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Subpixel Change Detection Based on Improved
Abundance Values for Remote Sensing Images
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Abstract—To achieve land cover change detection (LCCD) with
both fine spatial and temporal resolutions from remote sensing im-
ages, subpixel mapping-based approaches have been widely studied
in recent years. The fine spatial but coarse temporal resolution
image and the coarse spatial but fine temporal image are used
to accomplish LCCD by combining their advantages. However,
the performance of subpixel mapping is easily affected by the
accuracy of spectral unmixing, thereby reducing the reliability of
LCCD. In this article, a novel subpixel change detection scheme
based on improved abundance values is proposed to tackle the
aforementioned problem, in which the spatial distribution of fine
spatial resolution image is borrowed to promote the accuracy of
spectral unmixing. First, the coarse spatial resolution image is used
to generate the original abundance image by the spectral unmixing
method. Second, the spatial distribution information of the fine
spatial resolution image is incorporated into the original abundance
image to obtain improved abundance values. Third, the fine spatial
resolution subpixel map can be generated by the subpixel mapping
method using the improved abundance values. At last, the fine reso-
lution change map can be obtained by comparing the subpixel map
with the fine spatial resolution image. Experiments are conducted
on a simulated dataset based on Landsat-7 images and two real
datasets based on Landsat-8 and MODIS images. The results of
the real datasets showed that the proposed method can effectively
improve the performance of LCCD with an overall accuracy of
approximately 1.26% and 0.79% to the existing methods.

Index Terms—Change detection, remote sensing image, spatial
and temporal resolutions, subpixel mapping.

I. INTRODUCTION

IN REMOTE sensing, land cover change detection (LCCD)
finds land cover changes using remote sensing images ac-

quired at different times [1], [2], [3], [4]. A significant number
of LCCD approaches have been investigated during decades of
development, and many of these methods have been successfully
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implemented in domains like landslide detection [5], [6], [7],
flood mapping [8], [9], and urban expansion monitoring [10],
[11], [12]. At present, LCCD using remote sensing images is an
active research hotspot.

After decades of research and development, LCCD using
remote sensing images has been relatively mature, and a large
number of change detection algorithms have been proposed and
widely used. The commonly used change detection algorithms
mainly include threshold-based methods [13], [14], clustering-
based methods [15], [16], object-oriented-based methods [17],
[18], and deep-learning-based methods [19], [20], [21], [22].
Threshold-based methods and clustering-based methods are the
first proposed and applied methods. Their algorithm is relatively
simple and fast, but the false detection rate and missed detection
rate are relatively high. The object-oriented method is based
on remote sensing image segmentation for change detection,
which has achieved good results in high spatial resolution re-
mote sensing image change detection. In recent years, with the
extensive research and application of deep learning algorithms,
a large number of studies use convolutional neural network
algorithms for change detection. Change detection based on a
convolutional neural network algorithm can provide end-to-end
change information output and obtains higher change detection
accuracy by using deep image feature information.

With the advancement of sensor platforms, the acquisition
of remote sensing images has become more convenient, and
the types are more abundant. The spatial resolution of remote
sensing images has improved from approximately100 to 1 m or
even less, and the temporal resolution of remote sensing images
has also been greatly improved. With this background, achieving
LCCD with both fine spatial and temporal resolutions becomes
possible. This will contribute to the monitoring of disasters, such
as floods and forest fires. However, due to the limitations of the
hardware of sensors, it is difficult to obtain images with both
fine resolutions simultaneously. In other words, if an image has
a fine spatial resolution, its revisit period is generally long, and
if an image has a short revisit period, the spatial resolution is
generally coarse. Although a few remote sensing images can
achieve fine resolutions by multisatellite grouping, their high
cost hinders their application in large-scale monitoring. The
multispectral band of Landsat images, for example, has a 30
m spatial resolution and a temporal resolution of 16 days; the
MODIS image, on the other hand, has a 500 m spatial resolution
but a temporal resolution of 1 day. However, for the special inputs
based on bitemporal images, traditional LCCD methods have
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difficulty extracting changes with both fine spatial and temporal
resolutions. To combine the advantages of the aforementioned
two image types, it is essential to develop new LCCD techniques
based on them.

For the above problems, a large number of attempts by re-
searchers have been made in recent years, such as spatiotemporal
fusion-based methods [23], [24], [25], [26], spectral unmixing-
based methods [27], [28], [29], [30], and subpixel mapping-
based methods [31], [32], [33], [34]. Next, we will make a brief
introduction to these LCCD methods.

A. Spatiotemporal Fusion-Based LCCD Methods

Spatiotemporal fusion is a technology that can obtain images
with both fine spatial and temporal resolutions [25]. Based on
this technology, the generated images can be used to obtain sat-
isfactory LCCD results. Xi et al. [23] presented a new spatiotem-
poral cube model and a spatiotemporal multiresolution segmen-
tation method to analyze the intra-annual seasonal changes in
land cover. In [24], an improved flexible spatiotemporal fusion
method was proposed for change detection with spatial details.
To detect and predict the land cover changes in Hefei over
the past 30 years, a novel change detection method based on
spatiotemporal fusion and the cellular automata-Markov model
was proposed in [25]. In [26], a new forest change detection
approach was proposed via a spatiotemporal in painting mecha-
nism to detect forest cover changes. Although change detection
methods based on spatiotemporal fusion can extract change
information with fine spatial and temporal resolutions, these
methods usually require both fine spatial and temporal resolution
images synchronously. This stringent criterion restricts the use
of spatiotemporal fusion-based LCCD approaches in real-world
issues.

B. Spectral Unmixing-Based LCCD Methods

Spectral unmixing is a technique that is applied to mixed
pixels of remote sensing images for obtaining an abundance
of each component using a certain mathematical model. As is
known, there are many mixed pixels in remote sensing images,
especially for coarse spatial resolution images. We may acquire
an abundance of each component within the mixed pixels using
spectral unmixing techniques and then obtain subpixel scale
change information. In [27], a novel multitemporal spectral
unmixing approach is presented to handle the challenging LCCD
problem by investigating the spectral–temporal variations at a
subpixel level. Wu et al. [28] developed a new LCCD approach
based on spectral unmixing from stacked multitemporal remote
sensing images with variable end members. For monitoring
coastal wetlands, a subpixel level LCCD approach via collabo-
rative coupled unmixing using spatial and spectral information
is presented in [29]. In [30], a new LCCD method based on con-
volutional sparse analysis and temporal spectral unmixing was
proposed to combine the advantages of pixel- and subpixel-level
change detection. However, spectral unmixing-based methods
can only obtain the proportion of changes within a mixed pixel,
and it is difficult to locate the specific position of the changes.

C. Subpixel Mapping-Based LCCD Methods

Using coarse spatial resolution image, subpixel mapping can
extract the spatial distribution information of ground objects at a
subpixel scale. For the coarse spatial resolution image, subpixel
mapping is implemented to generate the land cover map with
fine spatial resolution, and then the land cover changes can be
obtained by comparing it with the fine spatial resolution image.
Different from spatiotemporal fusion and spectral unmixing-
based approaches, it is not essential to use image pairs with both
fine resolutions in the same period for subpixel mapping-based
methods. In addition, the specific location of change information
can be obtained in this kind of method. Therefore, subpixel
mapping-based methods have been widely studied and applied in
LCCD with both fine spatial and temporal resolutions. Ling et al.
[31] presented an LCCD algorithm to obtain the subpixel level
spatial pattern of the earth’s changes. In [32], an HNN-based
method is proposed to detect the changes at subpixel resolutions
by borrowing information from a known FSR land cover map.
To fully utilize the fine resolution image information, a novel
supervised subpixel LCCD approach via a BPNN is presented
in [33]. He et al. [34] developed a new subpixel mapping method
using the maximum a posteriori estimation in terms of the joint
spectral–spatial–temporal information for LCCD.

Although subpixel mapping-based LCCD approaches have
shown tremendous promise in detecting changes with both fine
resolutions, there are still issues to be addressed. In the subpixel
mapping procedure, the abundance image generated by the
spectral unmixing process is the input of the subpixel mapping
method. Hence, the accuracy of the abundance image is very
important because it directly influences the subpixel mapping
accuracy which then affects the LCCD results. Although re-
searchers have proposed many spectral unmixing methods to
improve the abundance image, the uncertainty of abundance
values is inevitable. This is because the transformation from
a mixed pixel value to abundance values of each class is an
ill-conditioned process. Hence, it is difficult to obtain accurate
abundance values for application by only improving the mathe-
matical model used for spectral unmixing.

According to the analysis described above, for detecting
changes with fine spatial and temporal resolutions, a subpixel
change detection method based on improved abundance values
is proposed in this article. Specifically, the main contributions
are as follows:

1) A novel subpixel change detection framework based on
improved abundance values is proposed to detect land
cover changes at both fine spatial and temporal resolutions,
in which the spatial distribution information from the fine
spatial but coarse temporal image is borrowed to improve
spectral unmixing.

2) The improved abundance value is generated by the abun-
dance image difference measure, which can be used to
upscale the coarse spatial but fine temporal resolution
image to a fine spatial resolution subpixel map.

This article will be illustrated as follows. Section II illustrates
the current problem of subpixel mapping-based LCCD methods
and describes the methodology of our proposed scheme.
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Fig. 1. General framework of subpixel mapping-based LCCD methods.

Section III shows the experimental settings and analysis based
on synthetic and real datasets. At last, Section IV presents the
conclusions.

II. METHODOLOGY

A. Problem Formulation

As mentioned before, to acquire the change information of
land cover with both fine spatial and temporal resolutions,
subpixel mapping-based LCCD methods are widely studied.
Suppose the bitemporal input images at t1 and t2 are the fine
spatial but coarse temporal resolution image and the coarse
spatial but fine temporal resolution image. As shown in Fig. 1, the
general framework of subpixel mapping-based LCCD methods
is as follows. First, using the image at t1 as input, the fine spatial
resolution thematic map can be obtained by image interpretation.
Second, for the image at t2, the subpixel mapping algorithm can
be applied to produce the subpixel map with fine spatial reso-
lution. Finally, the LCCD result can be generated by analyzing
the thematic map with the subpixel map.

Although many subpixel mapping-based LCCD methods
have been proposed, few articles have considered the uncertainty
of spectral unmixing on subpixel maps and LCCD. In fact, as
an input to subpixel mapping methods, the spectral unmixing
result plays an important role in subpixel mapping-based LCCD
methods. We note that spectral unmixing is adopted to gen-
erate the abundance images for the coarse spatial resolution
image using mathematical models. The mathematical models
that are used are often based on certain assumptions or data
fitting. Hence, the transformation from coarse spatial resolu-
tion image to fine spatial resolution abundance image of each
class is an ill-conditioned process because of the complexity
of spectral imaging. As a result, the uncertainty of abundance
values inevitably arises during spectral unmixing. Moreover, this
uncertainty will propagate step by step and affect the accuracy
of the LCCD results in the end.

B. Proposed Subpixel Mapping-Based LCCD Method

Considering the above problems, a subpixel mapping-based
LCCD framework based on improved abundance values is

Fig. 2. Framework of the proposed LCCD scheme.

proposed in this article. Different from the traditional methods,
the abundance values are not generated directly by spectral
unmixing. The fine spatial distribution information of the
image at t1 is also used to improve the abundance values. The
framework of the proposed LCCD scheme is shown in Fig. 2.
Three steps are mainly included in the proposed method, namely,
image interpretation and spectral unmixing, incorporation
process, and subpixel mapping and change detection. Through
the first step, the fine spatial resolution thematic map and original
abundance image can be obtained, and through the second and
third steps, the improved abundance image and the final change
map can be generated. The details of the scheme are as follows.

1) Image Interpretation and Spectral Unmixing: As men-
tioned before, the bitemporal input images at t1 and t2 are the
fine spatial but coarse temporal resolution image and the coarse
spatial but fine temporal resolution image. Let the two input
images be two coregistered images collected at two different
times over the same area, and S (S> 1) denotes the zoom
factor between the two images. For example, if the images at
t1 and t2 have spatial resolutions of 10 and 20 m, respectively,
then S = 2.

For the image at t1, the image interpretation process is con-
ducted to obtain the fine spatial resolution thematic map. In
this article, manual visual interpretation is applied to produce
the thematic map for accuracy. For the image at t2, the spectral
unmixing procedure is utilized to generate the abundance image.
Specifically, the pixel purity index method [35] is used to extract
the end members in which the number of end members is
generated by the number of categories of the fine thematic map
due to its simplicity and practicability. In addition, the abundance
image is generated using completely constrained linear spectral
mixing modeling [36].

2) Incorporation Process: To obtain accurate spectral un-
mixing results, an incorporation process is proposed in this
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Fig. 3. Incorporation procedure.

Fig. 4. Example to expound the degradation process.

article, in which the spatial distribution of fine spatial resolution
thematic map is borrowed to promote its accuracy. As shown in
Fig. 3, the proposed incorporation process can be illustrated as
follows.

First, for the fine spatial resolution thematic map at t1, a
degradation process based on an S × S mean filter is used to
produce the abundance image at t1. Fig. 4 gives an example to
expound on the degradation process. Suppose the zoom factor S
= 6. The image on the left of Fig. 4 represents the fine thematic
map in terms of two classes (i.e., Class 1 and Class 2) with 18 ×
18 pixels. The image on the right represents the corresponding
abundance image with 3 × 3 pixels. According to the specific
spatial distribution of the objects in the left image, we can obtain
the proportions of Class 1 and Class 2 in the corresponding
location to be 0.44 and 0.56, respectively. Then, the abundance
image at t1 can be obtained.

Second, an abundance image difference measure [37] is used
to obtain the changed and unchanged pixels between the two
abundance images in this section. Let Pi be the ith pixel of the
coarse spatial resolution image at t2, and let Fk_c(Pi) denote the
abundance value of class k for this pixel. Accordingly, Fk_f (Pi)
denotes the corresponding abundance value of the fine spatial
resolution image at t1. LetDF (Pi) be the value of the abundance
difference image within the extent of Pi based on the abundance
difference image measure. It can be formulated as follows:

DF (Pi) =

√√√√ q∑
k=1

|Fk_c (Pi)− Fk_f (Pi)|2. (1)

Using this measure, the abundance difference image can be
classified into three categories [i.e., totally unchanged pixels
(TUP), partly changed pixels (PCP), and totally changed pixels
(TCP)] using two thresholds μ1 and μ2 (μ1 < μ2). For a partic-
ular Pi, if DF (Pi) ≤ μ1, it belongs to TUP; if DF (Pi) ≥ μ2, it
belongs to TCP; and if μ1 < DF (Pi) < μ2, it belongs to PCP.

Finally, the TUP and TCP can be used to generate the im-
proved abundance image as follows. For TUP, the land cover
within them is deemed to be unchanged. Hence, the values of the
two temporal abundance images should be consistent in theory.
In other words, the difference in the values in practice is caused
by the spectral unmixing error. Considering that the abundance
image at t1 is accurate for its fine spatial resolution, the improved
abundance image can be generated by replacing the correspond-
ing values in the abundance image at t2 with the values in the
abundance image at t1. For the TCP, they are considered to have
changed completely during two periods. Since many situations
produce the above changes, the pure pixels at two times are
considered for simplicity in this article. Because of the existence
of spectral unmixing error, the abundance value of pure pixels
belonging to TCP is usually not equal to 1. Hence, the abundance
value at t1 is used to amend the original abundance value at t2.

As previously stated, the two thresholds μ1 and μ2 play a vital
part in the improved abundance image generation. Therefore,
how to accurately determine the value of the two thresholds
becomes a key problem to be solved. In this article, the EM-based
thresholding approach [38], for its robustness and practicability,
is applied to automatically determine the two thresholds. Specifi-
cally, the abundance difference image is deemed to be a Gaussian
mixture distribution, which consists of two components. One
component presents the distribution of the changed pixels, and
another component presents the distribution of the unchanged
pixels. The associated probability density distribution function
is described as

p (DF /Wr) =
1

σr

√
2π

exp

[
− (DF − μr)

2

2σ2
r

]
(2)

where p(DF /Wr) is the probability density function of pixels
Wr{r ∈ (1, 2)}. Specifically, W1 denotes the unchanged pixels
and W2 denotes the changed pixels. μr is the mean and σr is
the variance of Wr. According to the principle of EM, μr can
be adopted as the needed threshold considering the fact it is
the mean of changed/unchanged pixels. Then, the key problem
changes from resolving two thresholds to calculating μr. In this
article, three iteration steps are taken to calculate μr as follows:

1) Before the iteration process begins, μr, σr, and a priori
probabilities P (Wr) need to be initialized. Here, the k-
means cluster algorithm is run to achieve this purpose.
It separates the pixels of DF into two classes, namely,
changed and unchanged classes. The initialized values can
be calculated from the two classes of pixels.

2) After the initialization, the expectation evaluation is car-
ried out. The a posterior probability P (Wr/DF ) can be
evaluated as

P
(
Wr/D

i
F

)
=

P (Wr) p
(
Di

F /Wr

)
P
(
Di

F

) (3)
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Fig. 5. Flowchart of the soft then hard-based subpixel mapping method.

where Di
F is the ith pixel of DF and p(DF /Wr) is

obtained by (2).
3) Maximization calculation by iteration. Using the afore-

mentioned values, the following iteration equations are
utilized to update μr, σr, and P (Wr):

P t+1 (Wr) =

∑N
i=1 P

t
(
Wr/D

i
F

)
N

(4)

μt+1
r =

∑N
i=1 P

t
(
Wr/D

i
F

)
Di

F∑N
i=1 P

t
(
Wr/Di

F

) (5)

(
σ2
r

)t+1
=

∑N
i=1 P

t
(
Wr/D

i
F

)(
Di

F − μr

)2∑N
i=1 P

t
(
Wr/Di

F

) . (6)

We set the iteration time or the difference between the two
measurements as the iteration termination condition. Steps 2
and 3 will be repeated until the condition is satisfied. In this
way, the two thresholds can be obtained automatically.

3) Subpixel Mapping and Change Detection: Using the im-
proved abundance image as input, the subpixel mapping method
is applied to generate the advanced subpixel map. In this article,
a recently developed method, namely, the soft then hard-based
subpixel mapping method [39], is used for its effectiveness.
As shown in Fig. 5, the main procedure of the soft then
hard-based subpixel mapping method consists of following two
steps:

1) Subpixel sharpening. Subpixel sharpening is used to pro-
duce the fine thematic map with soft values from the
abundant image with a coarse spatial resolution.

2) Class allocation. The membership relationship assigns the
soft value of each subpixel to the unique hard class value,
namely the class label.

The detailed description of the soft then hard-based subpixel
mapping method is illustrated as follows.

For subpixel sharpening, the radial basis function (RBF) [40]
is applied in this article. Suppose pi,j(j = 1, 2, …, S2) is the
jth subpixel of coarse pixel Pi, and the kth soft value is denoted
as Vk_c(pi,j). The purpose of subpixel sharpening is to predict
the soft value. For subpixel sharpening based on the RBF, the
following function is used:

Vk_c (pi,j) =

G∑
g=1

λk (Pg)φ (Pg, pi,j) (7)

where Pg is the neighboring pixel around Pi, λk(Pg) is the
kth class coefficient for Pg , and φ(Pg, pi,j) is a basis function
that can reflect the spatial relationship between pixels. Here, the
Gaussian form is utilized to calculate the basis function

φ (Pg, pi,j) = e−d2(Pg,pi,j)/a
2

(8)

where d(Pg, pi,j) represents the Euclidean distance between Pg

and pi,j , and a represents a constant. The coefficient λk(Pg) can
be calculated by⎡

⎢⎢⎢⎣
φ (P1, P1) φ (P2, P1) · · · φ (PG, P1)
φ (P1, P2) φ (P2, P2) · · · φ (PG, P2)

...
...

. . .
...

φ (P1, PG) φ (P2, PG) · · · φ (PG, PG)

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

λk (P1)
λk (P2)

...
λk (PG)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Vk_c (P1)
Vk_c (P2)

...
Vk_c (PG)

⎤
⎥⎥⎥⎦ . (9)

Then,Vk_c(pi,j) can be predicted by (7)–(9), and the soft class
value estimation is completed.

For the class allocation, the units-of-class method [41] is
adopted to predict the hard class values because of its speed
and accuracy. The hard class value represents the real class for
each subpixel. A detailed description of this selected method
can be found in [41].

After the generation of the advanced subpixel map at t2, the
LCCD result can be obtained by comparing it with the fine spatial
resolution thematic map at t1.

III. EXPERIMENTS

In this section, three datasets, including one simulated dataset
and two real datasets, are applied to test the performance of the
proposed subpixel mapping-based LCCD method. For compari-
son, four conventional subpixel mapping-based LCCD methods
(i.e., bicubic interpolation [42], bilinear interpolation [43], sub-
pixel spatial attraction model (SPSAM) [44], and the original
RBF-based method [40]) are also employed. For reliability, the
parameters related to the aforementioned LCCD methods are set
to be consistent with those in [45]: a = 10 and neighborhood
window size = 5.

A. Simulated Dataset

Two Landsat-7 ETM+ remote sensing images are used in this
experiment to replicate the bitemporal images for validation of
our proposed method. Specifically, the fine spatial but coarse
temporal resolution image is generated using the Landsat-7
image taken in 2001, and the coarse spatial but fine temporal
image is generated using the Landsat-7 image acquired in 2002
via an S × S mean filter. The two Landsat-7 images are located
in Liaoning Province, China, with a 30-m resolution. The image,
which has a size of 200 × 200 pixels, depicts the countryside
with three types of crops (labeled C1, C2, and C3 for simplicity).
In order to explore the performance of the proposed algorithm
under different zoom factors, S is set as 4, 5, 8, 10, and 20. The
above values are selected to avoid the influence of resampling er-
rors on the LCCD results. The original Landsat-7 images and the
generated coarse spatial resolution images are shown in Fig. 6.

The reference real change map is created by comparing the
two temporal thematic maps, which are generated by the manual
visual interpretation using the two original Landsat images
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Fig. 6. Landsat-7 datasets and the generated coarse images. (a) Landsat image from 2001. (b) Landsat image from 2002. The synthetic coarse spatial resolution
images at 2002: (c) S = 4, (d) S = 5, (e) S = 8, (f) S = 10, and (g) S = 20.

Fig. 7. Two temporal land cover maps and the real LCCD map. (a) Thematic
map for the Landsat image in 2001. (b) Thematic map for the Landsat image in
2002. (c) Real change map.

for accuracy. The bitemporal thematic maps are presented in
Fig. 7(a) and (b), and the reference real change map is shown
in Fig. 7(c).

1) Abundance Image Comparison Between the Original and
Proposed Methods: According to the approach described in
Section II, the five generated remote sensing images [shown
in Fig. 6(c)–(g)] based on different zoom factors are used to
produce the corresponding abundance images by the spectral
unmixing method, which are labeled as the original abundance
images. Then, the improved abundance images are generated by
our proposed method. In addition, the real abundance images
produced by degrading the thematic map in 2002 are also listed
for comparison. The three kinds of abundance images with five
zoom factors are shown in Fig. 8.

By comparing the original abundance images and improved
abundance images with the real abundance images, it is found
that the improved abundance images are more similar to the real
abundance images. This indicates that the improved abundance
images are more accurate than the original abundance images.
For instance, as seen in the first line of Fig. 9, the C1 image in
the first column includes more linear artifacts than the C1 image
in the fourth column when compared with the corresponding
C1 image in the seventh column. This suggests that the C1
image obtained by our proposed method is closer to the real C1
image. Thus, the improved abundance image-based method can
effectively improve the performance of the spectral unmixing
procedure.

2) Subpixel Mapping Results Comparison Between the Orig-
inal and Proposed Methods: Based on the generated abundance

images, the results of subpixel mapping using the existing four
methods and our proposed method with five zoom factors are
shown in Fig. 9. Specifically, the images from the first row to the
fifth row in Fig. 9 represent the subpixel mapping results with S
= 4, 5, 8, 10, and 20, and the images from the first column to the
eighth column represent the subpixel mapping results obtained
by the four existing methods and our proposed method. The
results via the original four approaches have numerous isolated
pixels, as seen in Fig. 9. The proposed-method-based results,
on the other hand, are substantially cleaner. We can see that the
subpixel mapping results achieved by the proposed technique
are closer to the reference of subpixel mapping than the original
methods by comparing the aforementioned results with the ref-
erence image displayed in Fig. 7(b). For instance, there are many
isolated pixels shown in the subpixel mapping results based on
the original four methods, which were incorrectly identified as
the C3 class when compared with the reference image. Another
observation is that the difference between the five kinds of sub-
pixel mapping results with the reference image increases when
the zoom factor increases. As a result, our proposed method
produces more accurate results than the original methods.

3) LCCD Results Comparison Between the Original and
Proposed Methods: To evaluate the accuracies of the generated
LCCD results from visual interpretation, the five LCCD results
with different zoom factors shown in Fig. 10, including the four
original methods and the proposed method, are compared with
the reference change map shown in Fig. 7(c). For the LCCD
results based on the four original methods, there are many
unchanged pixels incorrectly identified as change pixels. Corre-
spondingly, for the LCCD results based on the proposed method,
the false identification seems to be much less. For example, for
the “C3 to C1” change type shown in Fig. 10, which is labeled
by the red color, there are many incorrectly identified pixels in
the original-methods-based results, but the above phenomenon
rarely appears in the results based on our proposed method.
By visual comparison, the LCCD results based on our proposed
method are closer to the reference map than the original methods.
This indicates that the proposed LCCD method-based results are
more accurate than the original four methods, which verifies the
effectiveness of the proposed method.

For quantitative evaluation of the LCCD results, the overall
accuracies (OA), calculated by the full-transition error matrix,
of the original methods and the proposed method are shown
in Table I. The proposed method achieves better results than
the original four methods under five zoom factors. The result
based on our proposed method obtains the most accurate value
of 85.47% when S = 4, and the most inaccurate value of 70.63%
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Fig. 8. Abundance images based on the original method, the proposed method, and the real abundance images with S = 4, 5, 8, 10, and 20 (shown in Line 1, 2,
3, 4, and 5).

TABLE I
COMPARISIONS OF THE EIGHT LCCD METHODS WITH THE SIMULATED

DATASET BASED ON OA

is generated by the SPSAM when S = 20. Specifically, for
the original four methods, the values of OA are approximately
82.3% when S = 4. In comparison, for the proposed method,
the value of OA is approximately 85.5%. It can be clearly seen
that the LCCD results based on our proposed method have
significantly improved with an increase of approximately 3.2%
when S = 4. This demonstrates that the proposed method can
effectively improve LCCD performance.

Another observation is that the OA gains of the five methods
decrease when the zoom factor increases. Fig. 11 shows the
changing trend of OA based on the five LCCD methods when S
= 4, 5, 8, 10, and 20. As shown in Fig. 11, the OA values of the
five LCCD methods decrease as the zoom factor increases, and
the OA gains of the five methods also decrease. For example, the
OA gains of RBF and the proposed method are 3.12% for S =
4 and 0.94% for S = 20. This indicates that the LCCD accuracy
is difficult to guarantee when the difference in spatial resolution
between two images is large.

B. Real Datasets

1) Datasets: In this experiment, two real datasets, namely,
two pairs of Landsat-8 and MODIS images, were applied to

validate the proposed scheme. Specifically, the multispectral
bands of Landsat-8 OLI image and MODIS image derived
from the MOD09A1product were selected, and the two types of
images have spatial resolutions of 30 and 500 m, respectively.
As a result, the Landsat-8 image can be utilized as the fine
spatial but coarse temporal resolution image, while the MODIS
image can be applied as the coarse spatial image. Particularly, to
satisfy the zoom factor, the nearest neighbor method is applied
to resample the two original MODIS images to 480 m. In
addition, two Landsat images were used as the corresponding
fine reference images for accuracy evaluation. It is worth noting
that the Landsat and MODIS image acquisition times should be
the same or similar.

The research site was in Hefei, Anhui Province, China. Specif-
ically, for the two datasets, the Landsat images were taken in
2014, and the MODIS images, in 2018. For the first region,
the Landsat image is 784 × 400 pixels in size, whereas the
MODIS image is 49 × 25 pixels. For the second region, the
corresponding sizes are 784 × 784 pixels and 49 × 49 pixels,
respectively. Fig. 12 shows the two datasets of the two regions
and the corresponding fine reference images.

The Landsat images were classified based on the manual
visual interpretation to generate the thematic map at t1 with
two classes (i.e., water and nonwater), as shown in Fig. 13(a),
(b), (d), and (e). The MODIS images were unmixed by the
spectral unmixing method to produce the abundance image at
t2. It is worth mentioning that the coregistration and radiometric
correction were implemented before the aforementioned pro-
cess. Then, the original four methods and the proposed method
were applied to the generated abundance image to recreate the
fine land cover maps. For the original method, the generated
thematic map at t1 and the recreated fine land cover maps at t2
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Fig. 9. Subpixel mapping results based on the four existing methods and the proposed method with S = 4, 5, 8, 10, and 20 (shown in Line 1, 2, 3, 4, and 5).

were compared to produce the LCCD results. For the proposed
method, however, further processing was conducted, in which
the generated thematic map was used to produce the abundance
image by the degradation procedure. Then, the two abundance
images were applied to generate the improved abundance image
at t2, which were used as the input to produce the advanced
subpixel maps and the corresponding LCCD results.

2) Results: Fig. 14 gives the abundance images at t2 of the
two regions, including the original abundance images based
on the spectral unmixing method and the improved abundance
images generated by our proposed method. In addition, as a
contrast, the real abundance images generated by the land cover
map at t2 are also listed in Fig. 14, which can be regarded as the
reference abundance image. As seen in the first two columns in
Fig. 14, we observe that the boundaries of water and nonwater
generated by the original method are not clear. Correspondingly,
the boundaries generated by the proposed method are identified
easily. Comparing with the real abundance images, the improved

abundance images are much closer to the real images than the
original abundance images. This demonstrates the proposed
method is effective in decreasing the error of spectral unmixing
and improving the accuracy of the generated abundance image.

Fig. 15 shows the subpixel mapping results of the two regions
based on the original four methods and the proposed method.
As can be observed, the four subpixel mapping results based
on the existing methods include more linear artifacts than the
advanced results. In addition, many isolated pixels also exist
in the former results. Correspondingly, the boundaries of the
advanced results are smoother than those of the original subpixel
mapping results. Particularly, the advanced results, when com-
pared to the reference map illustrated in Fig. 13(b) and (e), are
found to be very near to the reference map. The aforementioned
phenomenon indicates that the proposed method obtains more
accurate results than the original methods.

Fig. 16 gives the LCCD results of the two regions based on
the original four methods and the proposed method. As seen
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Fig. 10. LCCD results based on the four existing methods and the proposed method with S = 4, 5, 8, 10, and 20 (shown in Line 1, 2, 3, 4, and 5).

from the LCCD results based on the original methods shown
in the first four columns in Fig. 16, the four LCCD results
have a lot of isolated pixels and linear artifacts. In contrast, the
advanced method-based LCCD results shown in the last columns
in Fig. 16 have relatively little discrete noise. Clearly, the LCCD
results generated by the existing methods have more incorrectly
identified pixels, including the undetected change pixels and
unrecognized unchanged pixels. When comparing the change
maps to the reference maps, which are shown in Fig. 13(c) and
(f), the LCCD results produced by the proposed method are
much closer to the reference change map than those generated by
the existing methods. Hence, the generated LCCD maps confirm
the benefit of the proposed method.

Table II shows the CD quantitative evaluations using OA of
the two regions based on the existing four methods and the
proposed method. As shown in this table, the proposed method
outperformed the existing four methods. Specifically, for the
first region, the OA values of the proposed method improved
up to approximately 1.26% over the existing four methods.

TABLE II
COMPARISIONS OF THE THREE LCCD METHODS WITH THE REAL DATASETS

BASED ON OA

Correspondingly, for the second region, the increases are ap-
proximately 0.79%. The quantitative evaluations indicate that
the proposed method is effective in improving the performance
of LCCD.

IV. DISCUSSION

The above three experiments, including one simulated
dataset-based experiment and two real dataset-based experi-
ments, verify the effectiveness of the proposed method in this
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Fig. 11. Changing trend of OA based on the five LCCD methods with respect
to different zoom factors. (a) Bicubic. (b) Bilinear. (c) SPSAM. (d) RBF. (e)
Proposed.

Fig. 12. Landsat-MODIS datasets and the reference images. (a) Landsat-8
image from 2014. (b) MODIS image from 2018. (c) Corresponding fine reference
image from 2018 for the first region. (d) Landsat-8 image from 2014. (e) MODIS
image from 2018. (f) Corresponding fine reference image from 2018 for the
second region.

Fig. 13. Bitemporal land cover maps and the reference LCCD maps for the
two regions. (a) Thematic map from 2014. (b) Thematic map from 2018. (c)
Reference change map for the first region. (d) Thematic map from 2014. (e)
Thematic map from 2018. (f) Reference change map for the second region.

article. In the experiments, the fine spatial but coarse temporal
resolution image and coarse spatial but fine temporal resolution
image data were used as the input images. Through the subpixel
mapping-based change detection method, the characteristics and
advantages of the two input images were fully utilized to obtain
both fine spatial and temporal resolution land cover change
maps, thus providing technical support for emergency disaster
rescue and other works.

In the subpixel mapping-based LCCD methods, the accuracy
of spectral unmixing has a great impact on the change detection
results. The improved change detection algorithm proposed in
this article can effectively reduce the influence of spectral unmix-
ing error and improve the reliability of change detection results.
In the first experiment using the simulation dataset, for all zoom
factors, the change detection results obtained by the proposed
algorithm are significantly higher than those obtained by the
four existing algorithms. However, this performance decreases
as the zoom factor increases. This shows that when the spatial
resolution difference between the two input images is too large, it
is difficult to ensure the accuracy of the change detection results.
In the two real dataset experiments, the proposed algorithm is
compared with the four existing algorithms, which also proves
that the proposed method can reduce the influence of spectral
unmixing error, so as to obtain more accurate change detection
results.
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Fig. 14. Abundance images based on the original method, the proposed method, and the real abundance images for the first region (line 1) and the second region
(line 2).

Fig. 15. Subpixel mapping results based on the existing methods and the proposed method for the first region (line 1) and the second region (line 2).

Although the proposed LCCD method has significantly im-
proved over the existing algorithms, there is still a large room
for improvement in change detection with fine spatial–temporal
resolutions. In the first experiment, the accuracy of the change
detection results obtained by the four existing change detection

algorithms is between 70% and 82%, and the change detection
accuracy of the proposed method is improved to 71%–85%. It
can be seen that although the change detection accuracy of the
proposed algorithm has been greatly improved, there is still a
lot of room for improvement. In Fig. 8, the comparison of the
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Fig. 16. LCCD results based on the existing methods and the proposed method for the first region (line 1) and the second region (line 2).

three abundance images (i.e., the original image, the improved
image, and the real image) also shows that there are still some
differences between the improved abundance image obtained by
the proposed algorithm and the real one. In the two real dataset
experiments, the change detection accuracy of the proposed
algorithm is about 80% and 87%, respectively, and there is also
room for further improvement. By further improving the spectral
unmixing and subpixel mapping accuracy, more accurate change
detection results can be obtained.

V. CONCLUSION

In this article, a novel subpixel change detection scheme based
on improved abundance values is proposed and implemented
for detecting fine spatial and temporal changes. The proposed
method borrows the spatial distribution of fine spatial resolution
image to obtain improved abundance values and promote the
accuracy of LCCD. The proposed method can combine the
advantages of different spatial and temporal resolution images
and provide technical support for high spatial and temporal res-
olution LCCD. Three datasets, including one simulated dataset
based on Landsat-7 images and two real datasets based on
Landsat-MODIS images, were adopted to assess the perfor-
mance of our proposed scheme. The three experiment results
show that the proposed technique reduces spectral unmixing
error and improves the accuracy of LCCD. Compared with
four existing subpixel change detection methods, the proposed
scheme obtains the most accurate LCCD results. The increase in
accuracy becomes more prominent when the spatial resolutions
between the bitemporal images are close. Although the proposed
method in this article is effective in fine spatial and temporal

resolution LCCD, there is still much room for improvement
in subpixel mapping accuracy. In future article, more spectral
unmixing methods will be developed, and new strategies of
abundance image generation will be developed.
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