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A Comprehensive Flexible Spatiotemporal DAta
Fusion Method (CFSDAF) for Generating High

Spatiotemporal Resolution Land Surface
Temperature in Urban Area

Chenlie Shi , Ninglian Wang , Quan Zhang, Zhuang Liu, and Xinming Zhu

Abstract—Spatiotemporal fusion of land surface temperature
(LST) has a vital significance in studying the temporal and spatial
variation of urban heat islands. But most existing LST fusion
methods do not consider the highly heterogeneous urban surface
and complexity of the spatial layout. In this study, a Comprehen-
sive Flexible Spatiotemporal DAta Fusion (CFSDAF) method was
proposed to generate a high spatiotemporal resolution urban LST
image, which was an improvement of the Flexible Spatiotemporal
DAta Fusion (FSDAF). The CFSDAF first adjusted the differences
between coarse-resolution LST and fine-resolution LST. Then, the
visible and near-infrared image of a fine resolution was introduced
to execute spectral unmixing and to conduct soft classification,
which considered the mixed pixel of fine-resolution LST. The in-
verse distance weighting (IDW) interpolation was used in improv-
ing the computational efficiency, and the constrained least square
was selected to better distribute the residual. The performance of
CFSDAF was compared with the temporal adaptive reflectance
fusion model (STARFM) and FSDAF. The results indicate that
the predicted images by CFSDAF are better than STARFM and
FSDAF from both visual comparison and quantitative assessment
in two experiments, and CFSDAF can reserve more spatial details
and accurately restore the spatial continuity of urban LST than
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others. Moreover, CFSDAF has high computational efficiency and
can monitor land cover changes the same as FSDAF. Due to the
above advantages, the CFSDAF has great potential for studying
spatiotemporal changes of LST and UHI in an urban area.

Index Terms—Comprehensive flexible spatiotemporal data
fusion (CFSDAF), flexible spatiotemporal data fusion (FSDAF),
landsat, land surface temperature (LST), MODIS, spatiotemporal
fusion.

I. INTRODUCTION

OVER the last few decades, the world has experienced rapid
urbanization, and more than 55.2% of the populations

live in cities up to 2018 [1]. It is reported that the number of
urban populations will expand by 68% of the total population
around the world by 2050 [2]. In the meanwhile, the gathering
of many people in the city caused a series of negative effects.
The urban heat island (UHI) effect refers to a phenomenon that
the temperature of the city is higher than the temperature in the
suburbs [3], [4] and is one of the most severe urban problems [5],
[6], [7]. People are exposed to the environment of the city for
a long time, which can affect citizens’ health and well-being.
Accordingly, accurately monitoring the variation of the UHI
effect in spatial and temporal scales has great significance for
mitigating UHI and projecting the spatial layout of the city for
policymakers [8], [9].

Land surface temperature (LST) retrieved from a remotely
sensed image is regarded as effective and convenient data for
monitoring the UHI [10], [11], [12], [13]. In many cases, the LST
image with the high spatiotemporal resolution is indispensable
for studying the UHI effect because of the high heterogeneity in
an urban area and spatiotemporal variability of the urban thermal
environment [14], [15]. However, due to the tradeoff of sensors
between spatial resolution and temporal resolution, there is no
single sensor that can simultaneously generate the LST image
with both high temporal and high spatial resolution [16], [17].
For example, the spatial resolution of the Landsat 8 LST image
is 30 m (resampled from 100 m to 30 m by NASA) but it has a
long coverage period of 16 days [18], and the MODIS LST image
can be obtained every day but the spatial resolution of 1000 m
[19]. Besides, it is rare to obtain a cloudless Landsat LST image
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within one year because of the influence of clouds [20], [21],
especially in low-latitude areas. Regarding the above issues, the
scholars around the world have proposed many effective ways
including downscaling and spatiotemporal fusion of the LST
image in the past 20 years to generate the high spatiotemporal
resolution LST image [14], [15], [22], [23], [24], [25].

Downscaling of an LST image from low spatial resolution
(hereafter referred to “coarse-resolution”) to high spatial reso-
lution (hereafter “fine-resolution”) is commonly used to provide
high spatiotemporal LST image, which is also named thermal
disaggregation or sharpening [26], [27], [28]. The main idea for
LST downscaling supposes that the scale effect between coarse-
resolution LST (e.g., MODIS LST image) and fine-resolution
LST (e.g., Landsat LST image) is negligible [29], [30] and then
utilizing the correlations between LST with the coarse resolution
and visible–near-infrared image with the coarse resolution to
generate a downscaled LST image with fine resolution. The
accuracy of the downscaled LST image was mainly affected
by the downscaling methods (also called regression tools) and
auxiliary data (also called regression factors) [27], [31], and most
of the LST downscaling studies are improvements of the above
two aspects in the past [26], [30], [32], [33], [34], [35], [36].
However, previous studies on LST downscaling were mainly
applied to nonurban areas, and few reports for urban LST studies
where there are mainly three reasons. First, the spatial resolution
of the downscaled LST image is still too coarse (e.g., downscal-
ing MODIS 1000 m LST to 250 m LST) for studying the UHIs
because the auxiliary image and the LST image are obtained
from the same satellite [37]. Second, the spatial distributions of
urban LST are largely influenced by human activities, and only
the auxiliary image from the visible and near-infrared image
is not sufficient for LST downscaling in urban areas. Third,
the assumption of invariant scale is not suitable for the high
heterogeneous region, and the errors of downscaled LST will
be greater when the resolution ratio from low-resolution LST
to downscaled LST is too large [38]. Therefore, the LST down-
scaling has some limitations for generating high spatiotemporal
LST in urban areas.

Spatiotemporal fusion, another method that can generate high
spatiotemporal resolution LST, has been rapidly developed in the
past ten years [24], [25], [39], [40]. The core idea of spatiotempo-
ral fusion is to fully utilize the spatial and temporal information
of input images with different resolutions to generate an image
with both high spatial and temporal resolution, which was early
developed for reflectance fusion [17], [25], [41], [42], [43], [44],
[45], [46]. The STARFM proposed by Gao et al. [25] was the first
spatiotemporal fusion method, which predicted the Landsat-like
reflectance image by a weighted function with the information of
neighborhood. To improve the prediction accuracy of STARFM
in heterogeneous landscapes and disturbance events, the en-
hanced STARFM (ESTARFM) and a spatial–temporal adaptive
algorithm for mapping reflectance change were developed [47].
At present, the improvements in spatiotemporal fusion method
for surface reflectance mainly focus on preserving spatial details,
monitoring land cover change events, and improving calculation
efficiency [48], [49], [50]. Although the original fusion methods
were proposed for reflectance, some scholars introduced the

spatiotemporal fusion method for LST fusion [51], [52], [53],
[54], [55]. Liu et al [56] directly applied the STARFM to fusion
MODIS LST and ASTER LST to generate the ASTER-like LST
image. Wu et al. [39] improved the STARFM for LST fusion that
considered the sensor observation differences in different land
cover types. A new fusion method based on bilateral filtering
for urban LST fusion was proposed [24], which accounted for
the interaction of LST at the different surface boundary. Weng
et al. [57] presented the Spatiotemporal Adaptive Data Fusion
Algorithm for Temperature mapping (SADFAT) by introducing
the annual temperature cycle (ATC) for STARFM, which was
assessed by blending MODIS LST and Landsat LST in hetero-
geneous areas. In addition, the spatiotemporal fusion methods
for LST that integrated geostationary satellite and Polar orbiting
satellite were proposed to create hourly Landsat-like LST data
recently [58], [59]. It is noteworthy that fusing microwave LST
and thermal infrared LST to generate all-weather and seamless
LST products, which can promote spatiotemporal fusion of LST
for global expansion, and it is a hot topic in recent years as well
[60], [61].

Although spatiotemporal fusion methods for LST have been
developed in recent years, most of which cannot restore the
spatial details of LST, cannot predict the abrupt event, and
cannot reserve the spatial continuous of LST in an urban area
simultaneously [62]. Furthermore, due to the high heterogeneity
of urban areas, the proposed fusion methods for LST were rarely
applied and tested for the urban LST study in the past. The
Flexible Spatiotemporal DAta Fusion (FSDAF) method was
proposed by Zhu et al. [63], which can simultaneously predict
both gradual change and abrupt change events and became one of
the most popular spatiotemporal fusion methods [64], [65], [66].
But in FSDAF, the fine-resolution pixels were regarded as pure
pixels and hard classification was executed for fine-resolution
data, which cause the spatial discontinuity of LST and obvious
boundary lining in the different land cover, and this phenomenon
particularly occurred in urban areas. In addition, for large areas
or long-term studies, the computational time of FSDAF has
exponential growth due to the usage of Thin Plate Spline (TPS)
interpolation. Finally, the distribution of residual in FSDAF was
empirical, which can be further improved.

In this study, a Comprehensive Flexible Spatiotemporal DAta
Fusion (CFSDAF) method was proposed to create a high spa-
tiotemporal resolution LST image in an urban area, which
considers the differences in sensors and reserve the spatial
continuity and spatial details of LST. Specifically, CFSDAF has
the following improvements versus FSDAF:

1) adjust the differences between coarse-resolution LST and
fine-resolution LST using a linear model at a coarse-
resolution scale;

2) consider mixed pixels of fine-resolution LST due to the
high heterogeneity in urban areas by introducing the
visible and near-infrared images of a fine resolution,
which can reserve spatial continuity of LST in an urban
area;

3) employ inverse distance weighting (IDW) interpolation
instead of TPS interpolation in FSDAF to improve the
computational efficiency;
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4) combine temporal increments and spatial increments at a
fine-resolution scale through the constrained least squares
(CLS) theory to better distribute residuals.

The performance of CFSDAF was tested and evaluated in two
urban sites including heterogeneous area and land cover change
regions with STARFM and FSDAF, which are popular fusion
methods and are expediently executed for free codes.

II. METHODOLOGY

A. Some Notations for CSFDAF

1) TB /TP : base date TB and prediction date TP ;
2) AB

F (xij , yij)/A
P
F (xij , yij): abundances of one fine-

resolution pixel on TB or TP ;
3) RB

F (xij , yij ,m)/RP
F (xij , yij ,m): numerical values of

LST for each endmember in one fine-resolution pixel
on TB or TP ;

4) nm: the number of endmembers;
5) FB(xij , yij)/ FP (xij , yij) : numerical values of a fine-

resolution LST image on TB or TP ;
6) N : the number of fine-resolution pixels in one coarse-

resolution pixel;
7) (xi, yi)/(xij , yij): coordinate of one coarse-resolution

pixel and coordinate of fine-resolution pixels in one
coarse-resolution pixel;

8) ΔC(xi, yi)/ΔF (xij , yij): Change values for coarse-
resolution pixel and fine-resolution pixel from TB to TP ;

9) ΔRC(xi, yi,m)/ΔRF (xij , yij ,m) : Change values of
endmembers for one coarse-resolution pixel and fine-
resolution pixels from TB to TP ;

10) AB
C(xi, yi) : abundances of one coarse-resolution pixel

on TB .

B. CFSDAF

The proposed CFSDAF method first adjusts the differences
in different resolution LST and then considers mixed pixels of
a fine-resolution LST image in an urban area by introducing
visible and near-infrared image with fine resolution for perform-
ing soft classification to obtain the endmembers’ abundances
of a fine-resolution image, and the predicted images by CFS-
DAF reserve more spatial details and spatial continuity of LST.
In addition, the CFSDAF requires a pair of coarse-resolution
LST image and one fine-resolution LST image on TB and one
coarse-resolution LST image on TP same as FSDAF, as well as
additional fine-resolution visible and near-infrared image onTB .
Abnormal values of coarse-resolution LST and fine-resolution
LST images are corrected because the inversion process of LST
will bring the inevitable outliers before executing the CFSDAF.
The MODIS LST image and Landsat LST image were selected
as coarse-resolution LST and fine-resolution LST to test the
performance of CFSDAF in this study.

The CFSDAF includes the main six steps as follows:
1) adjust the differences between coarse-resolution LST and

fine-resolution LST;
2) extract the endmembers and perform soft classification for

fine-resolution images;

Fig. 1. Flowchart of the proposed CFSDAF.

3) obtain the temporal increments by a spatial unmixing
process;

4) get the spatial increments by IDW interpolation;
5) integrate the spatial increments and temporal increments;
6) get the predicted values by using the information of neigh-

borhood.
The flowchart of the CFSDAF is shown in Fig. 1.
1) Adjust the Differences Between Coarse-Resolution LST

and Fine-Resolution LST: In general, the differences in LST
from different sensors are not only affected by atmospheric
conditions, performance and posture of sensors, and observation
angle [17], which are the same as surface reflectance data,
but also the transit time of different sensors and the inversion
accuracy of LST. For example, the LST image retrieved from
the MODIS image via a generalized split-window algorithm in
which errors can reach 1K under ideal conditions [67], [68], [69],
[70], and the retrieved LST data from Landsat image is based on
single channel algorithm in which the errors will be about 1.5K
under strict condition control [71], [72], and a recent research
finds the retrieved errors from Landsat 5/7/8 LST products can
reach 2–3K [73]. Furthermore, the time difference between
the LST retrieved from different satellite images is about 30
min. For the above reasons, the differences in LST images in
multisources should be corrected, which are the first and crucial
step for CFSDAF. In this article, a linear model is proposed to
normalize the differences between coarse-resolution LST and
fine-resolution LST. Specifically, the fine-resolution LST on
TB upscale to the coarse resolution at first (called upscaled
coarse-resolution LST), then establishing a linear relationship
between the upscaled LST and the coarse-resolution LST, and
last, the linear model is applied to the coarse-resolution LST
image to generate the adjusted coarse-resolution LST image
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on TB and TP . The reason why a linear model is utilized is listed
in Section V-A.

2) Extract the Endmembers and Perform Soft Classification
for Fine-Resolution Image: There has more than one land cover
type for one fine-resolution pixel (e.g., Landsat pixel) because
of strong heterogeneity in an urban area where LST in different
land cover types has disparate values, also called mixed pixel and
it is necessary to resolve the phenomenon of mixed pixel for the
fine-resolution LST image. Landsat image is regarded as the
fine-resolution image in this article because it has more than 40
years of data with fine resolution, which has great significance in
studying the long time series changes of UHI. The endmembers
and endmembers’ abundances extracted from Landsat visible
and near-infrared data can be treated as endmembers and end-
members’ abundances of LST in one Landsat pixel because the
surface reflectance image and LST image have the same spatial
resolution (Landsat LST was resampled to 30 m by NASA) and
the same acquisition time. To generate the long-time synthetic
Landsat-like LST data expediently, a globally representative
spectral linear mixture model (SVD model) for Landsat surface
reflectance image shared by Sousa et al. [74] was chosen as
endmembers for performing soft classification, and the SVD
model includes the substrate (S), vegetation (V), and dark sur-
face (D) three types. A fully CLSs (FCLS) [75] method which is
a linear model, was selected to apply for the soft classification.
The abundances for the Landsat LST image can be calculated
and the sum of abundances equal to 1 for one Landsat LST
pixel, and the range of abundances is from 0 to 1. For other
fine-resolution LST image such as ASTER LST image [76],
extraction of endmembers is the first step. After accomplishing
the above calculation, the abundances of fine-resolution LST
image can be obtained.

3) Obtain the Temporal Increments by Spatial Unmixing
Process: According to the linear mixture theory [77], supposing
that the LST value in one fine-resolution pixel is a linear mixture
with endmembers and endmembers’ abundances of the LST
image, the values of the fine-resolution LST image FT (xij , yij)
on TB and TP can be expressed as follows:

FT (xij , yij) =

nm∑
n=1

AT
F (xij , yij)×RT

F (xij , yij ,m) + ε

with T = B or P (1)

where AT
F (xij , yij) are the abundances of one fine-resolution

LST pixel on TB and TP . RT
F (m) store the endmembers val-

ues of the fine-resolution LST image on TB and TP . nm and
m are the number of endmembers and the mth endmember
separately. Supposing no land cover change from TB to TP ,
and the abundances will not change between TB and TP , i.e.,
AB

F (xij , yij) = AP
F (xij , yij) and ε is constant. The changes in

the fine-resolution LST image ΔF (xij , yij) can be calculated
with

ΔF (xij , yij) = AB
F (xij , yij)×ΔRF (xij , yij ,m) (2)

whereΔRF (m) represent the changes of fine-resolution LST for
each endmember. Similarly, the changes in the coarse-resolution

LST image ΔC(xi, yi) are described with

ΔC (xi, yi) = AB
C (xi, yi)×ΔRC (xi, yi,m) . (3)

AB
C(xi, yi) are the abundances of one coarse-resolution LST

pixel on TB and TP , and AB
C(xi, yi) are obtained by averaging

the endmembers’ abundances of the fine-resolution LST image
in one coarse-resolution LST pixel. But AB

C(xi, yi) in FSDAF
are the ratio between the numbers of each class m for fine-
resolution LST pixels in one coarse-resolution pixel and the total
numbers of fine-resolution LST pixel in one coarse-resolution
pixel. Theoretically speaking, if the ΔRC(xi, yi,m) could be
calculated, ΔRF (xij , yij ,m) will be obtained. Therefore, the
key issue is to resolve ΔRC(xi, yi,m).

The LST in an urban area has strong spatial continuity
compared with the surface reflectance image, and the spatial
distribution of LST presents an irregular pattern because of
the proximity effect of LST in urban areas and the distribution
pattern of human activities. Consequently, assuming the changes
for each class is the same among all coarse-resolution pixels
from TB to TP in FSDAF that is unreasonable and not suitable
for the LST fusion in an urban area. According to the first law
of geography [78] that the near things are more relevant than the
far things, and it is reasonable that ΔRC(xi, yi,m) are the same
in a small area. A sliding window is introduced to establish a
linear model to perform the spatial unmixing process, after our
test in two study areas, the size of a sliding window is designed
5 × 5 MODIS LST pixels, which can gain the optimal fusion
result in urban areas, and it ensures that the linear equation of
spatial unmixing is minimally influenced by collinearity and
land cove type change. The unmixing equation is as follows:
where n is the number of the coarse-resolution LST pixels in the
sliding window. ΔRC(c = 1 . . .m) can be calculated by the
inversion equation (4) shown at the bottom of the next page, and
the changes of endmembers for coarse-resolution pixels can be
obtained.

Because step 1 of CFSDAF has corrected the differences
between coarse-resolution LST data and fine-resolution LST
data, it is reasonable to assign ΔRC(xi, yi,m) to the corre-
sponding ΔRF (xij , yij ,m). The temporal increment for one
fine-resolution pixel is the linear mixture with endmembers’
abundances and the endmembers changes of the fine resolu-
tion, and the temporal increments Δt

F (xij , yij) are calculated
through (5). However, in FSDAF,ΔRC(xij , yij ,m) are directly
assigned to the fine-resolution LST pixels of each class, which
will produce the same change values for each class from TB to
TP in the whole image, and it neglects the within-class variability
of LST in the same land cover type and results in the spatial
discontinuity of LST

Δt
F (xij , yij) = AB

F (xij , yij)×ΔRF (xij , yij ,m) . (5)

4) Get the Spatial Increments by IDW Interpolation: Gener-
ally speaking, the predicted fine-resolution LST image on TP

can be calculated by combining the temporal increments and
the fine-resolution LST image on TB if there have no land cover
changes between TB and TP . However, the land cover types
often change from TB to TP in many cases, and the mutative
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signals of the land cover types can be gained from the coarse-
resolution LST image onTP . In CFSDAF, the IDW interpolation
is introduced to downscale the coarse-resolution LST image
[79]. The general idea of IDW interpolation supposes that the
attribute value of an unsampled point is the weighted average
of known values within the neighborhood, and the weights are
inversely related to the distances between the predicted locations
and the known locations [72]. In CFSDAF, the neighborhoods
of IDW interpolation are set to a window size that is similar to
spatial unmixing, which can ensure the interpolation accuracy
and simultaneously reduce input parameters. IDW interpolation
is applied to downscale the coarse-resolution LST image on TB

and TP , respectively, and to gain the spatial increments from TB

to TP , which are marked as Δs
F (xij , yij). But in FSDAF, the

TPS interpolation is only used for the coarse-resolution on TP

to distribute residual, which may underestimate the contribution
of TPS interpolation [80].

In this article, IDW interpolation is used to obtain spatial
increments instead of the TPS interpolation because of two
main reasons. One reason is that the computational time of
TPS interpolation will increase substantially when the TPS
interpolation is applied to the large areas or long-term studies.
Another reason is that the accuracy of IDW interpolation has
no significant reduction compared with the TPS interpolation,
and the differences in results by IDW interpolation or TPS
interpolation are discussed in Section V-C.

5) Integrate the Spatial Increments and the Temporal In-
crements: The temporal increments and spatial increments are
known as two independent predictions. The former is based
on the spatial unmixing theory that depends on the temporal
changes of LST, and the latter mainly relies on spatial depen-
dence of LST based on IDW interpolation. The predicted results
of temporal increments can reserve the spatial details and spatial
continuity of LST but cannot capture the land cover type change,
and the predicted results of spatial increments can obtain the
information of land cover type changes but cannot retain the
spatial details. Therefore, a reasonable integration of the above
two increments can reserve the spatial details and monitor the
land cover type change simultaneously.

An objective function of weighted increments is introduced
to integrate the two increments, which was used in the IFSDAF
method [80]. The main idea of the weighted method is summing
the weighted spatial and temporal increments, and the combina-
tion is close to the real change of LST as possible. The mathe-
matical formula of the objective function can be expressed as

(ŵt, ŵs) = argmin
(
wtΔ

t
F (xij , yij)

+ wsΔ
s
F (xij , yij)−ΔF (xij , yij)

)

Fig. 2. Difference of CLS process between IFSDAF and CFSDAF.

with wt, ws ∈ (0, 1) wt + ws = 1 (6)

wherewt andws are the weight of temporal increments and spa-
tial increments, respectively. ΔF (xij , yij)are the up-sampled
results of coarse-resolution LST through nearest-neighbor
interpolation, which can be regarded as the real changes of
LST on a fine-resolution scale to some extent. Equation (6)
can be calculated by the CLS method, and wt and ws for
each fine-resolution pixel can be gained. In IFSDAF, the CLS
is executed in a sliding window of the coarse resolution,
which leads to the errors of CLS unmixing when the abrupt
events occur in a small region as follows in Fig. 2, and the
CLS of CFSDAF is implemented for fine-resolution pixels
of one coarse-resolution pixel that ensures the accuracy of
CLS. The final increments ΔF int(xij , yij) from TB to TP for
fine-resolution LST pixels can be calculated as follows:

ΔF int (xij , yij) = wt Δ
t
F (xij , yij) + wsΔ

s
F (xij , yij) (7)

where ΔF int(xij , yij) is the predicted increments by
integrating the temporal increments Δt

F (xij , yij) and the
spatial increments Δt

F (xij , yij) for fine-resolution pixels.
Although the predicted increments of fine-resolution LST by

(6) and (7) can be regarded as the optimal results, they are not
equal to real increments [73]. It has some residuals between
predicted increments and real increments, and the residuals can
be expressed as

r (xi, yi) = ΔC (xi, yi)− 1

N

⎛
⎝ N∑

j = 1

ΔF int (xij , yij)

⎞
⎠ (8)

r(xi, yi) is the residual for one coarse-resolution pixel. N is the
number of fine-resolution pixels in one coarse-resolution pixel,
and j is the jth fine-resolution pixel in one coarse-resolution
pixel. r(xi, yi) for one coarse-resolution pixel can be obtained

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔC (x1, y1)
...

ΔC (xi, yj)
...

ΔC (xn, yn)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

AB
C (x1, y1, 1) AB

C (x1, y1, 2) · · · AB
C (x1, y1,m)

...
AB

C (xi, yj , 1)
...

...
AB

C (xi, yj , 2)
...

...
· · · AB

C (xi, yj ,m)
...

AB
C (xn, yn, 1) AB

C (xn, yn, 2) · · · AB
C (xn, yn,m)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔRC (xi, yi, 1)
...

ΔRC (xi, yi, 2)
...

ΔRC (xi, yi,m)

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)
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by (8), and the final residuals for all fine-resolution pixels in
one coarse-resolution pixel are equal. The final increments from
TB to TP can be calculated by

ΔF fin (xij , yij) = ΔF int (xij , yij) +R (xij , yij) (9)

where ΔF fin(xij , yij) is the final increment. R(xij , yij) is the
residual for one fine-resolution pixel, and theR(xij , yij) is equal
to r(xi, yi) in one coarse-resolution pixel.

6) Get the Final Prediction by Using the Information of
Neighborhood: After calculating the residuals, the final predic-
tion values on TP can be calculated by the following equation:

F̂P (xij , yij) = FB (xij , yij) + ΔF fin (xij , yij) (10)

where F̂P (xij , yij) is the final prediction value. However, due to
the calculation complexity of CFSDAF and calculation ways of
pixel by pixel, and it inevitably causes some calculation errors.
Moreover, step (5) for distributing the residuals is based the
coarse-resolution pixel, which produces the “block effects.” To
solve the above problems, this article adopts the information
of neighborhood to smooth the above predicted results that can
reserve more spatial details, and a specific calculation process
can be found in the STARFM or FSDAF method [25], [63]. The
size of the neighborhood is the same as the spatial unmixing
in step (2), which can reduce the input parameters. The final
prediction of the fine-resolution LST image on TP can be
calculated by

F fin
P (xij , yij) = FB (xij , yij) +

n∑
k=1

wkΔF fin (xij , yij) (11)

where F fin
P (xij , yij) is the predicted fine-resolution LST image

on TP . n is the number of similar pixels for central pixel in a
sliding window, and k is the kth similar pixel. wk is the weight
for kth similar pixel.

III. TESTING DATA

A. Study Area and Data

Beijing and Shenzhen in China were selected as study areas
to test the performance of CFSDAF. Most cities in the world
are located at the low- or mid-latitude regions where large urban
populations are living, and Beijing and Shenzhen are typical
mega cities and seated in the north and south of China, which
have a certain representativeness for assessing the CFSDAF. The
location of two study areas is shown in Fig. 3.

Beijing, as the capital of China, is one of the most popu-
lations in China, with a population of more than 20 million,
where the landscape is highly heterogeneous, and its latitude is
about 40° north. In this study, two pairs of MODIS LST and
Landsat LST were selected to test the CFSDAF, and the dates
of selected images are September 4, 2014, and October 6, 2014.
We designed two groups’ experiments to test the performance
of CFSDAF in Beijing. When the base date is on September 4,
2014, and the prediction date is on October 6, 2014, we called
it a forward prediction, and it can be regarded as a backward
prediction from October 6, 2014, to September 4, 2014. The
MODIS LST images are the MODIS daily surface temperature

Fig. 3. Location of two study areas.

Fig. 4. Experimental data in a heterogeneous area. (a)–(c) Landsat LST image,
MODIS LST image, and Landsat visible and near-infrared image on September
4, 2014; (d)–(f) Landsat LST image, MODIS LST image, and Landsat visible
and near-infrared image on October 6, 2014, in Beijing area, respectively.

product data (MOD11A1), and the resolution is 1000 m, which
can be downloaded from NASA. The Landsat LST images are
a secondary product and downloaded from USGS, which have
been resampled to 30-m resolution. The range of the study area
in Beijing is 40 km × 40 km that contains the main urban area,
and the MODIS LST images and Landsat LST images are listed
in Fig. 4.

Shenzhen, as the demonstration pilot zone of China, its lat-
itude is about 22° north, which was developed from a small
fishing village to international big city in the past 40 years. The
land cover type has changed significantly in Shenzhen in the past,
and Shenzhen was adopted to test the performance of CFSDAF
in abrupt areas. Shenzhen experienced rapid urban expansion
from 2000 to 2003, and the dates of input images are September
14, 2000, January 10, 2003. To better present the signals of land
cover type change, the simulated MODIS-like images were used
as coarse-resolution LST images because some information of
land cover change was inconsistent between MODIS image and
Landsat image, and similar treatments have been adopted in past
fusion methods [49], [63]. Specifically, the 30-m Landsat LST
image was aggregated to 240 m, which can reserve information
of land cover change. Second, the aggregated image added
some certain values, which considered the differences between
MODIS LST image and Landsat LST image, and the simulated
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Fig. 5. Experimental data in an abrupt area. (a)–(c) Landsat LST image,
MODIS-like LST image, and Landsat visible and near-infrared image on
September 14, 2000; (d)–(f) Landsat LST image, MODIS-like LST image, and
Landsat visible and near-infrared image on January 10, 2003, in Shenzhen area,
respectively.

MODIS-like LST can be obtained. The study data of Shenzhen
are listed in Fig. 5.

There have six images for Beijing area or Shenzhen area,
which are two pairs of MODIS LST images, Landsat LST
images, and Landsat visible and near-infrared images on TB and
TP . The Landsat LST image on TP was selected to compare
the fusion results and assess the fusion accuracy. Due to the
heterogeneous landscape in urban areas, the LST of the predicted
image at 30-m resolution is still a mixed pixel. In-situ LST data,
which represent a single landscape on a point scale, was selected
to assess the predicted image in an urban area that has more than
one land cover type is not appropriate. All input images were
corrected and geographically co-registered and clipped the same
size. The scale ratio between MODIS LST image and Landsat
LST image is 32 for Beijing area, and 8 for Shenzhen area. After
the above processing, all input images are ready for CFSDAF
fusion.

B. Comparison and Evaluation

The fusion results obtained from CFSDAF were compared
visually and quantitatively with two popular methods, which
are STARFM and FSDAF, and the above three methods had the
same input images. To further ensure the accuracy and fairness
of the evaluation process, the parameters of STARFM and
FSDAF are consistent with CFSDAF. The average difference
(AD), root-mean-square error (RMSE), correlation coefficient
(CC), Robert’s edge (Edge), and local binary pattern (LBP)
were selected to evaluate the accuracies between the synthetic
Landsat-like LST image and the reference Landsat LST image
on TP . Edge and LBP are considered as the optimal accuracy
index to evaluate the spatial accuracy of fusion results [81].

The closer value of AD or RMSE is 0, and the closer value
of CC is 1. The predicted image is closer to the real image. The
range of Edge or LBP between −1 and 1, and 0 represents the
best fusion result. More negative values indicate edge features
or textural features in the fused image over smoothed; more
positive values indicate edge features in the fused image over
sharpened.

Fig. 6. Visual comparison between reference images and the fusion images
by STARFM, FSDAF, and CFSDAF for the heterogeneous area in Beijing (the
upper part of the black line is called forward prediction and the lower part is
backward prediction). (A) Original Landsat LST image of October 6, 2014,
and the predicted LST image by STARFM (B), FSDAF (C), and CFSDAF (D),
the corresponding lowercase (a)–(d) are the enlarged black box in the figure.
(E) Original Landsat LST image of September 4, 2014, and the predicted LST
images by STARFM (F), FSDAF (G), and CFSDAF (H), the corresponding
lowercase (e)–(f) are the enlarge red box in the figure.

IV. RESULTS

A. Visual Comparison Between the Predicted Images and
Reference Images in Two Experiment Regions

The first experiment area was selected to evaluate the perfor-
mance of CFSDAF for the heterogeneous area in Beijing. Fig. 6
exhibits the fusion images of two groups’ experiments (forward
prediction and backward prediction) by STARFM, FSDAF, and
CFSDAF. The visual comparisons between the predicted images
and reference images were adopted to judge the quality of fusion
results through three methods. It is apparent that the predicted
images by STARFM [see (B) and (F) in Fig. 6] were inferior to
the predicted images by FSDAF [see (C) and (G) in Fig. 6] and
CFSDAF [see (D) and (H) in Fig. 6] compared with the reference
images [see (A) and (E) in Fig. 6], and the predicted images
by STARFM cannot reserve the spatial details and smooth the
boundaries of different land cover type. Spatial distributions of
the predicted images by FSDAF and CFSDAF for two groups
of experiments are closer to the reference images. To better
present the differences between the three fusion methods in
the heterogeneous area, we enlarged the black box for forward
prediction and the red box for backward prediction to exhibit
more spatial details. Compared Fig. 6(a) with Fig. 6(b)–(d),
it is obvious that spatial details of ground objects cannot be
preserved using STARFM [see Fig. 6(b)], and the predicted
image by FSDAF [see Fig. 6(c)] cannot obtain the puny river
but CFSDAF can capture the puny river and more spatial details,
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Fig. 7. Visual comparison between reference images and the fusion images
by STARFM, FSDAF, and CFSDAF for the abrupt area in Shenzhen (the upper
part of black line is called forward prediction and the lower part is backward
prediction). (A) Original Landsat LST image of January 10, 2003, and the
predicted LST images by STARFM (B), FSDAF (C), and CFSDAF (D), the
corresponding lowercase (a)–(d) are the enlarged black box in the figure. (E)
Original Landsat LST image of September 14, 2000, and the predicted LST
images by STARFM (F), FSDAF (G), and CFSDAF (H), the corresponding
lowercase (e)–(f) are the enlarged red box in the figure.

and spatial continuity of LST. From the dashed black ellipse of
Fig. 6(c) and (d), there is no obvious change from the puny river
to side in FSDAF, mainly due to the FSDAF does not consider the
intraclass variability. And CFSDAF can retain the spatial details
and spatial continuity. Compared Fig. 6(e) with Fig. 6(f)–(h),
we find the same spatial distribution pattern with Fig. 6(a)–(d),
and FSDAF cannot capture the boundary of the puny river and
spatial details. From the dashed red ellipse of Fig. 6(g) and (h),
FSDAF overestimates LST of the ground object, and CFSDAF
is closer to the reference image. As a result, the CFSDAF is
better than FSDAF and STARFM in heterogeneous areas from
forward prediction and backward prediction, and the fusion
images by CFSDAF can retain more spatial details, distinguish
the boundaries of different land cover type, reserve the puny
spatial features.

The second experiment area in Shenzhen was adopted to
test the performance of CFSDAF for an abrupt event, where
experienced rapid urbanization and the land cover types have
changed from vegetation to built-up areas. Fig. 7 shows the
fusion results by STARFM, FSDAF, and CFSDAF. From the
visual comparison, the two experiments including forward pre-
diction and backward prediction exhibit that STARFM [see (B)
and (F) in Fig. 7] cannot reserve more spatial details compared
with FSDAF [see (C) and (G) in Fig. 7] and CFSDAF [see
(D) and (H) in Fig. 7], and the predicted images by FSDAF

TABLE I
ACCURACY ASSESSMENT OF THE STARFM, FSDAF, AND CFSDAF IN TWO

EXPERIMENTAL AREAS

and CFSDAF are closer to the actual images. Meanwhile, the
predicted image [see (C) in Fig. 7] by FSDAF cannot reserve
spatial details and have much “noise point,” which is mainly
caused by the lack of intraclass variability in FSDAF. The
black box from [see (A)–(D) in Fig. 7] is enlarged to exhibit
more spatial details, where land cover types have changed.
From Fig. 7(a) to (d), the predicted image by STARFM [see
Fig. 7(b)] cannot distinguish the boundaries of different land
cover types and cannot accurately retain the abrupt area, and
FSDAF and CFSDAF can capture abrupt information to some
extent, which is mainly due to the interpolation process for
the coarse-resolution image on TP . From the enlarged area of
Fig. 7(e)–(h), the predicted image by STARFM cannot capture
the spatial details and FSDAF cannot reserve spatial continuity,
and the predicted image by CFSDAF is basically consistent with
the reference image in terms of spatial distribution.

B. Quantitative Evaluation Between the Predicted Images and
Reference Images

The quantitative evaluation of fusion images in two study
areas is listed in Table I, each study area has two pair experiments
including forward prediction and backward prediction. Five
assessment indices including AD, RMSE, CC, Edge, and LBP
are selected to compare the fusion images by STARFM, FSDAF,
and CFSDAF separately.

For the assessment indices in Beijing area, all assessment
indices suggest that CFSDAF is superior to STARFM and FS-
DAF. Specifically, CFSDAF has the smaller AD, RMSE, and
higher CC compared with STARFM and FSDAF. For forward
prediction, the CFSDAF is slightly better than STARFM and
FSDAF. But for backward prediction, there have obvious differ-
ences for STARFM, FSDAF, and CFSDAF (AD 1.416 versus
1.117 and 0.920, RMSE 1.794 versus 1.399 and 1.176, CC 0.807
versus 0.893 and 0.902). The metrics of Edge and LBP also
clearly demonstrate that CFSDAF is much better than FSDAF
and STARFM regarding the spatial details (Edge −0.063 versus
−0.1124 versus −0.3803 for forward prediction and −0.2253
versus −0.2928 versus −0.4215 for backward prediction). For
Shenzhen area, whether forward prediction or backward predic-
tion, four indices suggest that CFSDAF is superior to STARFM
and FSDAF from assessment metrics of AD, RMSE, and CC.
Moreover, we find the fusion accuracies of FSDAF are lower
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Fig. 8. Scatter plots of predicted Landsat-like LST and reference Landsat LST
in Beijing area. (a)–(c) Forward prediction. (d)–(f) Backward prediction. Results
by (a) and (d) STARFM, (b) and (e) FSDAF, and (c) and (f) CFSDAF.

than STARFM, which is mainly due to the FSDAF lack of
intraclass variability and in turn produces much “noise.” For
AD, the CFSDAF has an approximate 0.36 K reduction over
FSDAF and 0.2 K reduction over STARFM for forward predic-
tion, and 0.24 K reduction and 0.16 K reduction for backward
prediction. The obvious improvements are also available from
RMSE (1.482 versus 1.671 and 1.290 for forward prediction,
1.714 versus 1.816 and l.535 for backward prediction), and CC
(0.817 versus 0.725 and 0.837, 0.892 versus 0.873 and 0.893).
Meanwhile, we find that Edge for CFSDAF is better than FSDAF
from the forward prediction (−0.2489 versus −0.2893) and is
slightly worse than FSDAF (0.2465 versus −0.2268), but LBP
for CFSDAF is almost identical with FSDAF from forward
and backward predictions. From the spatial accuracy (Edge
and LBP), CFSDAF is better than FSDAF and far better than
STARFM in Beijing, but the CFSDAF and FSDAF are basically
the same in Shenzhen, and both are better than STARFM. The
above differences between the two regions are mainly since the
heterogeneity of Beijing is stronger than that of Shenzhen, which
further indicates that the CFSDAF can better retain spatial details
in regions with strong heterogeneity.

Figs. 8 and 9 show the Scatter plots of predicted Landsat-like
LST and reference Landsat LST in Beijing area and Shenzhen
area, separately, and (a)–(c) are the forward prediction and
(d)–(f) are the backward prediction. It is distinctly seen that
the predicted results by CFSDAF are better than FSDAF and
STARFM whenever forward prediction or backward prediction
in Beijing or Shenzhen area, where more values are concentrated
on the side of the black line (also called a balanced line) from
Figs. 8 and 9.

C. Spatial Distribution of Errors for Predicted LST Images

Figs. 10 and 11 present the distribution errors in Beijing and
Shenzhen area separately. (a)–(d) represent the distribution er-
rors of forward prediction, and (e)–(f) are backward predictions
for Figs. 10 and 11. The distribution errors are regarded as

Fig. 9. Scatter plots of predicted Landsat-like LST and reference Landsat
LST in Shenzhen area. (a)–(c) Forward prediction. (d)–(f) Backward prediction.
Results by (a) and (d) STARFM, (b) and (e) FSDAF, and (c) and (f) CFSDAF.

Fig. 10. Distribution errors of the predicted images for three fusion methods
in Beijing area. (a)–(d) Forward prediction. (e)–(f) Backward prediction. From
left to right in the figure, there are distribution errors of (a) and (e) STARFM,
(b) and (f) FSDAF, and (c) and (g) CFSDAF, and (d) and (h) the corresponding
of False color image.

Fig. 11. Distribution errors of the predicted images for three fusion methods in
Shenzhen area. (a)–(d) Forward prediction. (e)–(f) Backward prediction. From
left to right in the figure, there are distribution errors of (a) and (e) STARFM,
(b) and (f) FSDAF, and (c) and (g) CFSDAF, and (d) and (h) the corresponding
of False color image.
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TABLE II
AREA PERCENTAGE OF DISTRIBUTION ERRORS FOR THREE PREDICTED LST
IMAGES BY STARFM, FSDAF, AND CFSDAF AT FOUR ERROR LEVELS IN

BEIJING AREA

the absolute errors between the predicted images and reference
images on TP , which can reveal the spatial distribution of errors
for different land cover types, and it is useful to study spatiotem-
poral variations of UHI. The distribution errors of predicted LST
images are classified into four levels: 1) 0–1K, 2) 1–2K, 3) 2–3K,
and 4) >3K.

For the distribution errors map of Beijing area in Fig. 10, it
can be seen intuitively that there have significant differences in
the spatial distribution of errors between three fusion methods
from forward prediction. The prediction accuracy of CFSDAF
in urban regions is significantly better than that of STARFM
and FSDAF, which have more green pixels. For backward
prediction, the proportion of absolute errors with less than 1K
for CFSDAF is significantly larger than that for STARFM and
FSDAF, especially in urban region. In addition, the proportion
of errors greater than 2K for STARFM is greater than that
for FSDAF and CFSDAF, and the proportion of errors greater
than 3K for CFSDAF is the lowest. Table II shows the area
percentage of distribution errors for three predicted LST images
in Beijing area. There is about 62.8% area under 1K for CFSDAF
from the forward prediction, which has some improvements
as compared to FSDAF with 4.6% and STARFM with 6.1%.
similarly, the proportion of less than 1K is significantly dif-
ferent among the three methods (47.5% for STARFM versus
51.9% for FSDAF and 62.2% for CFSDAF) from backward
prediction.

For the distribution errors map of Shenzhen area in Fig. 11,
whether for forward prediction or backward prediction, the
proportion of absolute errors with less than 1K for CFSDAF is
higher than STARFM and FSDAF, and the spatial distribution of
that is discretely distributed. For forward prediction, the propor-
tion of less than 1K for STARFM is greater than that in FSDAF,
and the percentage greater than 2K in FSDAF is significantly
more than that in STARFM. For backward prediction, there has
more proportion of greater than 2K in FSDAF and STARFM
than in CFSDAF, and the absolute errors of CFSDAF with less
than 1K is the largest for the three fusion methods. Table III
shows the area percentage of distribution errors in Shenzhen
area. Intuitively, the proportion of less than 1K for CFSDAF is
the highest (56.4% and 52.4%), followed by STARFM (44.3%
and 46.1%) and FSDAF (39.6% and 43.3%). It can be seen from
Table III that the percentage of larger than 3K in STARFM (3%

TABLE III
AREA PERCENTAGE OF DISTRIBUTION ERRORS FOR THREE PREDICTED LST
IMAGES BY STARFM, FSDAF, AND CFSDAF AT FOUR ERROR LEVELS IN

SHENZHEN AREA

and 8.3%) and FSDAF (6% and 9.7%) are higher than CFSDAF
(2.1% and 5.6%).

V. DISCUSSION

A. Improvements of CFSDAF Compared With FSDAF

The experiment results of two study areas in Section IV show
that the CFSDAF outperforms FSDAF for LST fusion, which is
mainly due to the following reasons.

First, the differences between coarse-resolution LST images
and fine-resolution LST images were adjusted by introducing
a simple linear model at a coarse-resolution scale. Compared
with the surface reflectance data, the LST image has two unique
characteristics. One characteristic is that the LST will change
significantly over time, which leads to obvious differences in
LST images obtained by different sensors at different times.
Another is that the LST image is retrieved from thermal infrared
data, and different inversion methods for the LST image will
generate diverse results. Therefore, correcting the differences
between coarse-resolution LST and fine-resolution LST is the
first step and key step. The main reasons for choosing a lineal
model rather than a nonlinear model in this study are as follows.
One reason is that an appropriate nonlinear model is difficult to
choose to fit the differences in LST with different resolutions.
Another reason is that even if the nonlinear model can achieve
a good fitting effect on TB , applying the model to the adjust-
ment between coarse-resolution LST and fine-resolution LST
on TP , which will bring about greater errors. Due to the LST
of fine-resolution pixels in an urban area is the mixed result
with different land cover types, previous study that adjusting
the differences based on land cover classification map at fine
resolution [39], which may lead to discontinuity of LST at the
boundaries of different land cover type. Meanwhile, if the land
cover map changes or is misclassified, and some errors will be
caused.

Second, the visible and near-infrared image of the fine res-
olution was introduced to perform soft classification, which
considered the mixed pixel of the fine-resolution LST image in
an urban area, and the predicted LST images can reserve more
spatial details and spatial continuity. Specifically, the visible and
near-infrared image was used to extract endmembers and exe-
cute spectral unmixing, to gain the abundance of fine-resolution
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image. Then, the abundances of fine-resolution image were
aggregated to generate abundances of coarse-resolution LST
data. At last, the CLS was carried out for spatial unmixing in
a moving window to get the temporal increments because the
LST has the spatial continuity. However, the FSDAF considers
fine pixel as pure pixel and execute hard classification, which
ignore the mixed pixel in the heterogeneous area and does not
consider the within-class variability, and the fusion results of
FSDAF will be further away from the actual results when the
classification map has some errors. Hence, the fusion images
by FSDAF have much “noise” or “patch,” which cannot retain
spatial continuity and spatial details of LST. Moreover, for the
unmixing process of FSDAF, the k-purest coarse pixels in the
whole image were selected to perform spatial unmixing, where
the way of selecting the purest pixels is empirical and not strict
[49], [82], and it ignores the spatial variability of LST.

Third, IDW interpolation was introduced to replace TPS in-
terpolation. Although the TPS interpolation has higher interpo-
lation accuracy than IDW interpolation [63], the computational
efficiency of IDW interpolation is faster than TPS interpolation,
especially for large areas or long-term studies. The time com-
plexity of IDW interpolation is O (n3), and the TPS interpolation
is O(n) [50]. Therefore, there has a tradeoff between accuracy
and efficiency for the actual application. Moreover, the TPS
interpolation for FSDAF was only used to interpolate coarse-
resolution image on TP , and the interpolated result was selected
to guide the distribution of residuals, which underestimated the
contribution of interpolation results for the final fusion results
[80]. In CFSDAF, the difference values of coarse-resolution
images from TB to TP were interpolated to gain the spatial
increments, the signals of land cover changes can be captured
when there have the land cover changes between TB and TP .

Fourth, the CLS method was selected to combine the temporal
increments and spatial increments. Using the CLS method to
integrate the two increments can preserve the spatial details and
signal of land cover change simultaneously. Furthermore, it has
been found that the contribution of spatial increments for final
fusion results is more than the temporal increments to some
extent [80]. Accordingly, the scale between coarse-resolution
image and fine-resolution image should be relatively small,
which can ensure the interpolation result with more accuracy
and, in turn, improve the final fusion precision. However, in
FSDAF, a homogeneity index HI was introduced to distribute
residuals, which is based on the map classification on TB . When
there is the land cover change or misclassification, more errors
will be introduced, and the misclassification map for LST is very
common because the classification map is based on one band of
LST.

B. Influences of Scale Between MODIS LST and Landsat LST

There has a common phenomenon that the resolution of
the thermal infrared sensor is lower than the visible and near-
infrared sensor for the same satellite (e.g., MODIS LST pixel is
1000 m, surface reflectance of MODIS pixel is 250 or 500 m). In
many cases, the urban surface changes happen in a small area,
which is difficult to be captured within the resolution of 1000

Fig. 12. Land cover type differences in MODIS pixels at different resolutions.

Fig. 13. Differences in fusion images by using the 1000-m MODIS-like LST
image and the 250-m MODIS-like LST image. (a) and (b) Landsat LST image
on TB (September 14, 2000) and on TP (January 10, 2003); (c) and (d) fusion
image by using the 1000-m MODIS-like LST image and the 250-m MODIS-like
LST image separately. (e) and (f) Zoom-in areas of black block in (a) and (d).

m. As shown in Fig. 12, A and B are two MODIS pixels with
1000-m resolution, and A is a pixel with land cover change, but
B is a pixel without land cover change. Nevertheless, when the
resolution of MODIS pixel with1000 m is downscaled to 250 m,
A1 becomes the pixel without land cover type change and the B4
is a changed pixel. Accordingly, the downscaled MODIS image
can accurately reserve more spatial information and monitor
the small changes, especially for the boundary of different land
cover types. Some scholars have discussed the differences in
fusion results between MODIS LST pixels without downscaling
and downscaled MODIS LST pixels [83], the results show that
the latter has more accuracy than the former.

In this section, the simulative MODIS-like LST image with
1000 m by upscaling the Landsat LST image to execute CFSDAF
with 30-m Landsat LST image and to compare the predicted
image by using a 250-m MODIS-like LST image and then
evaluate the impact of downscaling the coarse-resolution LST
image on fusion result. Fig. 13(a) and (b) shows the Landsat
LST images on TB (September 14, 2000) and TP (January 10,
2003), and Fig. 13(c) and (d) shows the fusion images by using
a 1000-m MODIS-like LST image and a 250-m MODIS-like
LST image separately. Intuitively, there is no obvious difference
between Fig. 13(c) and (d). When we enlarge the black block
from Fig. 13(a)–(d), it can be seen from the red block of zoomed
area in Fig. 13(e)–(f) that the area of lake decreases from TB

to TP , and the fusion results indicate that only using a 250-m
MODIS LST image for fusion can capture this change, which
mainly due to the MODIS-like LST with 250-m resolution can
reserve the more spatial details that are the changed lake area
compared with 1000-m resolution MODIS-like LST.
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Fig. 14. Quantitative comparison of the LST fusion results under different
levels of resolution ratio between the MODIS LST image and the Landsat LST
image in Shenzhen area. There are AD, RMSE and CC from left to right (above
for forward prediction, below for backward prediction).

Furthermore, downscaling the 1000-m MODIS LST image to
the 250-m resolution can narrow the resolution ratio between
MODIS LST pixel and the Landsat LST pixel (the resolution
ratio from 32 to 8), which can improve the accuracy of IDW
interpolation and further enhance the final predicted result. In
this section, we upscale the Landsat LST image to generate the
MODIS-like LST image with 250-, 500-, 1000-m resolution,
where the resolution ratios between MODIS-like LST pixel and
Landsat LST pixel are 8, 16, and 32, separately, to analysis the
sensitivity of CFSDAF to the resolution ratio. In Fig. 14, it can be
concluded that the fusion accuracies (from AD, RMSE, and CC)
of CFSDAF are better than FSDAF in different resolution scales,
whether there is the forward prediction or backward prediction.
Meanwhile, with the improvements of the resolution ratio (from
32 to 8), the change ranges of the four indices in CFSDAF are
greater than that in FSDAF, and when the resolution ratio goes
from 32 to 8, the differences between CFSDAF and FSDAF
gradually increases from AD and RMSE, which shows CFSDAF
is more sensitive to the resolution scale. Consequently, the
downscaling or superresolution technical of LST can be used
to improve the fusion accuracy of LST before executing the
CFSDAF [16], [84].

C. Differences Between CFSDAF-IDW and CFSDAF-TPS

In this study, IDW interpolation was adopted for the CFSDAF
method instead of TPS interpolation. It is necessary to evaluate
the differences between the CFSDAF-based IDW interpola-
tion (CFSDAF-IDW) and the CFSDAF-based TPS interpola-
tion (CFSDAF-TPS) in fusion accuracy and the computational
efficiency. Table IV shows the fusion accuracies of four indices
for CFSDAF-IDW and CFSDAF-TPS in Beijing and Shenzhen.
The fusion accuracies of CFSDAF-IDW are almost the same as
the CFSDAF-TPS in Beijing area, and the fusion accuracies

TABLE IV
COMPARISON OF FUSION ACCURACIES BETWEEN CFSDAF-IDW AND

CFSDAF-TPS IN BEIJING AREA AND SHENZHEN AREA

Fig. 15. Comparation of computational time for CFSDAF-IDW and CFSDAF-
TPS.

of CFSDAF-IDW are slightly lower than the CFSDAF-TPS
in Shenzhen area. Therefore, the puny errors can be ignored
between CFSDAF-IDW and CFSDAF-TPS, but the computa-
tional efficiency of CFSDAF-IDW has been significantly im-
proved. From Fig. 15, the computation time of CFSDAF-TPS
significantly increases as the numbers of coarse pixels increase
gradually. Accordingly, it will be a better choice to choose
the CFSDAF-IDW when handling the data for the large areas
or long-term studies. To facilitate the users’ choice, the IDW
interpolation and TPS interpolation are provided as an option in
the CFSDAF program, but the default is IDW interpolation.

D. Further Improvements of CFSDAF

Although the CFSDAF can reserve spatial details and spatial
continuity of LST and capture the information of Land cover
change for LST fusion, there have some limitations. First, the
input images for CFSDAF are cloud-free and have good quality,
which is difficult to be obtained for most of the areas at low
latitudes. Combining the spatiotemporal reconstruction method
and the spatiotemporal fusion method could be an effective way
to generate all-weather data for most areas of the world [29].
Second, due to the fusion accuracy of CFSDAF affected by
spatial increments to a large extent, the resolution ratio between
the coarse-resolution LST and fine-resolution LST should not
be large. Considering the large resolution scale between the
MODIS LST image and the Landsat LST image, we suggest
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integrating the downscaling of the MODIS LST image and
spatiotemporal fusion to achieve higher fusion accuracies for
LST. Third, the linear model used to adjust the difference of
coarse-resolution LST and fine-resolution LST may bring in
large errors if the time interval between base date and prediction
date is too large. The code of CFSDAF can be found on the URL:
https://github.com/max19951001/CFSDAF.

VI. CONCLUSION

This study proposed a CFSDAF method for LST fusion in
an urban area, which first adjusted the differences between
coarse-resolution LST and fine-resolution LST at a coarse-
resolution scale. Then, it considered the mixed pixel of the
fine-resolution LST image (e.g., Landsat image) by introducing
surface reflectance data of the Landsat image for performing soft
classification, and the predicted images by CFSDAF can restore
more spatial details and spatial continuous of LST. IDW inter-
polation was adopted to replace TPS interpolation in FSDAF,
which greatly improved the computational time of CFSDAF for
large areas or long-term studies and ensured the fusion precision
as well. Moreover, the CLS method was selected to combine the
temporal increments and spatial increments at the fine-resolution
scale to take advantage of both increments, and the final fusion
results can reserve the spatial details of LST and monitor the
LST in abrupt areas simultaneously.

Beijing and Shenzhen are selected to test the performance
of CFSDAF for LST fusion in heterogeneous and abrupt area,
and the experiments of two areas show that the LST images by
CFSDAF are more accurate than the other two fusion methods
(STARFM and FSDAF) from the visual comparison and quan-
titative assessment. Moreover, the computational efficiency of
CFSDAF is better than FSDAF. In addition, the accuracies of
CFSDAF are influenced by the resolution ratio between coarse-
resolution LST and fine-resolution LST, and we recommend
shrinking the resolution ratio of two sensors before executing
spatiotemporal fusion to improve the accuracy of the predicted
image.

Although the CFSDAF is originally developed for LST fusion,
it has the potential to fusion other products such as surface
reflectance or vegetation index, and we also call for more testing
of CFSDAF by using other sensors such as VIIRS LST and
SLSTR LST.
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