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Multimodal Attention-Aware Convolutional Neural

Networks for Classification of Hyperspectral
and LiDAR Data

Haotian Zhang, Jing Yao

Abstract—The attention mechanism is one of the most influ-
ential ideas in the deep learning community, which has shown
excellent efficiency in various computer vision tasks. Thus, this
article proposes the convolution neural network method with the
attention mechanism to enhance the feature extraction of light
detection and ranging (LiDAR) data. Meanwhile, our elaborately
designed cascaded block contains a short path architecture benefi-
cial for multistage information exchange. With the full exploitation
of elevation information from LiDAR data and efficient utilization
of the spatial-spectral information underlying hyperspectral data,
our method provides a novel solution for multimodal feature fu-
sion. Experiments are conducted on the LiDAR and hyperspectral
dataset provided by the 2013 IEEE GRSS Data Fusion Contest
and multisource Trento dataset to demonstrate the effectiveness
of the proposed method. The experimental results have shown
the superior results of the proposed method on both LiDAR and
multimodality remote sensing data in comparison with several
popular baselines.

Index Terms—Attention mechanism, convolution neural net—
work (CNN), hyperspectral, light detection and ranging (LiDAR),
multimodality.

1. INTRODUCTION

EMOTE sensing image classification task plays an essen-
Rtial role in Earth observation, which could be used for
analyzing critical information related to urban planning, natural
resources management, climate change, environmental moni-
toring, and so on. Remote sensing data acquired from various
sensors could exploit multiple physical characteristics of ground
objects [1], [2], [3], [4], [S]. With the blooming development of
remote sensing sensors, more and more researchers in the remote

Manuscript received 11 May 2022; revised 15 June 2022; accepted 26 June
2022. Date of publication 1 July 2022; date of current version 14 April 2023.
This work was supported in part by the National Key Research and Devel-
opment Program of China under Grant 2021 YFB3900502, and in part by the
National Natural Science Foundation of China under Grant 62201553 and Grant
42030111. (Corresponding author: Jing Yao.)

Haotian Zhang is with the Key Laboratory of Computational Optical Imaging
Technology, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100094, China, and also with the School of Resources and
Environment, University of Chinese Academy of Sciences, Beijing 100049,
China (e-mail: zhanghaotian19 @mails.ucas.ac.cn).

Jing Yao, Li Ni, Lianru Gao, and Min Huang are with the Key Laboratory of
Computational Optical Imaging Technology, Aerospace Information Research
Institute, Chinese Academy of Sciences, Beijing 100094, China (e-mail:
jasonyao92 @gmail.com; nili@aircas.ac.cn; gaolr@aircas.ac.cn; huangmin@
aircas.ac.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3187730

, Member, IEEE, 11 Ni, Lianru Gao

, Senior Member, IEEE, and Min Huang

sensing community are active in the algorithm innovations to
better extract the most valuable features among the multimodal
remote sensing data [6]. Mostly, it is complicated and challeng-
ing for some algorithms to extract the feature of ground objects
efficiently. For example, it is hard to distinguish different ground
objects in the downtown area with a high building density. In this
case, various remote sensing data could facilitate the algorithm
to improve the image classification results more precisely [7].

Hyperspectral image (HSI) can provide detailed spectral in-
formation of various ground cover types due to its broad cover-
age of wavelength and high sampling rate [8], [9]. Usually, HSI
contains dozens or hundreds of spectral information ranging
from the visible light (0.4-0.7 ym) bands to the short-wave
infrared (almost 2.4 pm) bands. Thus, HST with sufficient spec-
tral information could discriminate ground objects with similar
spatial features [10]. Nevertheless, hyperspectral data could not
contain height information of ground objects as well as high-
resolution spatial information. Meanwhile, there are complex
mixed pixels and noising signal, which prevent the precise
classification results [11], [12]. Classifying ground objects with
similar spectral and spatial features could hardly distinguish
ground objects only with the HSI, and lots of researchers have
tried to improve the HSI classification accuracy [13], [14], [15],
[16], [17], [18], [19], [20]. To this end, LiDAR data can provide
elevation information to extract more precise features of various
ground objects. Consequently, LiDAR data provide elevation
information, which is a beneficial source for complementing the
information provided solely by HSI [21].

Researchers have proposed a series of methods to better
realize remote sensing image classification tasks using HSI
and LiDAR data in recent years. To further strengthen the
spatial feature, filtering-based methods have been proposed,
which mostly could extract the regional geometrical feature,
meanwhile, preserve the most critical spatial characteristic of
HSI [22], [23], [24], [25], [26]. However, the filtering-based
methods mostly increase the dimension of multimodal remote
sensing data, which probably introduces the curse of dimen-
sionality, decreasing the accuracy of classification results. Fur-
thermore, the nonlinear characteristic of spectral information in
HSI would be amplified when integrated with LiDAR data. The
methods based on deep learning [27], [28], [29], [30], [31] could
extract more complex and hierarchical features of multimodal
remote sensing data, which have been experimented with in
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Fig. 1. Architecture of training multimodal data separately with 1D CNN +
2D CNN and cascaded attention CNN.

recent years with better classification results than other classical
machine learning methods (e.g., support vector machine [32]
and extreme learning machine [33], [34]).

A. Motivation

The methods based on deep learning behave perform better
on the extraction of the complicated multimodal feature than
other traditional machine learning methods [25], [31]. Among
the methods based on deep learning, most would use the different
kinds of convolution neural networks (CNNs) to extract the
features acquired from different modalities. Meanwhile, there
is lots of work trying to combine the filtering-based method
with CNN to introduce more expert experience [25]. Then the
features could be fused by being concatenated or point-wisely
added. Besides, Hong et al. designed the common subspace
representations to extract the integrated multimodal remote sens-
ing data feature with EndNet followed a deep encoder—decoder
network architecture [27]. Furthermore, researchers also attempt
to combine the graph-based method with CNN to preserve the
spatial edge information of ground objects [35].

Attention mechanism methods are popular in the natural lan-
guage processing and computer vision area these years [36]. In
the remote sensing community, researchers have also conducted
experiments to explore the positive impact of the attention
mechanism on deep learning-based methods [37], [38], [39],
[40], [41], [42], [43]. When combing with the CNN, the attention
mechanism could focus on the most vital features and weaken
the impact of unnecessary features.

Hence, there is a potential space for us to explore the impact
of attention mechanisms on multimodal remote sensing image
classification. In the following section, we will illustrate the main
contribution we made to this research.

B. Contribution

The framework of our proposed method is shown in Fig. 1.
More concretely, the significant contributions in this article
could be concluded as the following two aspects.

® LiDAR multiscale cascaded CNN: We have designed a

multiscale cascaded-based deep CNN to extract the spatial
feature of LIDAR DSM images. Compared with conven-
tional CNN, the cascade block we designed could better
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extract multiscale hierarchical spatial features of LiDAR
data.

® LiDAR attention module blocks: The attention mechanism
module was applied to emphasize the most meaningful
information contained in the LiDAR data. In this way, the
feature extracted from LiDAR could better contribute to
the whole multimodal data feature and final classification.

II. RELATED WORK

In this section, we will briefly introduce the background of
CNN and attention mechanism.

A. Convolution Neural Network

The CNN is an efficient deep learning model to extract the
hierarchical feature of image information. The CNN contains
a series of convolution layers, pooling layers, and activation
function [44]. Some researchers have explored the efficiency
of algorithms based on CNN with multimodal remote sensing
image classification tasks.

Hang et al. [28] designed a simple two-stream CNN to extract
the feature of hyperspectral and LiDAR data separately. As
remote sensing data have the property of a large covering area,
CNN’s input data are usually a patch derived from the remote
sensing data (such as a LiDAR image patch with the size of
5 x 5). Besides, owing to the abundant spectral information
in the HSI, Xu et al. designed a one-dimensional CNN and
two-dimensional CNN to extract the spectral and spatial features
separately.

However, the feature extracted by CNN is strongly influenced
by the network architecture [45]. To further explore the poten-
tial feature, we have proposed a modified network to exploit
multimodal hierarchical features better.

B. Attention Mechanism

As mentioned previously, the attention mechanism can recal-
ibrate the significant impact on various feature derived from the
CNN output. A few researchers have proved that attention mech-
anism positively impact on the HSI classification task [46], [47].
Mei et al. [48] proposed the spatial attention CNN and spectral
attention recurrent neural network and proven the effectiveness
of attention mechanism in HSI classification.

Nevertheless, we still need to evaluate the efficiency of at-
tention mechanism on the multimodal remote sensing image
classification task.

III. METHODOLOGY

In this section, we will first introduce the algorithm framework
we proposed and how to realize the training process. Then the
cascaded CNN will be illustrated. Finally, we will focus on
introducing the cascaded attention CNN we proposed.

A. Method Overview

We introduce the hierarchical CNN to extract the image
feature contained in the HSI and LiDAR DSM data separately.
The extracted image feature will be a one-dimensional vector
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. . . . . spatial spectral
Softmax classifier is applied for the classification task. Pred (H P Hi?— ) = > ol (1)
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B. Hyperspectral CNN

We have designed a Co-CNN hybrid network for the HSI
image HM*N*K feature extraction CNN to exploit both two-
dimensional spatial and one-dimensional spectral HSI features.
To better gain the HSI spatial feature, we adopt the 9 x 9 patch
HiSJPa"a] € R as the training sample where the centered pixel
pi; has been labeled with ground truth as 2-D CNN input. We

take the one-dimension spectral signal sample H_j spectral o R1xK

with ground truth as 1-D CNN input for the spectral signal data.

The 1-D CNN and 2-D CNN are five convolution layers with
batch normalization and exponential linear unit (ELU) activation
function. The batch normalization module could provide the
training process with higher training efficiency. Besides, we
adopt ELU activation functions to avoid exploding gradients
problems and exceed the training process. The spatial fea-
ture Fypaal € R'P derived by HSI patches and the spectral
feature Fgpecpal € R4 will be concatenated at the feature fusion
stage. The fused feature Fusi = [Fspectral, Fspatial] € R1x(p+a)
will go through full connection layer and the Softmax loss
function to predict the classification results. The prediction

1 exp(FusiW),

where, W € R(PT9)*C represents the weights matrix in the
prediction layer, C' is the number of categories, exp(FusiW).
is the exponential function to each element corresponding to
class ¢, and the predicted result on the left-hand side shows the
probability of that pixel belongs to each category.

C. LiDAR Cascaded Attention CNN

The overall process of the LIDAR neural network contains the
cascaded block and attention block. Following the descending
kernel size strategy we mentioned in the cascaded block, the
raw LiDAR patch data will be enrolled with a convolution with
kernel size 3 x 3 with BN and ELU functions as in Fig. 3.

Given the LiDAR patch image, cascaded block and attention
block will help us locate the key edge feature of ground object
height. Then ELU activation and max pooling and flatten func-
tions help us gain the one-dimensional LIDAR DSM feature.

1) Cascaded CNN: Toward the LiDAR image, we designed
cascaded-based CNN to exploit the ground object height infor-
mation in case of losing a key height feature in the propagation
process. In detail, we follow the descending kernel size strategy
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Fig. 4.

with skip connection and drop-out operation to exploit the
valuable height feature contained in LiDAR data.

Following the training strategy of HSI CNN shown in Fig. 4,
in the cascaded block, we maintain the combination of batch nor-
malization and ELU activation function to provide an effective
and stable training process and parameters learning results. At
the same time, drop-out operation is highlighted to avoid trained
features that lack multiscale characteristics.

2) Attention module: The attention module is mainly com-
posed of spatial attention module and channel attention module.
The detail network architecture is as in Fig. 5.

The object height feature extracted by a cascaded block will
be fed into an attention block, exploiting spatial and channelwise
attention based on an efficient framework. The attention block
is mainly composed of the channel attention module and spatial
attention module, and we define the feature exploited by the
cascaded block as F € RM*NxH Thyg the whole attention
block could be demonstrated as follows:

F” — lgpatial (F/) oy F/ (2)
F/ — Ichannel (F) ® F (3)
fspatial (F/) =9 (fconv [fAvg (F/) @ fMax (F/)]) (4)

fchalmrlel (F) =9 (fMLP [fAvg (F)] ® fMLP[fMax (F)]) (5)

where, (2) and (4) represent the spatial attention module, (3)
and (5) represent the channel attention module. The opera-
tion ® represents elementwise multiplication between features,

Cascaded block designs skip connections between convolution layers with descending kernel size to capture multiscale LiDAR height feature.

Channel Attention Module

r st e €5 00— .
ELU
| . \ _J Alpha=1.0
Input Multi-Layer Channel Attention
Feature Perception Map
(a)
Spatial Attention Module
F — M
\ _/ ELU
Alpha = 1.0
Channel-Refined Convolution Spatial Attention
Feature Layer Map
(b)
Attention Block
F F F"
Element-Wise Element-Wise
Multiplication Multiplication
Input Channel-Refined Final-Refined
Feature Feature Feature
(c)
Fig.5. Details of proposed attention block: (a) shows channel module support-

ing the interchannel connection of features; (b) shows spatial module strength-
ening the interspatial relationships of features; (c) shows the overall architecture
by integrating abovementioned two blocks.
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Fig. 6. Houston dataset was used in this experiment: (a) represents the pseu-
docolor HSI display; (b) represents the gray-scale LIDAR DSM data; (c) shows
the training ground-truth samples; (d) shows the testing ground-truth samples.
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Fig. 7. Trento dataset was used in this experiment: (a) represents the pseudo-
color HSI display; (b) represents the gray-scale LIDAR DSM data; (c) shows
the training ground-truth samples; (d) shows the testing ground-truth samples.

TABLE I
COUNTS OF HOUSTON TRAINING AND TESTING GROUND TRUTH

Class # Training samples # Testing samples

Health grass 198 1053
Stressed grass 190 1064
Synthetic grass 192 505
Trees 188 1056
Soil 186 1056
Water 182 143
Residential 196 1072
Commercial 191 1053
Road 193 1059
Highway 191 1036
Railway 181 1054
Parking lot 1 192 1041
Parking lot 2 184 285
Tennis court 181 247
Running track 187 473
Total 2832 12197
TABLE I

COUNTS OF TRENTO TRAINING AND TESTING GROUND TRUTH

Class # Training samples # Testing samples
Apple trees 129 3905
Buildings 125 2778
Ground 105 374

Woods 154 8969
Vineyard 184 10317
Roads 122 3052

Total 819 29395

operation @ represents elementwise sum between features, op-
eration ¢ represents ELU activation function, fy,, represents av-
erage pooling function, fyrax represents max pooling function.

In the channel attention part, we operate max pooling and
global average pooling separately for the input feature, gaining
different descriptors, including edge and smooth features for the
ground objects. Different descriptors will go through a weight
parameter shared multilayer perception fyyr,p with one hidden
layer, which would help us gain the channel attention map with
H x 1 x 1 data size. Then, an elementwise summation will
be applied toward max-pooling and average-pooling features.
Finally, we also follow the network design strategy, allowing
fused features to be activated by the ELU activation function
for a smoother model training process.

We generate a spatial attention map to highlight the inter-
spatial object height information in the spatial attention sec-
tor to enhance the corresponding spatial feature. The feature
separately goes through the max-pooling and average-pooling
layers following the channel axis. Then, we fused these features
with an elementwise summation. The extracted feature along
the channel axis is then convolved and activated by the ELU
function to get the final spatial attention map fspatial (F'). As
shown in (2) and (3), the input feature will be multiplied by
fspatial and fehanner to get the enhanced feature F”.

IV. EXPERIMENT

This section, we will introduce the experiment datasets,
experiments settings, and final experiment results.
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TABLE III
QUANTITATIVE COMPARISON RESULTS (%) OF DIFFERENT METHODS ON THE HOUSTON DATA

Class SVMH) SVM(H+L) ELMMH) ELMMH+L) Co-CNN(H) Co-CNN(H+L) Proposed(H) Proposed(H+L)
Health grass 97.87 97.87 98.53 98.42 82.91 83.10 82.62 83.10
Stressed grass 99.22 99.22 98.13 98.02 84.49 85.06 85.15 85.15
Synthetic grass 99.80 99.80 94.22 99.80 99.21 100.00 99.60 100.00
Trees 99.08 99.08 98.18 98.58 89.77 93.28 91.95 99.34
Soil 97.74 97.74 95.80 97.94 99.81 99.81 100.00 100.00
Water 12.83 12.82 43.17 27.15 85.31 84.62 87.41 90.21
Residual 74.84 74.93 47.52 27.15 85.31 84.62 87.41 90.21
Commercial 87.19 87.19 85.86 85.20 73.79 76.92 79.717 76.26
Road 76.87 76.87 80.07 84.00 77.24 82.63 89.24 77.24
Highway 78.73 78.73 61.33 65.63 43.15 64.29 58.11 68.53
Railway 82.66 82.74 76.49 77.21 85.96 85.10 92.88 78.27
Parking lot 1 87.86 87.86 80.89 83.54 90.30 90.20 83.29 96.93
Parking lot 2 54.85 54.85 47.62 48.17 2.81 4.56 5.61 73.68
Tennis court 82.27 82.27 88.77 89.74 99.60 98.79 100.00 100.00
Running track 99.57 99.57 99.79 99.79 86.05 99.79 98.31 99.58
OA 80.99 81.00 78.36 79.48 79.43 84.33 82.80 85.54
AA 83.39 83.39 81.25 82.23 82.70 86.95 84.04 87.19
Kappa 79.50 79.51 76.55 77.79 77.69 83.01 81.36 84.36
The highest value in each line can be noted as bold.
TABLE IV

QUANTITATIVE COMPARISON RESULTS (%) OF DIFFERENT METHODS ON THE TRENTO DATA
Class SVMMH) SVM@H+L) ELMH) ELMMH+L) Co-CNN(H) Co-CNN(H+L) Proposed(H) Proposed(H+L)
Apple trees 64.84 64.82 99.54 64.96 99.54 99.44 98.49 99.03
Buildings 73.87 74.13 95.46 78.59 95.46 99.42 94.74 97.80
Ground 63.15 63.15 91.71 64.94 91.71 91.18 99.47 89.04
Woods 94.63 94.70 89.36 95.15 89.36 98.33 99.52 99.61
Vineyard 93.90 93.87 91.32 95.44 91.32 89.24 98.62 96.62
Roads 83.66 84.19 71.63 89.54 71.63 85.45 71.66 93.51
OA 80.43 80.53 87.03 81.49 87.03 92.01 94.28 96.72
AA 85.48 85.59 86.14 86.28 86.14 88.60 89.57 94.89
kappa 85.16 85.24 90.17 85.94 90.17 93.96 95.72 97.54

The highest value in each line can be noted as bold.

TABLE V
TRAINING TIME AND NUMBERS OF PARAMETERS RESULTS COMPARISON

Dataset Houston(H+L) Trento(H+L)

Methods Co-CNN  Proposed Co-CNN  Proposed

Time (s) 403 1046 211 286
Parameters (MB) 37.9 36.7 24.9 16.6
Training epochs 80 80 13 13

A. Dataset Description

In this experiment, we have conducted our algorithm on
Houston and Trento datasets, which contains LiDAR and HSI
information, to evaluate the efficiency of the cascaded CNN and
attention modules.

Houston dataset [49] is captured in Houston, USA. The
dataset contains one air-borne HSI and LiDAR DSM data with
349 x 1905 pixels. The spatial resolution has been registered on
both HSI and LiDAR DSM data with 2.5 m. The HSI contains
sufficient spectral information with 144 bands, and the hyper-
spectral sensor CASI-1500 captures 0.38—1.05 pm spectral data.

Trento dataset [50] is composed of HSI and LiDAR DSM
data captured in Trento, Italy. The registration image size is
600 x 166 with a 1-m spatial resolution. The hyperspectral data
contain 63 bands ranging from 0.42t00.99 pm. The HSI and
LiDAR data are separately captured by AISA Eagle and Optech
ALTM 3100EA sensors.

The original multimodal remote sensing datasets are two
images with tiff format containing the ground-truth label. To
modify the raw data as the standard model input data, we
have normalized standardization and recorded the location index
information for the ground-truth samples.

B. Experimental Setting

To evaluate the efficiency of our proposed method and
compared methods, we conducted experiments on Intel(R)
Core(TM) i7-7700HQ CPU, GTX 1060(Ti) GPU, 16 GB of
RAM, and Ubuntu 18.04 version under the same experimental
conditions. We have conducted overall accuracy (OA), average
accuracy (AA), and Kappa coefficient metrics to prove the
algorithm’s performance. Meanwhile, to ensure the reliability
of experiments, all the experiment results are the average results
of ten experiments with the same parameter settings.

Towards the multimodal datasets, we have randomly selected
half amount of training samples as the validation data to help
optimize the performance. When training the Houston dataset,
we set the batch size as 100 and the training epoch as 80. While
training the Trento dataset, we set the batch size as 100 and the
training epoch as 13.

We have utilized the fine-tune strategy to improve the mul-
timodal attention algorithm performance during the training
stage. We have separately trained the hyperspectral CNN and
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Fig. 8.
(H+L). (d) Co-CNN (H+L). (e) Proposed (H). (f) Proposed (H+L).

LiDAR cascaded CNN to save the trained model, then trained
the multimodal neural network with initialization of the saved
model. We have selected the Adam optimizer with 0.001 on
training LiDAR data and 0.0001 on hyperspectral data. While
conducting fine-tune training, we also choose Adam as an opti-
mizer with a 0.001 learning rate. In case of overfitting the data,
we design a 0.25 ratio dropout operation in the fusion stage.
Other parameters has been listed in the framework.

C. Results and Analysis

This article compares the proposed method with classic ma-
chine learning methods, including SVM [32] and ELM [33].

Classification maps of various comparison algorithms for Houston datasets. (a) Visualization of used Houston test samples. (b) SVM (H+L). (¢) ELM

Besides, we also introduced the fundamental Co-CNN [28]
methods based on CNN to further prove the efficiency of pro-
posed cascaded attention network. The final experiment results
list in Table IIT and IV.

As shown in Tables III to V, under the same training
epochs condition, although the proposed methods cost more
training time, but achieve higher classification performance
with nearly model parameters. The proposed methods have
achieved better performance on OA, AA, and Kappa key
metrics.

As the classification results shown in Figs. 8 and 9,
the deep learning-based methods achieve better classification
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(d) Co-CNN (H+L). (e) Proposed (H). (f) Proposed (H+L).

performance than classical machine learning methods on both
datasets.

Our designed framework highlights the LiDAR ground ob-
jects’ height information by utilizing an attention mechanism
and cascaded multiscale network. For Houston data, it is clear
that the multimodal data with the proposed method has better
performance on trees and Parking lot 2, which can easily be
predicted as similar health grass and Parking lot 1 ground object
categories. For Trento data, our proposed method has achieved
tremendous results on roads, with similar strong object spectral
and spatial features with buildings owing to the sensors’ over-
look perspective. As shown in Fig. 9(a), (d) and (f), the Co-CNN
method does not perform well (85.45% accuracy) in the class of
the road, in which several pixels have been classified as buildings
because of lacking a specific height LiDAR feature. Besides,
roads are easily predicted as ground owing to a similar height
between road and ground class. Our proposed methods focus
both on LiDAR contextual spatial info by multiscale cascaded
network and attention mechanism to enhance precious LiDAR
info to achieve 93.51% accuracy.

V. CONCLUSION

In this article, our proposed multimodal attention-aware con-
volutional network has fully utilized the height feature of ground
objects provided by LiDAR data, which has achieved outstand-
ing performances on easily confusing categories and overall
accuracy. We have also conducted classic machine learning
methods (SVM and ELM) and deep learning-based methods
to compare the efficiency of the proposed methods. Because
of the substantial feature divergence between various modal-
ities, the proposed methods have proved how to strengthen
the feature derived from the source without sufficient original
image information. In the future work, we will continue to
explore more possibilities to narrow the feature diversity among
multiple modalities to achieve better classification performance,

Buildings

Vineyard Roads Background

Classification maps of various comparison algorithms for Trento dataset. (a) Visualization of used Trento test samples. (b) SVM (H+L). (c) ELM (H+L).

not limited the feature augmentation, fusion methods, robustness
evaluation, or higher efficient training strategy.
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