methods, which
means a very high false alarm rate, and the localization ability is
unsatisfactory. Similarly, the effect of RX and LRASR is poor
for locating anomalies. Additionally, the CRD, LSMAD, and
MLW_ LRRSTO can identify anomalies with a high detection
rate and a low false alarm rate.

With regard to Pavia dataset, as illustrated in Fig. 10(II-i), we
notice that the proposed method can identify the total anomalies,
preserving low false alarms. The RX, LRASR, LSMAD, and
MLW_LRRSTO are second to the proposed method in terms
of the AUC score of (PD, PF ), which are 0.9887, 0.9889,
0.9842, and 0.9886, listed in Table II, respectively. Though the
anomalies are well located for CRD, the relatively high false
alarm rate results in lower detection accuracy. Notably, PAB-DC
and KIFD fail to identify the anomalies comprehensively due to
the very high false alarm rate, which are up to 0.3009 and 0.2360,
respectively.

For HYDICE dataset, the proposed method still outperforms
compared methods both on AUC score of (PD, PF ) and AUC
score of (PF , τ), especially for LRASR. The CRD, MLW_
LRRSTO, PAB-DC, and KIFD are slightly lower than the
proposed method over the AUC score of (PD, PF ), which are
separately 0.9951, 0.9960, 0.9955, and 0.9966. At the same time,
the false alarm rate of CRD, MLW_LRRSTO, and PAB-DC is
satisfactory relative to KIFD. Besides, it is acceptable in the
consideration of both AUC score of (PD, PF ) and AUC score
of (PF , τ) for RX and LSMAD.

The detection map of the proposed method on Gulfport dataset
is displayed in Fig. 10(IV-i). By observing Fig. 10(IV-i), we can
notice that the anomalies (i.e., three airplanes) are identified to a
large extent. Though two small airplanes are not very clear from
a visual point of view, the detection accuracy (i.e., AUC score of
(PD, PF )) is very high in comparison with other methods due to
the low false alarm rate. In terms of visual effects, the anomalies
are submerged into the background for LRASR, PAB-DC, and
KIFD owing to the strong false alarm rate. Remarkably, the AUC
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Fig. 10. Detection maps of different methods. (I) Salinas. (II) Pavia. (III) HYDICE. (IV) Gulfport. (a) RX. (b) CRD. (c) LRASR. (d)LSMAD. (e) MLW_LRRSTO.
(f) PAB-DC. (g) LSDM-MoG. (h) KIFD. (i) Proposed method. (j) Reference map.

Fig. 11. ROC curves of (PD, PF) over compared methods on (a) Salinas, (b) Pavia, (c) HYDICE, and (d) Gulfport.

Fig. 12. ROC curves of (PF, τ ) over compared methods on (a) Salinas, (b) Pavia, (c) HYDICE, and (d) Gulfport.

TABLE II
AUC SCORES OF (PD, PF ) FOR COMPARED METHODS ON EXPERIMENTAL DATASETS
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TABLE III
AUC SCORES OF (PF , τ) FOR COMPARED METHODS ON EXPERIMENTAL DATASETS

Fig. 13. Separability maps over compared methods on (a) Salinas, (b) Pavia, (c) HYDICE, and (d) Gulfport. Here, a-“RX,” b-“CRD,” c-“LRASR,” d-“LSMAD,”
e-“MLW_LRRSTO,” f-“PAB-DC,” g-“LSDM-MoG,” h-“KIFD,” and i-“Proposed.”

scores of (PD, PF ) on LRASR and PAB-DC are much lower
than that of KIFD, which is slightly lower than the proposed
method. The LSMAD, MLW_ LRRSTO, and LSDM-MoG can
well detect the anomalies, while the high false alarm rate leads
to a low detection rate. In addition, the RX and CRD achieve
encouraging false alarm rates, whereas the detection rate of CRD
is poor relative to other methods except for LRASR.

To prove the superiority of the proposed method, both ROC
curves (i.e., ROC curve of (PD, PF ) and ROC curve of (PF , τ))
are utilized to judge the performance, as illustrated in Figs. 11
and 12, respectively. By observing the ROC curves of (PD, PF )
in Fig. 11, we can find that the ROC curve of (PD, PF ) of the
proposed method is higher than that of the compared methods on
HYDICE dataset, indicating that the detection performance of
the proposed method is optimal on HYDICE dataset. Addition-
ally, the ROC curves of (PD, PF ) of the proposed method lie
nearer the upper left corner relative to the compared methods on
Salinas, Pavia, and Gulfport datasets when the false positive rates
are greater than 10−2, which means that the proposed method
performs well on these three datasets when the false positive
rates are in the range of [10−2, 100]. Although the performance
of the ROC curves of (PD, PF ) of the proposed method is not
optimal on the aforementioned three datasets when the false
positive rates are in the range of [10−3, 10−2], the area under
the ROC curves of (PD, PF ) listed in Table II is optimal. In
summary, as long as the overall performance is excellent, the
local behavior is slightly suboptimal and can be acceptable. With
regard to the ROC curve of (PF , τ), all compared methods are
strongly higher than the proposed method, meaning that the false
alarm rate of the proposed method is completely lower than that
of the others. Notably, both ROC curve of (PD, PF ) and ROC
curve of (PF , τ) are displayed in a logarithmic-scale way for
better visualization.

The separability maps on experimental datasets are further
adopted to evaluate the effect of extracting anomalies from

background, as shown in Fig. 13. In Fig. 13, two-column
boxplots corresponding to each detector separately represent
the anomaly (in red) and background (in blue). The bottom
bound and upper bound of the box are separately 10% and 90%
of the statistical interval of the detection results, respectively,
and the line in the middle of the box is the median of the
statistical interval. The lines of top and bottom for each column
are the extremums, which are separately the maximum and
minimum values of the statistical interval, while the 0%∼10%
and 90%∼100% intervals are represented by dotted lines. The
interval between the red box and the blue box indicates the
separability degree of the anomalies and background. The height
of the blue box represents the suppression effect for the back-
ground. For Salinas dataset, there are overlaps between the red
box and blue box to some degree for RX, LRASR, PAB-DC, and
LSDM-MoG, indicating that their separability degree is limited.
The rest of compared methods and the proposed method perform
well in separating the background and anomaly, whereas the
background suppression capability of the proposed method is
superior to the rest of compared methods, especially for KIFD.
Similarly, for Pavia dataset, we can notice that the overlaps with
regard to the red box and blue box are obvious for PAB-DC,
LSDM-MoG, and KIFD, which means that the separability
performance is unsatisfactory. Although the separability of the
other compared methods is slightly better than the proposed
method, the background suppression effect of the proposed
method evidently outperforms all compared methods. Likewise,
for HYDICE dataset, we can find that there is a nice tradeoff
between the separability (i.e., the ability to extract the anomaly
from background) and background suppression in comparison
with the compared methods. It is worth noting that the proposed
method still performs well for Gulfport dataset, while the sepa-
rability is poor for most compared methods except for KIFD.
In summary, on experimental datasets, the proposed method
has the best background suppression capability and acceptable
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TABLE IV
AVERAGE RUNNING TIME (IN SECONDS) OF COMPARED METHODS

separability between the anomaly and background relative to the
compared methods.

Furthermore, the running time of all methods is listed in
Table IV to evaluate the computational burden. Notably, the bold
numbers and underlined numbers represent the best result and
worst result, respectively. The RX achieves the first-rank real-
time performance in comparison with other methods. Although
the proposed method is more time-consuming relative to most
methods, the running time of the proposed method is less than
that of PAB-DC, which is the typical dual dictionaries-based
low-rank and sparse representation method, indicating that the
proposed methods can be acceptable in the consideration of the
detection performance and running time.

V. CONCLUSION

In this article, a novel HAD method, which imposes dual
collaborative constraints on low-rank and sparse representation
models, in conjunction with the robust dictionary construction,
is proposed. Concretely, to thoroughly employ the global and
local information in the HSI, dual collaborative constraints act
as the regularization terms to model the background and anomaly
components. Considering the fact that surrounding pixels with
high similarity relative to the pixel under test should be given
high weight, two weighted coefficient matrices corresponding
to background and anomaly components are further introduced.
To acquire better detection performance, a robust dictionary
construction strategy, which fully exploits the density maps
generated by the density estimation model and LOF, is proposed,
yielding a pure and representative background and potential
anomaly dictionaries. To validate the effectiveness and superi-
ority of the proposed method, the experiments are carried out on
four datasets consisting of one simulated dataset and three real
datasets with different sensors. The effectiveness of the proposed
method is verified by the component analysis of experimental
datasets. Similarly, the superiority of the proposed method is
also proved by comparing it with the four typical methods and
four state-of-the-art methods. In future work, we will think about
how to reduce the complexity of the proposed model, reducing
the running time.
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