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Kamil Choromański , Joanna Kozakiewicz , Mateusz Sobucki , Magdalena Pilarska-Mazurek ,

and Robert Olszewski

Abstract—The aim of the research was to analyze the possibilities
of using deep learning methods for classifying multisource image
data for Mars. It should be emphasized that the main goal of
the research was to develop a methodology for integrating image
data acquired from orbiters (MRO mission’s HIRISE camera) and
in situ (opportunity rover’s NAVCAM camera) and to use their
combined analytical potential. We used a VGG-16-based network
for this article, which is well-characterized in the literature and
has been successfully applied in a wide range of applications. The
article proposes a methodology for the supervised classification of
landforms on Mars. The proposed solution was evaluated using the
Meridiani Planum area, utilizing neural network deep learning and
was based on multisource image data. We found that our approach
classified aeolian reliefs correctly for more than 94% of the test
dataset. The classification accuracy increased to almost 96% when
using panoramas developed from opportunity’s images and the
derivatives of the digital terrain models used during the classifi-
cation process. It is possible to broaden the proposed concept of
multisource classification and the customized deep learning system
to the analysis of other regions of Mars and to multispectral imaging
without losing the generalizability of the solution.

Index Terms—Deep learning, high resolution imaging science
experiment (HiRISE), mars multisource classification, Meridiani
Planum (MP), MRO, opportunity rover.

I. INTRODUCTION

S INCE aeolian processes play a dominant role on present-
day Mars, the bedforms created due to these processes cover

almost the entire Martian surface. Ripples are one of the most
common aeolian features on Mars; they can be up to 1 m high and
up to several meters wide, and form straight or sinuous ridges
created by the accumulation of small particles (from ∼100 µm
to ∼1 mm in diameter). The orientation of these bedforms is
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perpendicular to the direction of the wind that is responsible for
their creation. On Mars, such bedforms exist as ripple fields, but
can also be found as isolated features [1], [2].

The increasing amount of spaceborne and groundborne data
about Mars’ surface enables large scale terrain relief recognition.
However, this activity is slow because of its manual approach,
and requires automation. To contribute to this process, we
attempted to analyze and classify these forms using machine
learning methods. Because these forms appear over almost the
entire surface of Mars, it is vital to employ automatic techniques
to study their distribution and parameters. To develop such
automatic methods, we started with a region that is well-covered
by both orbiter and in situ data, and which serves as a ground-
truth for analyzing bedforms and terrain. Imaging data from
the rover allows for detailed, high-resolution, analysis of terrain
morphometry, while HIRISE data allows for spatial context
analysis. Multisource data fusion method enables consider the
complementary information between each dataset confirmed,
for example, in the publication [3].

The authors chose an area of Meridiani Planum (MP) that
was investigated by one of two rovers on the Mars exploration
rover (MER) mission [4]. What characterizes this area is its flat
surface, which is interrupted only by impact craters of various
ages [5], [6]. This region’s uniformity favors the development
of automated terrain classification methods.

The opportunity rover explored this region from 2004 to 2018
and took approximately 200 000 images of landforms, rocks,
and sediments. Opportunity traveled more than 40 km across an
area that, from a morphological point of view, can be divided
into two classes of terrain: plains and craters. The surface of the
plains is made of a flat layer of sulfate-rich sandstones partially
covered by loose sediments (made up of sand and gravel). On
these plains, there are vast fields of ripples located on the sand-
gravel covers or directly on the bedrock.

In this research, the objective of the analysis was to automate
the classification process of three geomorphological settings
within the MP area: ripple fields, ripples in bedrock, and sand-
gravel covers. Simultaneously, this classification would enable
a detailed analysis of the distinguishable and unambiguous
geomorphological features within the MP area. In other words,
these three classes would enable the characterization of the
terrain’s surface in terms of the presence or absence of ripples
and sand-gravel covers.
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Deep learning methods has strong representation learning
ability and classification ability for spatial big data processing
to automate the process of extracting and classifying landforms,
and therefore enable analysis of image data from both the or-
biter high resolution imaging science experiment (HiRISE) and
the navigational camera on the opportunity rover. The article’s
authors put forward the hypothesis that by using a fusion of
orbiter and in situ data with deep learning, and integrating image
data and the derivatives of the digital terrain models (DTMs),
this would achieve a significant increase in the accuracy of
the automatic classification of the aeolian geomorphological
settings found on Mars. The use of the neural network in the
research work makes it possible to process both image data
and three-dimensional (3-D) models developed from HIRISE
data and image panoramas from the rover. In fact, the image
data from opportunity’s camera panoramas can be processed
into a multidimensional feature vector and analyzed in a joint
classification process together with orthophotos and DTMs from
HIRISE. The approach proposed in this article, and tested for the
MP region, can be used to automate relief classification on Mars.

The issue of Martian aeolian landscape classification has been
the subject of only a few scientific publications using orbiter
orbiter imagery of varying spatial resolution, or using DTM as
the sole data source [9], [12]. This article addresses the subject
of developing a methodology for integrating and processing
multisource photogrammetric data for Mars. The use of stereo
images from the high-resolution HiRISE camera allowed not
only the development of an orthophoto map, but also a DTM
and its derived models: curvature, slopes, topographic position
index (TPI), terrain ruggedness index (TRI), etc. The use of
these models has significantly improved the quality of relief form
classification. The integration of orbiter data with images taken
by the Mars rover’s navigational camera (NAVCAM) allowed us
to develop a holistic methodology for integrating multisensory
data and obtaining satisfactory classification results. The devel-
opment of an innovative method for processing image data from
orbiter and in situ sources allows for synergies and the “enrich-
ment” of spatial data, and provides an important methodological
contribution to fundamental research concerning Mars.

The layout of the article is as follows: Chapter II discusses re-
lated works on the classification of geomorphological landforms
using machine learning methods and DTM creation; while Chap-
ter III discusses the proposed proprietary research methodology
that uses deep learning for processing multisource, spatial big
data to classify aeolian reliefs on Mars. Chapter IV discusses
the conducted research, taking into account both the selection
of source data and their processing methods. This part of the
article also includes a critical discussion of the results. Chapter
V summarizes the research, and proposes a continuation of this
article and the directions it might take.

II. PRELIMINARIES AND RELATED WORKS

The first decade of the 21st century saw the first attempts to au-
tomatically classify Martian landforms [7], [8], [9]. These works
focused on the segmentation of craters from other landforms
using low-resolution DTM data obtained from the Mars orbiter
laser altimeter (MOLA) sensor. Machine learning algorithms,

such as support vector machines were used for the automated
landform segmentation [6]. The increase in the amount and qual-
ity of the imaging data from Mars has led to a better understand-
ing of Mars’ surface. Deep learning algorithms have become
widely used for the automatic detection, classification, and seg-
mentation of landforms on the planet. Such algorithms were used
both for impact [7], [8], [10], [11] and geomorphological (in-
cluding aeolian) forms [12], [13], [14]. Deep learning techniques
have been applied successfully to the most widely used imagery
and elevation data sources collected from Mars: MOLA [7], high
resolution stereo camera (HRSC) [10], context camera (CTX)
[12], and HiRISE [21], [15]. Bickel et al. [16] used convolutional
neural networks (CNNs) to automate rockfall mapping on Mars
and the Moon. The NAVCAM installed on the Mars rovers was
used both for navigation and scientific research. Maki et al. [17]
described the camera’s parameters and possible uses.

There are also works concerning the segmentation and detec-
tion of landforms based on images taken by the Martian rovers.
Wagstaff et al. [18] proposed a neural network for detecting
the content of images taken by the Curiosity rover to provide a
content-based search of such images using a web interface.

There are several studies relating to the use of deep learning
techniques to map geomorphological structures, which is also
the primary goal of this article. Barret et al. [13] are currently
using neural networks for the segmentation of geomorphological
forms that are visible in HiRISE imagery, investigating the
Oxia Planum and Mawrth Vallis areas. Another paper, similar
to the current article, is also by Barret et al. [13], which is
aimed at creating a product that will be helpful to planetary
geomorphologists. Wilhelm et al. [15] introduced a dataset for
machine learning solutions for the geomorphological analysis of
Mars. However, these works did not focus only on aeolian forms,
and did not consider additional data sources such as elevation
models or images from the rovers.

Thus far, only a few studies, by Rothrock et al. [19] and Tao
et al. [20], have used orbiter and in situ data in one pipeline. Their
studies used HiRISE imagery for determining optimal landing
site traversability for future rovers, and in situ data for wheel
slip predictions. However, these two data sources were used
separately. While some studies use DTMs in deep learning pro-
cesses concerning Mars [10], there has been no work combining
image data and elevation models in a deep learning pipeline for
the semantic segmentation of Martian terrain. However, such an
approach has been used on data from Earth [21]. Furthermore,
none of the published works have attempted to use data from both
the rover and the orbiter in a single deep learning segmentation
pipeline. Such attempts relating to Earth have been successful
using orbiter data and street view services for the building type
and land-use classification of urban areas [22], [23], [24]. The
efficient and state-of-the-art practice of semantic segmentation
are described in publications [25], [26].

Combining the rover’s NAVCAM imagery and the orbiter
HiRISE data is a critical step in knowledge acquisition based on
diverse and mutually complementary data. This issue was the
subject of research by Li et al. [27], Di et al. [28], and Alexander
et al. [29].

The quality of the analyses and image classification resulting
from deep learning methods relies heavily on skillful source data
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processing. Our research used information from both the anal-
ysis of HiRISE orbiter data and images from the NAVCAM on
the opportunity rover. HiRISE image processing consists mainly
of image orientation; then the terrain model from the images (or
a stereo pair) is generated. Nonetheless, DTM generation from
Mars images can be challenging, and many scientists are work-
ing on both DTM improvement and DTM evaluation, which can
be a demanding task due to the lack of reference data relating to
Mars (e.g., like the GNSS systems used on Earth). It is possible
to generate DTMs using a photogrammetric workflow. Various
privately developed or commercially available approaches and
software can generate DTMs. Kirk et al. [30] compared various
software packages used for DTM generation: DLR HRSC Team
Pipeline; SOCET SET; and Ames stereo pipeline (ASP). The
most popular open-source software for DTM generation for
Mars is ASP [31]. NASA’s ASP is an open-source tool used
for the stereo image processing of data acquired from orbiters
around Earth or other planets [32]. ASP requires the installation
of integrated system for imagers and spectrometers (ISIS), a
digital image processing software package developed by the
United States geological survey for NASA. ASP enables DTMs,
orthoimages, and 3-D models to be generated.

There are also articles in the literature about the comparison
between Mars DTMs generated from different orbiter systems.
Kirk et al. [33] calculated slope angles based on DTMs to assess
the appropriateness of landing places for the Phoenix Mars
Lander. Thus, it is possible to compare DTMs from the HiRISE
images to DTMs from different systems, for example, HRSC or
MOLA measurements.

Another prevalent task found in the scientific literature is
the co-registration of multiresolution DTMs. HiRISE images,
characterized by very high spatial resolution, do not cover Mars
completely. Therefore, much of the research on DTMs for Mars
relates to different approaches that demonstrate the possibilities
of multiresolution DTM co-registration. Lin et al. [34] worked
on the automated co-registration of MOLA, HRSC, and HiRISE
DTMs using surface matching techniques. Wang and Wu [35]
presented a different approach, in which they first co-registered
the CTX and HiRISE images using characteristic points, and
then the DTMs were co-registered based on the new position of
the images.

The issue of the detection and analysis of Martian aeolian
forms has also been the subject of research and publication by
Bandeira et al. [36], Bandeira et al. [37], Carrera et al. [38], and
Va et al. [39].

III. METHODOLOGY

The research aim of this study was twofold: to develop a
methodology for using deep learning methods to automate the
classification of geomorphological settings found in the MP
region; and to perform a quantitative and qualitative analysis of
the results. However, the automation of the image data’s classi-
fication requires that they be preprocessed. It is particularly vital
in the case of Martian data, which lack the unambiguous spatial
reference that GNSS systems provide for Earth. Therefore, the
methodology developed in this work incorporates both elements
that obtained georeferencing for HiRISE and NAVCAM image

data: processing the data into an orthophotomap; DTMs; and the
derivatives of the elevation model developed using orbiter data
(from HiRISE) and the panoramas “seen” by the opportunity
rover (from NAVCAM).

The methodology developed assumes (see Fig. 1).
1) The processing of a stereo pair of HIRISE images into a

DTM and an orthophoto.
2) Obtaining DTM derivative models—curvature models,

TRI, and TPI.
3) The processing of in situ images taken by the NAVCAM

camera into a coherent panorama with an equalized tonal
level and precisely defined spatial orientation.

4) The processing of the above-mentioned image data using
the principal component analysis (PCA) method in order
to reduce the dimensionality of the problem.

5) The combined processing of orbiterdata (orthophotomap,
derived DTM models) and in situ panoramas by a neural
network with a well-defined architecture (VGG-16).

6) The cartographic visualization of the obtained classifica-
tion results together with a comprehensive quantitative and
qualitative evaluation.

Each of the stages required the development of original algo-
rithms (or significant modification of existing methodological
solutions) dedicated to processing image data of a specific
type. For the implementation of most tasks we also developed
their own scripts (mainly in the Python language). It should be
emphasized that due to the specificity of Mars imaging data, an
important problem that is related to the lack of GNSS systems
for this planet, was the issue of the orientation, localization,
and spatial reference of the data. Solving this problem was an
important methodological contribution to the analysis of spatial
data that had no georeferencing.

Fig. 2 presents the general outline of the research methodol-
ogy. The research employed two data sources for all other com-
putations: HiRISE orbiter imagery and the opportunity rover’s
NAVCAM images. A digital orthophotomap with a high spatial
resolution based on the HiRISE imagery and the digital elevation
model of the area of interest, along with derived raster models
(namely TPI, TRI, longitudinal, and cross-sectional curvatures)
were created. Semantic features were extracted from opportu-
nity’s images and interpolated onto the spatial domain. A CNN
model capable of working with many data sources enabled all
the data to be used during the semantic segmentation process.
This chapter focuses on describing the particular stages of the
research.

A. HiRISE Data Preprocessing

The HiRISE data were downloaded from the planetary data
system (PDS) [40] in the form of HiRISE experiment data
records (EDRs) files. Files for eight images were enough to
produce four stereo pairs and to create DTMs that covered the
opportunity’s traverse. The following is a list of the stereo pairs:

ESP_018846_1775− ESP_018701_1775
ESP_051245_1780− ESP_020758_1780
ESP_016644_1780− ESP_037109_1780
PSP_001414_1780− PSP_005423_1780.
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Fig. 1. Proposed research methodology.

Fig. 2. Outline of the methodology and data used.

The HiRISE data were processed using the NASA ASP (ver-
sion v2.6.2) and ISIS (version 3.6.0) on Ubuntu 18.04 OS.

After downloading, the EDRs were combined into one image.
In the next step, the common areas of each stereo pair of
images (the so-called overlap) were selected automatically to
prepare the images for further processing. Finally, point clouds

from the stereo pairs were generated. From the point clouds,
DTMs in the form of raster files were produced. Later, the
HiRISE images were orthorectified using the DTMs to remove
the influence of terrain height on the images. Following this, the
four orthoimages and the DTMs were mosaicked. The DTM and
orthoimage mosaics were aligned horizontally to the data from
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Fig. 3. Images from the opportunity rover’s NAVCAM (top), and the final panorama (bottom) (the authors’ original work).

the HRSC system, and the DTM mosaic was aligned vertically
to the MOLA DTM. The final image mosaic covered an area
of approximately 87 square km and had a spatial resolution of
27 cm/pixel.

B. NAVCAM Data Preprocessing

The NAVCAM camera was chosen for the in situ investiga-
tion (see Fig. 3). This instrument, designed to provide terrain
context for other instruments, acquired a significant number
of landscape-type images. It also had a larger field of view
(FOV) than the panoramic camera. The navigational camera
was a CCD stereoscopic instrument, with each camera having a
45°x45°FOV and an angular resolution of 0.82 milliradians per
pixel (mrad/pixel). Its depth of field ranged from 0.5 m to infinity.
It was mounted on a mast 1.54 m above the Martian surface and
had a stereo baseline separation of 20 cm [17]. Creating 360°
panoramic views of the local terrain is possible after mosaicking
NAVCAM images.

The approach used in this article is a development and mod-
ification of the methodology proposed by Cao et al. [22]. The
architecture developed by the authors of the current article has
reduced the number of trainable parameters, which yielded better
results for a relatively small dataset.

Also of key importance is the issue of selecting the learning
data. The work of Cao et al. [22] did not took into the account
altitude data (DTM), which was a substantial part of the research
for the current article.

As proposed by Cao et al. [22], to use the rover’s images
in a multisource deep learning process, it was necessary to
transform them into panoramic images representing the in situ
terrain representation around a given point. First, opportunity’s
NAVCAM images, which are available on the NASA PDS, are
at a resolution of 1024×1024, organized by the Martian day

(a sol) on which each image was acquired. Additionally, the
rover’s traverse includes metadata that allows each image to be
associated with the rover’s location and the corresponding posi-
tion of the camera. Because of this information, it is possible to
create a spatially localized panorama for each image-taking site
of the traverse. During the photo stitching process, the histogram
matching technique reduced the radiometric differences between
the images. The final panorama image was created from the
cylinder-projected original images. Areas in which two photos
overlapped were merged by selecting every second pixel of each
image and combining these into a mosaic (see Fig. 3). To ensure
spatial consistency between panoramas, each began in a northern
direction. The resolution of a single panorama was 2048×6992.

Since NAVCAM’s primary purpose was to navigate the rover,
multiple images were not taken at each point of the rover
traverse. On average, 30% of each panorama was covered by
data pixels (i.e., non-NaN pixels). There were 2905 panoramas
created of the study area.

C. In Situ Semantic Feature Extraction

An algorithm proposed by Cao et al. [22] formed the basis for
the workflow for extracting features from the rover’s imagery
data and interpolating them into the orbiter image domain. This
process consisted of two main stages: feature extraction, and
interpolation (see Fig. 4). In the first stage, a pretrained neural
network extracted feature vectors from the input image. A deep
CNN pretrained on the Places365 dataset [41] was used for this
purpose. The Places365 dataset consists of 10 million scene
photographs separated into three macro-classes: indoor; nature;
and urban.

Each panorama image was divided into four equal parts,
facing four different directions. Then, using the pretrained
places-CNN network, a 512-D feature vector was extracted for
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Fig. 4. In situ semantic feature extraction (the authors’ original work).

each image. Four vectors were concatenated into one 2048-
dimensional vector representing each panorama location. Fi-
nally, PCA was used to reduce the dimensions of the feature
vector to 50. Cao et al. [22] successfully used this number of
representative features.

It was necessary to express the feature vectors representing
the surroundings of opportunity’s traverse in the same domain as
the orbiter data. The Nadaraya–Watson interpolation was used to
interpolate features into the orbiter image domain. This method,
which is a generalization of the inverse distance weighting
method, can model opportunity’s closer panoramas as being
of higher importance, and cut-off, at a predetermined distance,
panoramas that are further away, where the in situ features should
not impact the decision process.

D. Semantic Segmentation Network

An encoder–decoder CNN architecture served as the base
network for the multisource semantic segmentation of the ae-
olian reliefon Mars. Such networks consist of two modules: an
encoder and a decoder. The first one extracts the features from the
input data, and the second one upsamples the extracted features
to reconstruct the original shape of the data. This approach
allows for the pixel-wise segmentation of input raster images.
The use of convolutional layers enables the network to model the
spatial features within the images, which is crucial for achieving
good segmentation results (see Fig. 5).

It should be noted that the combined processing of image
data from HIRISE and panoramas from the opportunity rover
required data preprocessing. The orthophotomap and DMT de-
veloped from the orbital images were registered in the Mar-
tian spatial reference system. The panorama developed from

NAVCAM images was preprocessed based on the rover’s lo-
cation and camera parameters and the angles (horizontal and
vertical) of the imaging direction. The image features were
spatially interpolated.

The encoder part of the network was based on VGG-16
architecture [42]. It consisted of five convolutional blocks. The
first two blocks comprised two convolutional layers followed by
batch normalization [43] and the rectified linear unit activation
function [44]. The subsequent two blocks had three such layers.
A max-pooling layer that reduced the output by two times
followed each block. Instead of a fifth block of VGG-16, two
convolutional layers were used.

The decoder module was also based on VGG-16, but without
the last block, and with upsampling layers (by repeating columns
and rows) instead of max pooling. The decoder also reduced
the number of convolutional filters: the encoder had 17 million
trainable parameters, while the decoder consisted of 1.5 million
such parameters. The reason for introducing the modifications to
the base network architecture (e.g., the reduction in the decoder’s
parameters and changing the final layer of the encoder) was that
the processing of the spatial big data from Mars showed better
performance on test data than the classic, deep neural network
architecture used to process image data collected on Earth.

Finally, a single convolution layer with a spatial resolution
equal to the input image finished the network. The softmax
activation function [45] produced the probability that a given
pixel would be affiliated with one of five classes. A class with a
higher probability was chosen to be valid for each pixel. Fig. 5
shows an overview of the neural network model’s architecture.

We used two data fusion methods for the network architecture.
The digital elevation model’s data was stacked along with orbiter
imagery in the main part of the network and analyzed in the same
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Fig. 5. Architecture of the neural network model (the authors’ original work).

fashion as the spectral bands in the RGB image; thus the input
consisted of three layers. Integrating an additional 50 in situ
feature maps in this way could significantly reduce the impact of
the semantic segmentation from other bands (assuming that the
imagery data is both reliable and the main source of information,
and that other data sources are supplementary). Taking this into
account, we decided to implement an approach introduced by
Cao et al. [22]. The main goal of this approach was to use an
additional encoder to extract semantic features from the maps
and fuse the last layer of each convolutional block with the main
encoder through concatenation with the related feature maps
generated from the orbiter data.

IV. EXPERIMENTS AND ANALYSIS

The research covered the section of MP over which the
opportunity rover had traveled (see Fig. 6). Due to the depth of
the image obtained from the NAVCAM installed on the rover, an
area, limited spatially to a 100 m buffer around the rover’s route,
was selected for analysis. First, the orbiter imagery and DTM
products were cropped to the area of interest. The original data
were also normalized to a value range of 1–255 (with 0 reserved
for “no data” pixels). Elevation models have lower resolution
than orbiter images, so the DTM products were resampled to
match the resolution of the HiRISE images (27 cm/pixel) in such
a way that each pixel of image data corresponded to information
from the nearest pixel of the DTM products. Finally, test data
along with labeling were divided into 256×256 georeferenced
tiles. Information about the position of each tile was necessary to
create matching interpolated terrain features. There were 7,631
tiles created for the entire opportunity traverse buffer area (see
Fig. 6).

The original NAVCAM image dataset contains 51 308 images.
However, these are stereo images; thus, only the images from
the right-side camera were used to create panoramas. Moreover,
images with decayed resolution and those that did not spatially
intersect with an area of interest were also eliminated. This
resulted in 2904 panoramas to be used for feature extraction.
The distribution of the panorama locations was not even: Fig. 6
visualizes this distribution.

A. Training and Test Data

The classification used in the labeling was created based on
the two main terrain relief features found within the research
area. The first was the surface type, either bedrock or loose sed-
iments. The second feature concerned the occurrence of ripples,
which may cover the underlying surface entirely, partially, or
not at all. The resultant combinations of these two main features
produced five potential labeling classes. Two of these classes
were excluded from classification because, in the first case,
no large surfaces were covered solely by bedrock, and second,
loose sediments covered partially by ripples were challenging
to differentiate from loose sediments (see Fig. 7).

The final classifications used in the analysis consisted of:
1) ripple fields;
2) ripples on bedrock;
3) sand-gravel covers; and
4) others, which included craters and linear tectonic forms.
Manually labeled vector data (divided into three classes:

ripple fields—class 101; ripples on bedrock—class 102; and
sand-gravel covers—class 104) served as the basis for training
and testing the CNN model. The authors chose 11 areas for
training purposes and 13 for testing. The process of labeling
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Fig. 6. Area of interest: The source data and opportunity’s traverse (the authors’ original work).

Fig. 7. Classes of aeolian relief found in the MP area (the authors’ original
work).

and processing the vector data utilized ArcGIS and QGIS soft-
ware environments. A polygon with an associated class number
represented an area corresponding to one class. Fig. 8 shows
an example of a labeled testing area. All labeled areas were
rasterized and tiled along with the corresponding orbiter DTM,
and interpolated in situ features data. As a result, 523 tiles for
each dataset were created for training and 108 for testing. Fig. 9
presents a pixel-wise summary of the training and test datasets
(with the “other” class neglected).

B. Data Augmentation

Because the training dataset was not large enough, it had to
be augmented artificially by creating extra samples using data
augmentation techniques. Many implementations that have had
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Fig. 8. Fragment of the labeled data superimposed against the HiRISE data
background (the authors’ original work).

Fig. 9. Summary of the training and test datasets.

limited datasets have employed such techniques successfully
[46]. For each training dataset tile, five augmented tiles were
created by applying the following transformations.

1) Random rotation between −2.5° and 2.5°.
2) Random brightness change between −25% and 25%.
3) Random contrast change between −25% and 25%.
After data augmentation, the entire training dataset consisted

of 3138 tiles per data source.

C. Experiments

The authors conducted six experiments (see Table I) to test
the impact of data source combinations on the final quality of
the model:

TABLE I
EXPERIMENTS SETUP

1) HiRISE images only—the input data consisted only
of HiRISE images using a single encoder.

2) HiRISE images and TPI/TRI layers—TPI and TRI layers
stacked with HiRISE images using a single encoder.

3) HiRISE images and curvature layers—the use of longi-
tudinal and cross-sectional curvature layers stacked with
HiRISE images using a single encoder.

4) HiRISE images integrated with the in situ feature maps—a
combination of the HiRISE images using the first encoder
with features fused from the in situ feature maps generated
using the second encoder.

5) HiRISE image and TPI/TRI layers integrated with the in
situ feature maps—the same setup as in experiment 4, with
additional TPI and TRI layers stacked with the HiRISE
images.

6) HiRISE image and curvature layers integrated with the
in situ feature maps—the same setup as in experiment 4,
with additional longitudinal and cross-sectional curvature
layers stacked with the HiRISE images.

D. Implementation and Hardware Details

All CNN models were implemented using the Keras library
[47] on top of the TensorFlow framework [48]. The first four
blocks of each encoder were initialized with the corresponding
weights of the VGG-16 network trained on the ImageNet dataset
[49]. Other convolutional layers of the network were initialized
using the He initialization [50]. Each convolutional layer had
l1 and l2 regularizations applied. Cross-entropy was used as a
loss function, and the stochastic gradient descent as a network
optimizer. The learning rate was initially set at 0.01 and then
divided by ten after the 15th, 25th, and 35th epoch. The entire
learning process lasted for 50 epochs. After every training epoch,
data were randomly shuffled to ensure that the model learned
independently of the sample order. The cut-off threshold for the
significance of the in situ features was set to 50 m.

A CENAGIS infrastructure—a computing infrastructure for
conducting spatial big data analyses, created at the Faculty of
Geodesy and Cartography of the Warsaw University of Tech-
nology in 2021—was utilized in conducting the model training
and data preprocessing. Computations were conducted using a
separated Docker [51] environment with access to 128 Gigabytes
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of memory, 8 Intel Xeon Silver 4216 CPU cores, and 1 NVIDIA
Tesla T4 GPU.

E. Evaluation Metrics

The authors used global and per-class evaluation metrics to
assess the results: overall pixel accuracy; per-class pixel ac-
curacy; per-class precision; per-class recall; and per-class F1
score. Additionally, a normalized confusion matrix for each
experiment was created as follows.

1) Overall pixel accuracy

acc =
tr (CM)

N
(1)

where tr is the trace of the matrix, CM is the confusion matrix,
and N is the number of pixels in all classes

1) Per-class accuracy

accc =
CMcc

(c)
. (2)

2) Per-class precision

pc =
CMcc∑n
j=1 CMcj

. (3)

3) Per-class recall

rc =
CMcc∑n
j=1 CMjc

(4)

where c represents the index of a given class in the confusion
matrix, n is the number of all classes, CMij is the ith row and
the jth column element in the confusion matrix, and (c) is the
number of elements in class c [for (2)–(4)].

The per-class F1 score takes precision and recall metrics into
account

F1 =
2 ∗ pc ∗ rc
pc + rc

. (5)

V. RESULTS AND DISCUSSION

The conducted experiments showed that using the HiRISE
data and advanced machine learning methods that utilize a
deep learning approach, produces over 94% accuracy in the
automatic classification of aeolian reliefin the MP region. One
should emphasize that, due to the spatial data processing, the
training and validation dataset analysis is a long drawn-out
process requiring specialized computing infrastructure based on
graphics processors.

Using data fusion, i.e., the combined use of orbiter imaging
and elevation data (DTM and its derivative TPI and TRI models),
fosters further classification accuracy. Using an even broader
scope of data, i.e., the fusion of HiRISE orbiter data (image
and elevation data) and in situ data (panoramas recorded by
opportunity’s NAVCAM), produces the best results.

It is noteworthy that both the quantitative analysis (see
Table II) and the qualitative analysis (see Fig. 10) were essential
for evaluating the results that were obtained. A relatively small
difference (amounting to 1%) in the accuracy of the results
(95.94% for set 5 and 94.90% for Set 2) does not fully reflect

TABLE II
EXPERIMENT ACCURACY

Fig. 10. Results of data classification: Set 2 (left) and set 5 (right).

the quality of the final classification. The fusion of orbiter and in
situ data enables a “smooth” image to be produced of individual
geomorphological settings (see Fig. 10), compared with the
results for a different set of source data, for which the edges
of feature classes were sharper.

When analyzing the results, one should also emphasize that
they depend not only on the amount of source data and the meth-
ods used for their preprocessing, the neural network architecture,
or the parameterization of the deep learning process, but also
on the quality of the vector data used in the machine learning
process. The preparation of a training data set requires that the
data be divided into object classes (this approach employed three
such classes), and a manual process is used for determining the
individual divisions. The boundary between individual classes,
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TABLE III
RESULTS

for example, ripple fields and ripples on bedrock, is blurry and
may differ depending on the observer’s knowledge, experience,
and intuition. The research used training data that was selected
manually by two independent observers to minimize this prob-
lem. The same method was used to determine the validation and
testing data.

It should also be noted that the specificity of Mars and its land-
scape both play an essential role in automating the spatial data
classification process. The conducted experiments showed that
using a deeper and more complex neural network architecture
(SegNet [52]) did not produce better quantitative results, and
resulted in a qualitatively worse semantic segmentation effect.
The experiments also showed that, in the case of the SegNet
tests, there was no improvement in the segmentation quality
when using additional data sources (i.e., in situ images). This
stems from the specificity of the aeolian landforms in the MP
area. Obtaining these results (see Table III) required a series of
numerical experiments applying many different modifications
to the neural network architecture.

Achieved accuracies are on the level of 1% in favor of a
fused approach, which is not a large improvement in quantitative
assessment; however, the difference is visible in the qualitative
assessment of the results (see Fig. 10).

The main objective of the research was to test the impact
of using combinations of different spatial data types on the
performance of the network. The network used in this research
was the VGG-16—the basis of this architecture is a known and
well tested solution. However, in the future, it will be necessary
to investigate the performance of the built system using another,
more efficient architecture (such as EfficentNet [53] or CoAtNet
[54]), which may translate into better results in less time. This
task will require the development of an optimal methodology
for connecting the intermediate layers of each encoder, taking
into account the specifics of the network architecture used.

This issue requires further research, as the analysis and
classification of aeolian features on Mars is of interest to many
research teams [55].

VI. CONCLUSION

This article has shown that, for the analysis of multisource
data that describes the surface of Mars, selecting the appropriate
methodology and geoinformation tools is crucial. Because the
HiRISE camera and the opportunity rover have collected spatial
big data over a number of years, the processing of this data
requires machine learning methods that adopt a deep learning
approach. Developing a methodology for data analysis and clas-
sification also requires defining the object classes distinguished
in the automatic classification process. This article assumes
that ripple fields, ripples on bedrock, and sand-gravel cover are
intrinsic to the MP region. Differentiating these object classes
concerns the structure and distribution of aeolian reliefobserved
in this region of Mars. However, the developed approach is so
universal that, without inference accuracy loss, it is possible to
either generalize or refine the distinguished classes, or add new
ones with morphological features that are characteristic for other
areas of the planet.

It is important to note that to obtain satisfactory scientific
and cognitive classification results, the fusion of source data,
their preprocessing, and the appropriate choice of deep neural
network architecture are essential. Using both the image data
from the orbiter and the data obtained in situ by the rover in the
machine learning process improved our results. When analyzing
the results, one should also note that using a broad range of
source data and the derivatives of DTMs enables a “smooth”
image to be achieved, made up of individual subdivisions,
which is analogous to manual classification. Selecting the neural
network architecture also plays a vital role in this process. The
deep learning network models that we used increase the rate of
correct classification and—similar to data fusion—contribute to
the regularization of the shapes of individual features.

The results make it possible to develop a map of the domi-
nant land cover types for the opportunity rover’s traverse; the
developed methodology is also the first step toward developing
a comprehensive, multilayer geomorphological map of Mars.
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According to the analyses, there are complex, modular geomor-
phological features in many places that may be interpreted as
multilayer formations. The development of the research method-
ology proposed in this article will enable the classification of
modular features and serve as a basis for developing tools that
automate the classification process of land cover types and in-
dividual objects such as ripples. An in-depth numerical analysis
of the morphometric parameters of individual forms and the
determination of their features, such as spacing, morphome-
try and morphology, and crest direction, constitutes an initial
step towards inferring, from static data analysis (e.g., image
data), the lengthy morphodynamic processes that create aeolian
landforms.

This article analyzes classification capabilities based on a
DTM developed from HIRISE data and panoramas obtained
from the opportunity rover. Further work will focus on the use
of the 3-D models developed from the opportunity rover’s stereo
images, as well as comparing the interpretability of the terrain
model obtained from orbiter data (HIRISE) and from the rover
(opportunity).

Further research in this area will deal with the methodology
we have developed in order to analyze the data collected by the
Perseverance rover’s significantly greater number of cameras,
and the image data obtained by the Ingenuity drone. Using the
data collected during these missions will enable the development
of a digital elevation and terrain model that will have an order
of magnitude greater resolution than that of the opportunity
rover, thus enabling machine learning methods to automate the
classification of specific morphological features on Mars.

ACKNOWLEDGMENT

This project was funded by POB Research Centre Cyberse-
curity and Data Science of Warsaw University of Technology
within the Excellence Initiative Program—Research University
(ID-UB), and the Anthropocene Priority Research Area budget
under the program “Excellence Initiative—Research Univer-
sity” at the Jagiellonian University.

REFERENCES

[1] M. G. A. Lapotre et al., “Morphologic diversity of Martian ripples:
Implications for large-ripple formation,” Geophys. Res. Lett., vol. 45,
pp. 10229–10239, 2018.

[2] R. J. Sullivan et al., “Wind-driven particle mobility on Mars: Insights from
Mars exploration rover observations at ‘El Dorado’ and surroundings at
Gusev crater,” J. Geophys. Res., vol. 113, 2008, Art. no. E06S07.

[3] D. He, Y. Zhong, and L. Zhang, “Spatiotemporal subpixel geographical
evolution mapping,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 4,
pp. 2198–2220, Apr. 2019, doi: 10.1109/TGRS.2018.2872081.

[4] S. W. Squyres et al., “The opportunity rover’s Athena science investigation
at Meridiani Planum, Mars,” Science, vol. 306, no. 5702, pp. 1698–1703,
2004, doi: 10.1126/science.1106171.

[5] S. W. Squyres et al., “Detection of silica-rich deposits on Mars,” Science,
vol. 320, no. 5879, pp. 1063–1067, 2008.

[6] R. E. Arvidson et al., “Opportunity Mars Rover mission: Overview and
selected result from purgatory ripple to traverses to endeavour crater,” J.
Geophys. Res., vol. 116, 2011, Art. no. E00F15.

[7] T. F. Stepinski, S. Ghosh, and R. Vilalta, “Automatic recognition of
landforms on Mars using terrain segmentation and classification,” in Proc.
9th Int. Conf. Discov. Sci., 2006, pp. 255–266.

[8] T. F. Stepinski, M. P. Mendenhall, and B. D. Bue, “Machine cataloging of
impact craters on Mars,” Icarus, vol. 203, no. 1, pp. 77–87, 2009.

[9] S. Ghosh, T. F. Stepinski, and R. Vilalta, “Automatic annotation of plane-
tary surfaces with geomorphic labels,” IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 1, pp. 175–185, Jan. 2010, doi: 10.1109/TGRS.2009.2027113.

[10] C. Lee, “Automated crater detection on Mars using deep learning,” Planet.
Space Sci., vol. 170, pp. 16–28, 2019, doi: 10.1016/j.pss.2019.03.008.

[11] L. Bandeira, W. Ding, and T. Stepinski, “Detection of sub-kilometer craters
in high resolution planetary images using shape and texture features,” Adv.
Space Res., vol. 49, no. 1, pp. 64–74, 2012, doi: 10.1016/j.asr.2011.08.021.

[12] L. F. Palafox, C. W. Hamilton, S. P. Scheidt, and A. M. Alvarez,
“Automated detection of geological landforms on Mars using convolu-
tional neural networks,” Comput. Geosciences, vol. 101, pp. 48–56, 2017,
doi: 10.1016/j.cageo.2016.12.015.

[13] A. M. Barrett et al., “NOAH-H, a deep-learning, terrain classification
system for Mars: Results for the ExoMars rover candidate landing sites,”
Icarus, vol. 371, 2022, Art. no. 114701.

[14] T. Nagle-McNaughton, T. McClanahan, and L. Scuderi, “PlaNet: A neural
network for detecting transverse aeolian ridges on Mars,” Remote Sens.,
vol. 12, no. 21, pp. 1–15, 2020.

[15] T. Wilhelm et al., “DoMars16k: A diverse dataset for weakly supervised
geomorphologic analysis on Mars,” Remote Sens., vol. 12, no. 23, pp. 1–38,
2020.

[16] V. T. Bickel, C. Lanaras, A. Manconi, S. Loew, and U. Mall, “Automated
detection of lunar rockfalls using a convolutional neural network,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 6, pp. 3501–3511, Jun. 2019,
doi: 10.1109/TGRS.2018.2885280.

[17] J. N. Maki et al., “Mars Exploration Rover engineering cameras,” J.
Geophys. Res., vol. 108, 2003, Art. no. 8071.

[18] K. L. Wagstaff, Y. Lu, A. Stanboli, K. Grimes, T. Gowda, and J.
Padams, “Deep Mars: CNN classification of Mars imagery for the
PDS imaging atlas,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 7867–7872.

[19] B. Rothrock, J. Papon, R. Kennedy, M. Ono, M. Heverly, and C. Cun-
ningham, “SPOC: Deep learning-based terrain classification for Mars
rover missions,” in Proc. AIAA Space Astronaut. Forum Expo., 2016,
pp. 1–12.

[20] Y. Tao, J. P. Muller, and W. Poole, “Automated localisation of Mars rovers
using coregistered HiRISE-CTX-HRSC orthorectified images and wide
baseline NAVCAM orthorectified mosaics,” Icarus, vol. 280, pp. 139–157,
2016.

[21] S. Li, L. Xiong, G. Tang, and J. Strobl, “Deep learning-based ap-
proach for landform classification from integrated data sources of dig-
ital elevation model and imagery,” Geomorphology, vol. 354, 2020,
Art. no. 107045.

[22] R. Cao et al., “Integrating aerial and street view images for urban land use
classification,” Remote Sens., vol. 10, no. 10, 2018, Art. no. 1553.

[23] E. J. Hoffmann, Y. Wang, M. Werner, J. Kang, and X. X. Zhu, “Model
fusion for building type classification from aerial and street view images,”
Remote Sens., vol. 11, no. 11, pp. 1–20, 2019.

[24] S. Workman, M. Zhai, D. J. Crandall, and N. Jacobs, “A unified model
for near and remote sensing,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2707–2716, doi: 10.1109/ICCV.2017.293.

[25] D. He, Q. Shi, X. Liu, Y. Zhong, and L. Zhang, “Generating 2m fine-scale
urban tree cover product over 34 metropolises in China based on deep
context-aware sub-pixel mapping network,” Int. J. Appl. Earth Observ.
Geoinf., vol. 106, 2022, Art. no. 102667.

[26] D. He, Q. Shi, X. Liu, Y. Zhong, and X. Zhang, “Deep subpixel map-
ping based on semantic information modulated network for urban land
use mapping,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 12,
pp. 10628–10646, Dec. 2021.

[27] R. Li et al., “Rover localization and topographic mapping at the landing
site of Meridiani Planum, Mars,” J. Geophys. Res. Planets, Special Issue
MER Mission (Opportunity), vol. 112, 2007, Art. no. E02S90.

[28] K. Di et al., “Photogrammetric processing of rover imagery of the 2003
Mars Exploration Rover mission,” ISPRS J. Photogramm. Remote Sens.,
vol. 63, pp. 181–201, 2008.

[29] D. A. Alexander et al., “Processing of Mars Exploration Rover imagery
for science and operations planning,” J. Geophys. Res. Planets, vol. 111,
no. E2, 2006, Art. no. E02S02.

[30] R. L. Kirk et al., “Evaluating stereo digital terrain model quality at Mars
Rover landing sites with HRSC, CTX, and HiRISE images,” Remote Sens.,
vol. 13, no. 17, 2021, Art. no. 3511.

[31] R. A. Beyer, O. Alexandrov, and S. McMichael, “The ames stereo
pipeline: NASA’s open source software for deriving and process-
ing terrain data,” Earth Space Sci., vol. 5, no. 9, pp. 537–548,
2018.

https://dx.doi.org/10.1109/TGRS.2018.2872081
https://dx.doi.org/10.1126/science.1106171
https://dx.doi.org/10.1109/TGRS.2009.2027113
https://dx.doi.org/10.1016/j.pss.2019.03.008
https://dx.doi.org/10.1016/j.asr.2011.08.021
https://dx.doi.org/10.1016/j.cageo.2016.12.015
https://dx.doi.org/10.1109/TGRS.2018.2885280
https://dx.doi.org/10.1109/ICCV.2017.293
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