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MSLAENet: Multiscale Learning and Attention
Enhancement Network for Fusion Classification of

Hyperspectral and LiDAR Data
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Abstract—The effective use of multimodal data to obtain ac-
curate land cover information has become an interesting and
challenging research topic in the field of remote sensing. In this
article, we propose a new method, multiscale learning and attention
enhancement network (MSLAENet), to implement hyperspectral
image (HSI) and light detection and ranging (LiDAR) data fusion
classification in an end-to-end manner. Specifically, our model con-
sists of three main modules. First, we design the composite attention
module, which adopts self-attention to enhance the feature repre-
sentations of HSI and LiDAR data, respectively, and cross-attention
to achieve cross-modal information enhancement. Second, the pro-
posed multiscale learning module combines self-calibrated con-
volutions and hierarchical residual structure to extract different
scales of information to further improve the representation ca-
pability of the model. Finally, the attention-based feature fusion
module fully considers the complementary information properties
between different modalities and adaptively fuses heterogeneous
features from different modalities. To test the performance of
MSLAENet, we conduct experiments on three multimodal remote
sensing datasets and compare them with the state-of-the-art fusion
model, which demonstrates the effectiveness and superiority of the
model.

Index Terms—Attention mechanism, fusion classification,
hyperspectral image (HSI) and light detection and ranging
(LiDAR) data, multiscale feature, self-calibrated convolutions.
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I. INTRODUCTION

LAND cover classification has important applications in
the fields of agricultural monitoring, production layout,

and urban planning. Compared with traditional ground survey
methods, remote sensing technology can acquire land cover
information with a broader perspective and faster speed [1].
With the continuous development of remote sensing sensor tech-
nology, multiplatform and multimodal remote sensing data for
the same area are continuously generated, making it possible to
use multisensor data to jointly describe land cover information.
Different sensors can provide remote sensing data with different
advantages and complementary characteristics, for example, hy-
perspectral image (HSI) can achieve simultaneous acquisition of
spatial and spectral information for the observed targets and are
now widely used in land cover classification tasks, but the strong
spectral resolution and weak spatial resolution characteristics
presented by HSI to some extent limit a large number of applica-
tions oriented to spatial resolution and sensitive characteristics
of radiation information [2]. Unlike HSI, light detection and
ranging (LiDAR) images are acquired through active sensing
techniques, are less subject to atmospheric interference, contain
rich height and shape information, and can provide comple-
mentary information for HSI images [3]. Therefore, the land
cover classification effect can be further improved by combining
different modal remote sensing data and making full use of the
complementary advantages of multisource information.

In order to extract effective information from multisource
remote sensing data and perform classification, scholars have
proposed many methods. Filtering approaches is an early and
commonly used method to fuse multimodal remote sensing data
for classification, which effectively extracts contextual and spa-
tial features from remote sensing images by reducing redundant
spatial information, and uses these features to complete the
classification task [4]. Typical filtering approaches algorithms
are morphological profiles (MPs) [5], attribute profiles (APs)
[6], and extinction profiles (EPs) [7]. Liao [8] et al. used MPs
to extract HSI and LiDAR data features, used support vec-
tor machines for feature-level classification, and finally joint
decision-level fusion for classification. Ghamisi [9] et al. used
Aps to extract spatial features from HSI and LiDAR data,
and achieved better classification results by concatenating the
extracted features. To further improve the classification effect,
Ghamisi [10] et al. proposed to use EPs to extract spatial features
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in HSI and elevation information in LiDAR data. Another more
commonly used method is based on subspace learning, Liao
et al. [11] proposed a graph-based subspace embedding method
to combine spectral, spatial, and elevation information for clas-
sification; Yan et al. [12] proposed an angle-based discriminant
analysis approach based on Euclidean, classifying multisource
features by composite kernel-based subspace learning. Hong
et al. [13] proposed a cross-modal feature learning framework
based on a common subspace to achieve joint classification of
HSI and multispectral image (MSI). Although these traditional
shallow models are successfully applied in multimodal remote
sensing classification, the above methods usually choose shallow
algorithms such as support vector machines [14] and random
forests [15] as classifiers, and their intrinsic relationships are
more complex due to the different ways of imaging for multi-
modal remote sensing data, which makes it difficult for shallow
algorithms to use these features in an integrated way, caus-
ing the traditional feature-level fusion classification methods
to exhibit some shortcomings. For example, HSI contain very
complex information and have nonlinear characteristics, the
traditional feature extraction methods destroy the original spatial
and spectral structure in the image, making it difficult to extract
these features comprehensively, thus ignoring a large amount of
implicit and effective information. In addition, the number of
features of HSI is large, and if combined with the features of
multisource remote sensing data, it will lead to an even larger
feature scale.

In recent years, deep learning techniques have been widely
used in the field of computer vision and have shown excellent
feature extraction capabilities, so some researchers have started
to apply them to the field of remote sensing [16], [17]. Many
studies have shown that deep learning has achieved remarkable
results in the fields of single-source remote sensing image (e.g.,
HSI, MSI, LiDAR, etc.) classification [18], [19], [20], semantic
segmentation [21], [22], and super-resolution [23]. In order
to fully utilize the complementary information of multimodal
remote sensing images, many excellent deep learning methods
have been proposed, and typical models include convolutional
neural networks (CNN), recurrent neural networks, and autoen-
coder networks. Among them, since CNN can better extract
features from 2-D image data, many researchers have adopted
CNN as the backbone model for classification of multimodal
remote sensing data. Chen [24] et al. first used two-branch
CNN to extract features from MSI/HSI and LiDAR data, re-
spectively, and stitched these heterogeneous features to achieve
joint classification of multisource remote sensing data. Based on
the two-branch network, in order to achieve joint HSI-LiDAR
classification, Feng [25] et al. introduced residual connection
and adaptive fusion mechanism in the network. Xu [26] et al. de-
signed a CNN with cascaded blocks, Hang [27] et al. proposed a
coupled CNN network to reduce model complexity and improve
classification performance through weight sharing. Zhang [28]
et al. designed an unsupervised feature extraction framework
based on CNN, some scholars also introduced 3DCNN in the
HSI branch to better extract the spatial spectral information of
HSI [29]. Different from the CNN approach, Hong [30] et al.
built a deep network based on autoencoder for classification

of hyperspectral and LiDAR data. Although these methods can
achieve better classification results compared to shallow algo-
rithms, they still suffer from limited feature extraction and insuf-
ficient utilization of complementary information. To solve this
problem, many methods based on attention mechanisms have
been proposed. FusAtNet [31] uses self-attention to enhance the
feature representation of each modal data and cross-attention to
assign the spatial mask of LiDAR to HSI, enhancing the spatial
feature representation of HSI by LiDAR data. A3 CLNN [32]
constructs a spatial, spectral, and multiscale attention mech-
anism and designed an efficient fusion strategy to fully fuse
multisource data features.

However, there are still some problems with HSI-LiDAR
fusion classification. First, in complex scenes, multiscale in-
formation is crucial to the representation of multimodal data,
while existing studies pay less attention to multiscale infor-
mation and have limitations in extracting multiscale features
in remote sensing images. Second, how to further accurately
extract spectral and spatial information from HSI and LiDAR
data by using attention mechanism and fully utilize the spatial
information of LiDAR data in cooperation with HSI, it remains
a question to be further studied. More importantly, the feature
fusion (FF) approach based on simple feature stitching often
fails to achieve better classification performance because it
ignores the complementarity between multimodal data, and this
approach will further increase the feature dimensionality, which
may lead to dimensional disaster.

To address these problems, this article proposes the multiscale
learning and attention enhancement network (MSLAENet),
specifically, the network adopts a two-branch CNN structure,
based on self-calibrated convolutions and hierarchical residual
structure to build a multiscale learning (MSL) module to ex-
tract spectral and spatial information at different scales, which
enriches the feature representation of multisource data, two
attention mechanisms (self-attention and cross-attention) in the
network enhance the spatial and spectral feature representa-
tion and intermodal information interaction in each branch, the
attention-based FF module can better achieve fusion classifica-
tion of HSI and LiDAR data. Experiments are conducted on three
real hyperspectral and LiDAR datasets, and the effectiveness of
the method is demonstrated by comparison with existing models.

In summary, the main contributions of this article are summa-
rized as threefold.

1) To improve the classification performance of multimodal
remote sensing data by using multiscale information, a
MSL module is constructed by combining self-calibrated
convolutions and hierarchical residual networks, which
can extract spatial and spectral information of different
receptive fields and enhance the multiscale information
representation capability of the whole model.

2) Considering the rich spectral and spatial information in
HSI and LiDAR data, composite attention (CA) is con-
structed to obtain enhanced representations of spectral
and spatial. Specifically, the spatial information repre-
sentations in LiDAR data and spectral information rep-
resentations in HSI are adaptively learned and enhanced
by self-attention, and cross-attention is used to achieve
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Fig. 1. Architecture of the proposed dual-channel MSLAENet model.

cross-modal information enhancement (CME) to achieve
complementary utilization of different modal information.

3) A new attention-based FF module is proposed to take
location information into account and fully consider the
information complementarity between two modal data to
achieve efficient fusion of multimodal features.

II. METHODS DESCRIPTION

A. Architecture Overview

The overall framework of the proposed MSLAENet is shown
in Fig. 1, which uses CNN as the backbone network and contains
three layers. Unlike the traditional CNN network, we build
a multiscale feature learning module based on self-calibrated
convolution in the second layer of the network to extract multi-
scale information, and in order to obtain enhanced spectral and
spatial feature representations, we add an attention mechanism
to the network and realize the information interaction between
modalities by CME method. In addition, to avoid the problem
of high feature dimensionality and insufficient FF caused by
traditional FF using concatenation operation, we propose a novel
attention-based FF method that can effectively fuse heteroge-
neous features between different modalities. It is worth noting
that we set the padding and stride parameters of the convolution
operation to keep the feature map size constant during the
operation, and add batch normalization and rectified linear unit
(ReLU) after the convolution operation in each of the three
layers in turn for accelerating training and learning nonlinear
representation.

The input of the network consists of HSI and LiDAR covering
the same area, and fixed-size image blocks are selected for
network training and testing centered on the pixel points to be
classified, and the input of HSI and LiDAR branches can be
expressed as Xh ∈ Rh×w×bh and Xl ∈ Rh×w×bl , the bh and
bl denote the number of HSI and LiDAR bands, respectively,
and h and w represent the height and width of the input image,
respectively. Considering the redundancy of high-dimensional
spectral information in the hyperspectral data, principal compo-
nent analysis is used to reduce the dimensionality of the input
data, and the reduced-dimensional input can be expressed as

X ′
h ∈ Rh×w×bp , p is the number of bands after dimensionality

reduction.

B. CA Module

Inspired by the human vision system, attention mechanisms
have been introduced into computer vision systems, and more
and more deep learning models based on attention mechanisms
have been proposed and improved feature representation in
many research areas (e.g., image classification, object detection,
image generation, etc.) [33]. With the rapid development of deep
learning techniques, attention mechanisms are now widely used
in remote sensing image classification tasks [34], [35], [36]. In
this article, the attention mechanism will be used to guide deep
learning networks to learn more accurate feature representations.

1) Spectral Attention for HSI: HSI contain rich spectral infor-
mation, and the effective use of this spectral information can im-
prove the performance of multimodal remote sensing land cover
classification. At present, a number of attention mechanisms
have been used to enhance the spectral representation of HSI.
But most of them only consider the internal channel information,
thus ignoring the location information. However, in the HSI
classification task, location information is crucial to capture
the structure of the objects. Channel attention with embed-
ded location information, coordinate attention, is a simple and
efficient attention model that captures not only cross-channel
information, but also orientation-aware and location-sensitive
information, which helps the model to locate and identify objects
of interest more accurately [37]. To obtain a more discriminative
representation of spectral information in HSI, we use a spectral
attention model with embedded location information in the HSI
branch. As shown in Fig. 2, this module uses global average
pooling to encode features along the horizontal and vertical coor-
dinate directions for each channel of the input features, allowing
the attention module to capture not only channel information, but
also orientation-aware and position-aware information, which in
turn improves the classification results. The coordinate attention
consists of two steps: coordinate information embedding and
coordinate attention generation.

The first step is coordinate information embedding. Assume
that the output obtained from the HSI branch after layer1 is
Xh1 ∈ Rh×w×c1 . The average pooling kernel of size (h, 1) and
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Fig. 2. Structure of spectral attention module.

(1, w) is used to encode each channel along the horizontal and
vertical directions, respectively, so that the output after encoding
along the horizontal direction is

zh =
∑

0≤i<w

xc
h1(h, i). (1)

Output after encoding along the vertical direction is

zw =
∑

0≤j<h

xc
h1(j, w). (2)

The second step is coordinate attention generation. To make
better use of the representation with global receptive field and
precise location information generated by the coordinate infor-
mation embedding module, the coordinate attention generation
module is designed to generate channel attention map. First,
connecting zh and zw, then use the shared 1× 1 convolution
operation F1 to perform the feature transformation.

f = δ
(
F1

(
[zh, zw]

))
. (3)

“[·, ·]” represents the concatenate operation, δ is the nonlinear
activation function. f ∈ Rc/r×(h+w) is the intermediate feature
map that encodes spatial information in both the horizontal
direction and the vertical direction. r is the reduction ratio
for controlling the block size. f is then split along the spatial
dimension into fh ∈ Rc/r×h and fw ∈ Rc/r×w, by using two
1× 1 convolution Fh and Fw to expand the number of channels
of fh and fw by r times, so that they are the same number of
channels as xh1

gh = δ
(
Fh

(
fh

))
(4)

gw = δ (Fw (fw)) . (5)

Fig. 3. Structure of spatial attention module.

“δ” is the sigmoid function. Finally, gh and gw are used as
attention weights to calibrate the weight of input xh1. The final
output is

Y = xh1 × gh × gw. (6)

2) Spatial Attention for LiDAR Data: LiDAR data contains
rich elevation information and can convey rich information in the
spatial domain. In this article, we use spatial attention to generate
spatial attention weights to enhance the feature representation
of LiDAR branch. Considering that in the remote sensing image
classification task, the pixels to be classified are often more
correlated with their surrounding pixels due to the limitation of
image resolution, unlike the general spatial attention mechanism
that uses global pooling operation to obtain the attention map,
we use two consecutive convolution operations to obtain more
accurate spatial attention weights. The adopted spatial attention
structure diagram is shown in Fig. 3, assuming that the output
obtained by LiDAR branch after layer1 isXl1 ∈ Rh×w×c1 , the
spatial attention module consists of two convolution operations
and a sigmoid function, which first uses two 3× 3 convolution to
generate a nonnormalized attention map of size h× w × 1 and
then use the sigmoid function to generate the attention weight
map, and finally achieve feature enhancement for input xl1 of
the module by residual skip connections, the process can be
formulated as

w = δ (f1 (f2 (xl1))) (7)

x′
l1 = xl1 × w (8)

where xl1 denotes the output of the spatial attention module,
f1(−), f2(−) and “δ” are two convolution operations and sig-
moid function, respectively.

3) Cross-Modal Enhancement: The rich spatial informa-
tion in LiDAR data can assist HSI to obtain more accurate
classification results. Therefore, we enrich the spatial infor-
mation of HSI through this cross-modal spatial attention en-
hancement mechanism by assigning the attention weights ob-
tained from the LiDAR branch to the HSI branch. Thus, af-
ter the CA module, the output of the HSI branch can be
expressed as

x′
h1 = Y × w. (9)

C. MSL Module

1) Self-Calibrated Convolutions: Traditional CNNs are lim-
ited by the size of predefined convolutional kernels and lack
large receptive fields, which make it difficult to capture enough
high-level semantic information in remote sensing images, thus
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Fig. 4. Illustration of the self-calibrated convolution.

leading to less discriminative feature maps [38]. To obtain
more discriminative feature representations, Liu [39] et al.
proposed self-calibrated convolutions, which differs from the
traditional convolutional uniformly performing convolutional
operations on the original input, self-calibrated convolutions
perform convolutional features transformation on the input data
in two different scale spaces, that is, the original scale space
and the downsampled latent space with larger receptive fields.
This approach allows each spatial location to adaptively encode
contextual information in distant regions, thus breaking the
tradition of performing convolution in small regions (e.g., 3× 3)
to produce more discriminative features.

The workflow of the self-calibrated convolutions is illustrated
in Fig. 4. First, the input feature map X ∈ Rc×h×w is split
into X1 and X2 with size of c/2× h× w, the convolutional
transformations are performed on the pairs X1 and X2 in the
self-calibrated branch and the traditional convolutional branch,
respectively, to collect different types of contextual information.
Then, given four filters {K1, K2, K3, K4}, in the self-calibrated
branch, using {K2, K3, K4} to perform the self-calibration
operation on X1 to obtain Y1; in the conventional convolution
branch, use K1 to performs a simple convolution operation X2

to obtain Y2 = f1(X2) = X2 ∗K1. Finally, the Y1 and Y2 are
concatenated as the final input Y . The self-calibration process
is described as follows.

Given the input X1, we implement downsampling using av-
eraging pooling, expanding the receptive field at each spatial
location.

T1 = AvgPoolr (X1) . (10)

r represents the downsampling rate and strides in the pooling
operation. Next, using K2 perform feature transformation on
T1, and use the bilinear interpolation operatorUp(−) to perform
upsampling by r times, the feature map is restored to the original
scale size

X ′
1 = Up (f2 (T1)) = Up (T1 ∗K2) . (11)

Then, the self-calibration operation can be described as follows:

Y ′
1 = f3 (X1) ∗ δ (X1 +X ′

1) = (X1 ∗K3) δ (X1 +X ′
1)
(12)

Fig. 5. Illustration of the MSL module.

where “·” is element-wise multiplication, and δ(−) represents
the sigmoid activation function. Therefore, the final result of the
self-calibrated branch Y1 can be written as

Y1 = f4 (Y
′
1) = Y ′

1 ∗K4. (13)

2) MSL Module: Different land cover types in remote sensing
images exist at different scale sizes, and representing features
from multiple scales is crucial for multimodal remote sensing
image classification tasks. However, classification models that
use uniform scale to extract features can no longer meet the de-
mand for multiscale information for classification tasks. Inspired
by the Res2Net [40], the hierarchical residual structure can
represent multiscale features at a finer granularity and increase
the receptive field of the network. Self-calibrated convolution
implements feature transformation from different scale spaces
and can obtain a rich feature representation; therefore, this article
combines the idea of hierarchical residuals and self-calibrated
convolution to build a MSL module.

The structure of the MSL module is shown in Fig. 5. Taking the
HSI branch as an example, Let x′

h1 and xh2 denote the input and
output of the MSL Module, for the input x′

h1, first go through
1× 1 convolution for dimensional transformation to get x′′

h1,
then, the feature map x′′

h1 is equally split into m feature subsets
by channel, denoted as x′′

h1i, where i ∈ {1, 2, ...,m}, so that
each feature subset x′′

h1i has the same feature dimension, and
each x′′

h1i corresponds to a self-calibrated convolution operation
Ki, and the output after the Ki transformation is defined as yi,
in order to obtain a larger receptive field, in addition to x′′

h1i,
we add y(i− 1) to x′′

h1i, and then fed into Ki, so that yi can be
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Fig. 6. Illustration of the FF module.

described as

yi =

{
Ki (x

′′
h1i) , i = 1

Ki (x
′′
h1i + yi−1) ,1 < i ≤ m.

(14)

Finally, the outputs yi obtained from each layer are joined
together to obtain Y ′

Y ′ = [y1, y2, ..., ym]. (15)

“[-]” means concatenate operation, to avoid the problem of
gradient disappearance in the network, we add a residual con-
nection to the 1× 1 convolution, map features x′′

h1 obtained
before the hierarchical residual learning module are transferred
to the deeper layers of the network. Thus, the output of the MSL
module xh2 can be expressed as

xh2 = x′′
h1 + Y ′. (16)

D. FF Module

After obtaining the feature representations of HSI and LiDAR
data, how to combine them for classification tasks remains
a critical issue. Most existing approaches choose to use the
concatenate operation to aggregate them together, however, this
approach not only increases the feature dimensionality, but also
ignores the contextual information, making the fusion ineffec-
tive. Inspired by the visual attention mechanism, we propose an
attention-based FF module, as shown in Fig. 6. The FF module
contains three inputs, the xh3 and xl3 denote the HSI features
and LiDAR data features obtained after layer3, respectively.
xhl is the result after doing element-wise summation operation
on HSI and LiDAR data features. As mentioned in Section B,
location information is crucial to the multimodal remote sensing
image classification task, so we use coordinate attention to xhl

to perform feature enhancement. Considering that the direct
summation of two feature maps cannot maximize the interac-
tion between feature maps, inspired by attentional FF [41], in
order to achieve complementary utilization of HSI and LiDAR
data features in the FF stage, we use two 1× 1 convolution
operations f1 that f2, respectively, to reduce the dimension of
xh3 and xl3 to half, and then sum the two modal features in
this low-dimensional feature space, followed immediately by
using a 1× 1 convolution to change the dimension of the feature
map to 1, and then use the sigmoid activation function to obtain
the non-normalized attention map, they are multiplied with the

TABLE I
NUMBER OF TRAINING AND TEST SAMPLES IN EACH CLASS OF THE HOUSTON

DATA

original input, respectively, and added. So far, we can obtain the
feature representation x′

hl that fully considers the relationship
between HSI and LiDAR data features, finally, the features
are normalized by the softmax function and multiplied with
CA(xhl) to obtain the fused features, which contain location
information and maximize feature interaction, This process can
be formulated as:

w = δ (f3 (f1 (xh3) + f2 (xl3))) (17)

x′
hl = w × xh3 + (1− w)× xl3 (18)

xfuse = θ (x′
hl)× CA (xhl) (19)

where δ(−), θ(−) are the sigmoid function and the softmax
function, respectively. CA(−) is the coordinate attention.

III. EXPERIMENTS AND ANALYSIS

A. Data Description

To test the effectiveness of our proposed MSLAENet, we
conducted experiments on three widely used hyperspectral and
LiDAR fusion datasets.

1) Houston Dataset: this dataset was acquired by the Center
for Airborne Laser Mapping, funded by the National Science
Foundation at the University of Houston, in June 2012 in the
University of Houston campus and surrounding area [42]. Both
HSI and LiDAR modal data were included, with a band count of
144 and 1, respectively, both containing 349× 1905 pixels with
a spatial resolution of 2.5 m. There are 15 different classes and
the pseudocolor images of HSI, grayscale maps of LiDAR data
and ground truth maps are shown in Fig. 10(a)–(c), respectively.
Table I shows the detailed classes and the number of samples
used for training and testing for each category.

2) Trento Dataset: This dataset also contains similarly one
HSI and one LiDAR data, collected from a rural area south of
the city of Trento, Italy. HSI data are collected by the AISA
Eagle sensor with 63 bands; LiDAR data are collected by the
Optech ALTM 3100EA sensor. Both types of data contain
166× 600 pixels with a spatial resolution of 1 m, containing
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TABLE II
NUMBER OF TRAINING AND TEST SAMPLES IN EACH CLASS OF THE TRENTO

DATA

TABLE III
NUMBER OF TRAINING AND TEST SAMPLES IN EACH CLASS OF THE MUUFL

DATA

a total of six different classes. Fig. 11 in (a), (b), and (c) shows
the pseudocolor image of HSI, the grayscale map of LiDAR
data, and the ground truth map, respectively. Table II shows the
detailed categories and the number of samples used for training
and testing for each category.

3) MUUFL Dataset: This data was collected over the Univer-
sity of Southern Mississippi Gulf Park, both the HSI and LiDAR
data contain 325 × 220 pixels. HSI initially contained 72 bands,
however, initial and final four bands are removed due to noise
issues, the remaining 64 bands were used for the experiment,
and the LiDAR data contained two bands. There are 11 different
classes and the pseudocolor images of HSI, grayscale maps of
the first band of LiDAR data and ground truth maps are shown in
Fig. 12(a)–(c), respectively. Table III shows the detailed classes
and the number of samples used for training and testing for each
category.

B. Parameter Tuning

Our network is implemented in the Pytorch framework, all
experiments of this article were conduced on a person com-
puter configured with Intel Xeon W- 2133 CPU, 32 GB RAM,
NVIDIA GeForce RTX 2080 graphics card and Windows 10. In
the model training process, Adam algorithm is used to optimize
our network, and cross-entropy is used as the loss function of the
network. Meanwhile, we choose three commonly used evalua-
tion metrics to assess the classification performance, namely
Overall accuracy (OA), Average accuracy (AA), and Kappa
coefficient.

The setting of deep learning network parameters has a great
influence on the model performance. In this section, we will

TABLE IV
OVERALL ACCURACY WITH DIFFERENT VALUES OF M

Fig. 7. Overall accuracy with different input patch size.

discuss the performance of the model by changing the parame-
ters of the network, which include the input patch size (s× s),
the number of principal components (P ), the number of feature
maps (M ), the learning rate (lr). We set the default values of
s, P , M , and lr to 7, 30, {16, 32, 64}, and 0.001, respectively,
when analyzing the effect of a parameter, default values were
taken for the remaining parameters, except as otherwise noted.
We empirically set the default values of batch size and epoch to
64 and 200, respectively.

1) Analysis on the Number of Feature Maps: As shown in
Fig. 1, the proposed model contains three layers, where layer
1 and layer 3 are CNNs and layer 2 is a MSL module. The
parameter M represents the number of feature graphs obtained
after passing through each layer, we determine the optimal
number of feature maps by using four different combinations
of M values. As shown in Table IV, For Houston, Trento, and
MUUFL dataset, the optimal number of feature mappings are
{16, 32, 64}, {16, 32, 64}, and {32, 64, 128}, respectively.

2) Analysis on the Input Patch Size: Different input patch size
contains different amount of information, in order to evaluate the
impact of this parameter on the model performance, we compare
the classification results of different input patch size on three
datasets. For all datasets, we set M as their optimal number of
feature mappings, and we fixed the other parameters as default
values, and considering that too large patch size will increase
the learning time of the network, we selected the value of s
from the candidate set {5, 7, 9, 11} to evaluate the impact of this
parameter. As can be seen in Fig. 7, the size of the input patch has
a significant impact on the model performance, especially on the
Houston dataset. and the optimal patch sizes for Houston, Trento,
and MUUFL dataset are 7× 7, 9× 9, and 7× 7, respectively.

3) Analysis on the Number of Principal Components: The
number of principal components determines the dimensionality
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Fig. 8. Overall accuracy with different number of principal components.

Fig. 9. Overall accuracy with different learning rate.

of the input HSI, and to evaluate the impact of this parameter,
we conduct experiments on three datasets. For all datasets, we
set M and s to the optimal values, respectively, with other
parameters set to default values, and then evaluate the impact of
this parameter by selecting the values of P from the candidate
sets {10, 20, 30, 40}. Fig. 8 shows the overall accuracy achieved
when setting different values of P for different datasets, and it
can be seen that the optimal P values for the Houston, Trento,
and MUUFL dataset are 30, 20, and 20, respectively.

4) Analysis on the Learning Rate: The learning rate of the deep
learning network can guide the network to adjust the weights of
the network through the gradient of the loss function, which
has a large impact on the model performance. To evaluate the
impact of the learning rate on the performance of MSLAENet,
for different datasets, we fix the other parameters as the optimal
values and set the learning rate candidates as {0.0001, 0.0005,
0.001, 0.005, 0.01, 0.05} to select the best learning rate by
experiment. Fig. 9 reports the overall accuracy achieved when
setting different lr values for different datasets. The best learning
rate values for Houston, Trento, and MUUFL datasets are 0.001,
0.005, and 0.005, respectively.

C. Classification Performance

To highlight the superiority of MSLAENet, we selected seven
classification methods for comparison, including two traditional

machine learning algorithms SVM [43] and ELM [44], and five
state-of-the-art deep learning methods, which are the contextual
deep CNN model CDCNN [45], the two-branch CNN model
TBCNN [26], the encoder–decoder structure-based fusion net-
work EndNet [30], dual attention-based spectral spatial fusion
network FusAtNet [31], and spatial-spectral cross-modal en-
hancement network S2Enet [46], Among them, CDCNN net-
work is the classical network used for HSI classification. For
the conventional methods and CDCNN model, we used LiDAR
data and HSI for data layer fusion as the input to the network.
For a fair comparison, we used the same training and test sets in
all methods.

1) Quantitative Comparison: Tables V–VII show the OA, AA,
Kappa, and category accuracies obtained using different meth-
ods on the Houston, Trento, and MUUFL datasets, respectively,
and the bold values in the tables represent the optimal values
of the corresponding rows. From the table, we can draw the
following conclusions.

The performance of deep learning-based methods is gener-
ally higher than the performance of traditional methods, for
example, for Houston, the highest OA value achieved by tra-
ditional methods is 5% lower than the lowest OA achieved by
deep learning methods, which is due to the stronger feature
representation capability of deep learning methods compared
to traditional methods, and the fact that traditional methods fuse
multimodal data at the data level and then input them into the
network for classification, this method cannot effectively fuse
the information across modalities.

Among all deep learning-based methods, our proposed net-
work obtains the best classification performance. Specifically,
for the Houston, Trento, and MUUFL datasets, we achieved
96.47%, 99.33%, and 92.62% OA, respectively, and the AA
and Kappa metrics were higher than the other comparison algo-
rithms. For the Houston dataset, our proposed method achieves a
more significant improvement, the OA is 9.55%, 8.49%, 7.95%,
6.49%, and 2.28% higher compared to CDCNN, TBCNN,
EndNet, FusAtNet, and S2Enet, respectively. Comparing other
methods, it is not difficult to find, the CDCNN method stacks
HSI and LiDAR data as input to the network, and this data-level
fusion ignores the differences between different modal data and
cannot effectively fuse the information of each modality. In
TBCNN, the information of each branch cannot be effectively
fused by a simple feature cascade; The learning ability of en-
coder decoder-based feature representation in EndNet is still
limited; FusAtNet is the first proposal to be used in multimodal
remote sensing classification task using cross-attention approach
to achieve enhancement from one modality to another, and
S2Enet proposes cross-modal interaction learning before FF
to enhance the information representation of each modality.
However, all of them do not consider the multiscale information
in remote sensing images and lack efficient FF methods. On
the one hand, our model fully extracts the spatial and spec-
tral information in multimodal remote sensing data through
the attention mechanism and achieves spatial enhancement of
HSI data through the cross-modal attention mechanism. On
the other hand, the introduction of multiscale information can
extract more scale-related information that helps classification.
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TABLE V
CLASSIFICATION RESULT OBTAINED BY DIFFERENT METHODS ON HOUSTON DATASET

TABLE VI
CLASSIFICATION RESULT OBTAINED BY DIFFERENT METHODS ON TRENTO DATASET

TABLE VII
CLASSIFICATION RESULT OBTAINED BY DIFFERENT METHODS ON MUUFL DATASET

In addition, our proposed fusion method will introduce location
information and fully consider the relationship between HSI and
LiDAR data, which can effectively integrate the complementary
information between different modalities and improve the clas-
sification accuracy.

2) Visual Comparison: In addition, to better demonstrate the
classification performance of different methods, Figs. 10–12
show the classification maps obtained by different classifica-
tion methods using Houston, Trento, and MUUFL datasets,

respectively, and for comparison, we also list the ground truth, in
which different colors represent different land cover types. It is
obvious that the classification maps obtained by MSLAENet
show the fewer error markers, which are more similar to
the corresponding ground truth, especially in Houston, where
the classification accuracy for categories C1, C7, C11, C12,
and C13 far exceeds that of other comparison algorithms,
which further validates the advantages of the model in this
article.
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Fig. 10. Houston data visualization and classification maps obtained by different models. (a) False-color image for HSI using bands 60, 40, and 20 as R, G, and
B, respectively. (b) Grayscale image for LiDAR data. (c) Ground truth. (d) SVM. (e) ELM. (f) CDCNN. (g) TBCNN. (h) EndNet. (i) FusAtNet. (j) S2Enet. (k)
MSLAENet.

Fig. 11. Trento data visualization and classification maps obtained by different models. (a) False-color image for HSI using bands 40, 20, and 10 as R, G, and
B, respectively. (b) Grayscale image for LiDAR data. (c) Ground truth. (d) SVM. (e) ELM. (f) CDCNN. (g) TBCNN. (h) EndNet. (i) FusAtNet. (j) S2Enet. (k)
MSLAENet.

3) Computation Time Comparisons: In general, deep learning
methods tend to require longer time consumption due to the
complex model structure. To quantitatively analyze the compu-
tational cost of different methods, we set the training epoch of all
methods to 200, and we report their training time and testing time
on all datasets in Table VIII. Since the traditional methods have
simple models and less time consumption, we ignore them in our
report. From this table, it can be seen that more complex datasets
tend to require more training time. In addition, the training
process of our MSLAENet takes more time, second only to
FusAtNet among all compared methods, which is because of the
introduction of several attention modules. however, the increase
in time is acceptable because our proposed method achieves the
best classification accuracy.

D. Ablation Study

In order to further evaluate the performance of each module
in MSLAENet, further ablation experiments were carried out. A
CNN network with three layers is used as the baseline network,
and in the baseline network, we fuse HSI features and LiDAR
data features by stacking them. We gradually add CA, MSL,
and FF modules to the CNN network, and the impact of each
module on the network performance was analyzed by different
combinations of modules. Table IX shows the experimental
results obtained with different modules and different combi-
nations of modules on different datasets, and the analysis of
the experimental results shows that the three modules proposed
in this article can improve the classification results to different
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Fig. 12. MUUFL data visualization and classification maps obtained by different models. (a) False-color image for HSI using bands 25, 15, and 5 as R, G, and
B, respectively. (b) Grayscale image for LiDAR data. (c) Ground truth. (d) SVM. (e) ELM. (f) CDCNN. (g) TBCNN. (h) EndNet. (i) FusAtNet. (j) S2Enet. (k)
MSLAENet.

TABLE VIII
COMPUTATION TIME WITH DIFFERENT DEEP LEARNING METHONS ON THREE DATASET

TABLE IX
ABLATION EXPERIMENTS ABOUT DIFFERENT MODULE COMBINATION ON

DIFFERENT DATASETS

degrees, especially. Our FF module can significantly improve the
classification results, and on the Houston, Trento, and MUUFL
datasets, we were able to obtain OA improvements of 1.32%,
0.98%, and 1.07% on the baseline network by adding the FF
module alone. It can obtain better classification performance
than using a single module by further combining these modules,
which also shows that MSLAENet benefits from the combina-
tion of several modules.

TABLE X
ABLATION EXPERIMENTS ABOUT CA MODULE USING DIFFERENT ATTENTION

COMBINATION ON DIFFERENT DATASETS

To test the contribution of each branch attention and cross-
modal enhancement approach in the CA module, we conducted
an ablation study, and the experimental results are shown in
Table X. SpeAtt_H denotes spectral attention for HSI, SpaAtt_L
denotes spatial attention for LiDAR data, and SpaAtt_H denotes
spatial attention for HSI, namely CME. It can be seen that the
addition of spatial and spectral attention can enhance the feature
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TABLE XI
ABLATION EXPERIMENTS ABOUT THE MSL MODULE USING DIFFERENT

CONVOLUTION ON DIFFERENT DATASETS

TABLE XII
ABLATION EXPERIMENTS USING DIFFERENT PERCENTAGES OF TRAINING

SAMPLES ON DIFFERENT DATASETS

representation of HSI and LiDAR data and achieve better clas-
sification results, while the CME approach will further enhance
the classification effect, which is because the adoption of this
approach makes the HSI branch acquire the spatial information
of the LiDAR branch and strengthen the feature representation
of HSI.

To test the contribution of self-calibrated convolution in the
MSL module, we compared the classification results in MSL
using self-calibrated convolution and vanilla convolution, as
shown in Table XI, using self-calibrated convolution will obtain
better classification OA.

Moreover, we conducted additional ablation experiments on
all datasets to explore the classification accuracy when using
different numbers of training samples. Table XII shows the
performance with different percentages of training samples from
30% to 100%, where 100% represents exactly the number of
training samples listed in Tables I–III. It can be seen that as the
number of training samples increases, the classification OA also
increases.

IV. CONCLUSION

In this article, a network for HSI and LiDAR data fusion clas-
sification is proposed, which uses self-attention mechanism to
adaptively extract spectral and spatial information from HSI and
LiDAR data, and cross-attention is used to achieve CME and we
use LiDAR data to enhance feature representation of HSI data;
self-calibrated convolution and hierarchical residual connection
are used to construct MSL module to extract multi-scale infor-
mation in remote sensing images for classification; in addition,
we construct a new attention-based FF module that takes location
information into account and fully considers the information
complementarity between the two modal data. The effectiveness
of the algorithm proposed in this article is demonstrated by
conducting experimental validation on three commonly used
HSI and LiDAR classification datasets and comparing them
with other state-of-the-art methods. However, by experimental
analysis of different training samples, we find that our method
is highly labeled sample-dependent. In future work, we will

consider using weakly supervised or self-supervised techniques
to improve this problem.
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