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Domain Adaptation in Remote Sensing
Image Classification: A Survey

Jiangtao Peng

Abstract—Traditional remote sensing (RS) image classification
methods heavily rely on labeled samples for model training. When
labeled samples are unavailable or labeled samples have different
distributions from that of the samples to be classified, the classifica-
tion model may fail. The cross-domain or cross-scene remote sens-
ing image classification is developed for this case where an existing
image for training and an unknown image from different scenes or
domains for classification. The distribution inconsistency problem
may be caused by the differences in acquisition environment condi-
tions, acquisition scene, acquisition time, and/or changing sensors.
To cope with the cross-domain remote sensing image classification
problem, many domain adaptation (DA) techniques have been
developed. In this article, we review DA methods in the fields of
RS, especially hyperspectral image classification, and provide a
survey of DA methods into traditional shallow DA methods (e.g.,
instance-based, feature-based, and classifier-based adaptations)
and recently developed deep DA methods (e.g., discrepancy-based
and adversarial-based adaptations).

Index  Terms—Cross-domain classification, distribution
difference, domain adaptation (DA), remote sensing (RS) image.

1. BACKGROUND

S atechnique to acquire information on the Earth’s surface,
A remote sensing (RS) has been successfully applied in many
fields [1], such as ecology, environmental geology, atmospheric
science, etc. During the past few decades, many satellites were
launched, such as MODIS, LandSat, WorldView, GaoFen, etc.
Except for the spaceborne sensors, there are many airborne and
unmanned aerial vehicle (UAV) borne sensors. Different types
of sensors (e.g., hyperspectral, multispectral, LIDAR) provide
a plenitude of RS images for multitemporal and multisource
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observations, which can be used for large-scale and long-term
applications.

Although different types of RS images are available, they are
difficult to be collaboratively processed due to the existence of
large distribution differences (e.g., different sensors and acquisi-
tion conditions) among these images. In particular, for RS image
classification, we usually want to build a model on a known
image to classify an unknown one. If these two images have
different data distributions, traditional classification methods
may not provide satisfying results. Fortunately, if distribution
of two images are related, we can use a domain adaptation
(DA) technique to build connection between images and transfer
knowledge from one image to the other. For RS image process-
ing, there are various cases where two images have different
but related distributions [2], [3]: 1) Difference in sensors: two
images are acquired by two different sensors on the same scene;
2) difference in spatial locations (bias sampling): two images
correspond to two disjoint regions in a large scene; 3) differ-
ence in scenes: two images correspond to two different scenes
with similar materials; 4) difference in acquisition conditions
(atmospheric, illumination, or acquisition angle): two images
are acquired in different imaging conditions; 5) difference in
acquisition times: two images are acquired in different times and
the ground materials have been changed. In all these cases, two
images have some related characteristics, such as the same or
similar scenes, the same sensor or similar acquisition condition.
Thanks to such correlation, the data inconsistency problem can
be solved by the DA technique, which forms the differences
in sensors or imaging environmental conditions into a data or
feature transfer problem.

DA aims to solve the distribution discrepancy between do-
mains [4], [5]. Depending on the availability of target labels,
the DA methods can be categorized into unsupervised, semisu-
pervised, and supervised methods, in which an unsupervised
DA method with no label in the target domain is a hotspot
because it matches many actual situations. In early research
of unsupervised DA, scholars mainly focus on traditional DA
methods that aim to align distributions from the aspects of
instance, feature, or classifier. The instance-based methods
mainly consider to adjust the marginal distribution of source
or target samples. Feature-based methods align the subspace
features of different domains to minimize their distribution
differences. Classifier-based methods mainly aim to adapt a clas-
sifier trained on the source domain to the target domain. In recent
years, many deep learning-based DA methods are proposed [6].
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TABLE I
TAXONOMY OF DA METHODS

CATEGORY

SUBCATEGORY

TYPICAL EXAMPLES

Shallow DA

Instance-based

nonparametric KMM [7], RHM [8], IWATL [9], CSSPL [10], ELM-based transfer [11]

Feature-based

(1) Subspace-based Adaptation: SGF [12], GFK [13], coclustering [14], SA [15]-[17],
TSSA [18], TA [19], TPCA [20], SCA [21], SDA [22], DCA [23], CS-DDA [24], KSA
[25], IRDMKSA [26], HFAA [27], IRHTL [28], invariant-feature-based [29]-[32], dictio-
nary learning-based [33], PCDA-NSD [34], DSTL [35], SS-DDNMF [36], GFP [37], (2)
Transformation-based Adaptation: TCA and SSTCA [38], [39], TIM [40], DTIM [41], JDA
[42], JGSA [43], DATL [44], [45], LPJT [46], GEDA [47], DADFL [48], CORAL [49],
[50], CCCA [51], [52], CCA-based [53]-[56], MA-based [57]-[62], MRDA [63], DABL
[64], SSWK-MEDA [65], NFNalign [66], OT [67], 3-D Gabor transformation [68]

Classifier-based

ML-based [69], multiple cascade-classifier [70]-[72], invariant SVM [73], SCT-SVM [74],
multiple-kernel learning [75]-[78], ELM-based [79]-[83], MDAF and MBCF [84], open set
DA [85], EasyTL [86], BHC [87], DASVM [88], MRC [89], AL-based [90]-[97]

Deep DA

Discrepancy-based

DAN [98], JAN [99], MRAN [100], DSAN [101], DeepCORAL [102], DNN with class
centroid alignment [103], TCANet [104], class-wise distribution alignment based deep DA
[105], DDA-Net [106], TDDA [107], TSTnet [108], GNN [109], AMF-FSL [110], MSCN
[111], AMRAN [112], DJDANSs [113]

Adversarial-based

GAN [114], [115], adversarial CNN [116], MADA [117], DAAN [118], MCD [119], DWL
[120], GAN with VAE-based generator [121], [122], content-wise alignment [123], class
reconstruction driven adversarial [124], class-wise adversarial [125], ADADL [126], DABAN
[127], UDAD [123], deep metric learning [128], DCFSL [129], CDADA [130], DFENet [131],
TriADA [132], SCDAL [133], TSAN [134], DANN [135], [136], StandardGAN [137]

Others

two-branch CNN [138], FANN [139], DATL [140], MSSN [141], active transfer learning
network [140], AALDA [142], attention-based residual network [143], 3CN [144], bayesian-
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inspired CNN [145]

By means of deep network architecture, deep DA methods can
automatically extract deep features from domains and further
learn transferrable features by adding feature adaptation layers
in an original deep network architecture or constructing feature
learning modules (e.g., adversarial learning). Considering dif-
ferent network architectures, deep DA methods are mainly cat-
egorized into discrepancy-based methods and adversarial-based
methods [5]. Although these traditional and deep DA methods
are widely applied for computer vision tasks, their applicability
on RS images is not clear. In this article, we provide a review on
these unsupervised DA methods and test their performance on
cross-domain RS image classification.

The rest of this article is organized as follows. Section II
introduces notations. Sections III, IV, and V describe the shal-
low DA methods, such as instance-based, feature-based, and
classifier-based methods, respectively. Section VI presents the
deep DA methods, such as discrepancy-based and adversarial-
based methods. Section VII provides experimental results. Fi-
nally, Section VIII concludes this article.

II. NOTATIONS

Denote source and target domains as Dy and Dy, respec-
tively. The sample and corresponding label sets in Dy are X, =
x5 Yand Yy = {y1,y2, ..., Yn, }, with x§ € RY and
y; € {1,2,...,C}, where n, is the number of labeled samples,

D is the dimensionality and C' is the number of classes. The tar-
get domain only has the unlabeled dataset X; = {x},...,x! },
where n; is the number of target samples.

DA considers the classification problems where the class
space of source and target domains are the same but the distribu-
tion between domains are different but related. The objective of
DA is to classify target samples using the model built on source
samples.

The DA methods can be categorized as traditional shallow DA
methods and recent deep DA methods. The traditional DA meth-
ods can be instance-based, feature-based, and classifier-based
DA methods. In the following, they are introduced in detail.
Table I shows the taxonomy of DA methods discussed in this
article.

III. INSTANCE-BASED METHODS

Instance-based DA methods mainly adjust the marginal dis-
tribution of source or target samples such that the distribution
of domains are aligned. Let ps(x) and p;(z) be the marginal
density distribution of source and target samples, respectively,
an importance weight can be defined as [5]

w(x) = b (I)

ps(@)

By adjusting the reweighting factor w(z), the sample se-
lection bias and covariate shift problems can be alleviated to

ey
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Fig. 1. TIllustration of instance reweighting. Two classes are denoted as blue
diamonds and red squares. The black line in each subfigure is the classifica-
tion decision line. (a) Source domain. (b) Target domain. (c) Source instance
reweighting.

certain extent [146], [147]. As shown in Fig. 1, the instance
reweighting strategy reweights the source data [i.e., the solid
points in Fig. 1(c) have large weights] to minimize the marginal
distribution difference between domains and then a classifier
built on the reweighted source data [i.e., the black line in
Fig. 1(c)] can be used to classify target samples.

To solve the sample selection bias, Huang et al. [ 7] presented a
nonparametric kernel mean matching (KMM) method to directly
produce resampling weights without distribution estimation.
Yaras et al. proposed a randomized histogram matching (RHM)
method to augment training data to describe domain shifts of
satellite images. In detail, they analyzed different reasons for the
domain shift, such as changing sensors, illumination variations,
and imaging conditions, and modeled these factors as nonlinear
pixelwise transformations, and then training data augmentation
with deep neural networks was employed to increase the model
robustness to these transformations [8]. Cui et al. [9] proposed an
iterative weighted active transfer learning framework (IWATL)
for hyperspectral image (HSI) classification. It weighted the
source samples by considering the distance between the samples
and the classification hyperplane as well as the similarity be-
tween the source and target distributions. Li et al. [10] proposed
a cost-sensitive self-paced learning (CSSPL) framework for the
classification of multitemporal images, which automatically as-
signed sample weight via a mixture weight regularizer. To reuse
a large number of existed labeled images, a historical and target
training data weighting strategy was proposed in an extreme
learning machine (ELM)-based RS image transfer classification
framework [11].

In the instance-based DA methods, source or/and target sam-
ple reweighting and landmark selection are widely used strate-
gies [146], [147]. These strategies can also be embedded into
the feature-based and classifier-based adaptations for domain-
invariant feature learning or classifier refinement [25], [46],
[148], respectively.

IV. FEATURE-BASED METHODS

Feature-based DA methods transform source and target data
into a feature space such that the data distribution of both
domains in the feature space are similar. Then, source features
and corresponding labels can be used to generate a classifier to
predict label of target samples. Feature-based adaptation is usu-
ally realized by joint feature extraction, and typical methods are
subspace-based and transformation-based adaptation methods.
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Fig.2. Illustration of subspace alignment. The PCA is used to generate source
and target subspaces, which are then aligned based on a linear transformation
matrix M.

A. Subspace-Based Adaptation

Subspace-based DA methods usually project the source and
target samples into individual subspaces according to subspace
learning or dimensionality reduction methods, and then align
the subspaces [5].

Goplan et al. [12] proposed a sampling geodesic flow (SGF)
method for DA, which learns intermediate representations of
source and target samples via Grassmann manifolds to describe
domain shift. However, the SGF approach has several limita-
tions, such as the difficulty in its sampling strategy and the high
dimensionality of the new representations. To solve these prob-
lems, geodesic flow kernel (GFK) method was proposed [13].
It constructed a GFK to model domain shift and provided a
simple solution to compute the kernel. So, the GFK method
is easy to implement than SGF [13], [41]. Banerjee et al. [14]
proposed a coclustering-based method for DA in the absence of
source samples. The samples from both domains are projected
in a shared space by the GFK-based projection, followed by
a probabilistic support vector machine (SVM)-based iterative
coclustering method.

Fernando et al. [15] proposed a subspace alignment (SA)
method, which first employed the principal component analysis
(PCA) to generate individual subspaces for source and target
domains and then learned a linear transformation M to align
these subspaces

— ; 2 _ pT
M—argmﬂ}ln|‘PgM—Pt‘|F—Pq P (2)
where || - ||% is the Frobenius norm, and Py, P, € RP*4 are the

low-dimensional representations (i.e., basis vectors) of source
and target data, respectively. The procedure of SA is illustrated
in Fig. 2.

Sunetal. [16] directly applied the SA for cross-view RS scene
classification, where the partial least squares (PLS) method was
used to generate discriminative subspace of source domain. They
further proposed a transfer sparse subspace analysis (TSSA)
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algorithm for unsupervised cross-view RS scene classifica-
tion [18]. It minimized the maximum mean discrepancy (MMD)
distance between domains and preserved the self-expressiveness
property of the data in a reproducing kernel Hilbert space
(RKHS) according to sparse subspace clustering. Wei et al. [17]
proposed a robust DA method for HSIs which employed SA to
perform subspace feature-level alignment. The SA was extended
to a tensor alignment (TA) for HSI classification [19], where
tensors of source and target domains were constructed and SA
was performed on the tensors. Gao et al. [20] proposed an unsu-
pervised tensorized principal component alignment framework
for multimodal RS image classification. Gui et al. [21] proposed
a statistical scattering component-based SA for cross-domain
polarimetric synthetic aperture radar (PolSAR) image classifi-
cation.

It can be seen that SA only aligns the subspace bases without
considering the distributions of subspaces. To incorporate the
distribution alignment into SA, a subspace distribution align-
ment (SDA) method was proposed to align both subspace bases
and subspace distributions [22]. For the cross-scene classifi-
cation of HSIs, a discriminative cooperative alignment (DCA)
method was proposed to alleviate spectral shift [23]. In the DCA,
SA and distribution alignment work cooperatively through the
subspace correlation constraint and MMD [23]. Zhang et al. [24]
proposed a correlation subspace dynamic distribution alignment
(CS-DDA) method for RS scene classification, which maxi-
mizes the correlation between source and target subspaces and
meanwhile dynamically minimizes the statistical distribution
difference between domains.

To handle nonlinearity, Aljundi et al. [25] extended the linear
SA to kernel-based SA (KSA), The kernel of source and target
domains are first constructed on the selected landmarks, and then
the SA is performed on the source and target kernels to align
the kernel-based subspaces [25]. To further exploit the source
labels and multiple kernel representations, an ideal regularized
discriminative multiple kernel subspace alignment IRDMKSA)
was proposed for HSI classification [26]. It performs SA in
the composite-kernel-based spaces to reduce the distribution
differences of domains.

Traditional subspace learning-based strategies usually as-
sume the existence of a single subspace for both domains.
However, such an assumption may not be true in many scenarios
due to the diversity in the statistical properties of the underlying
classes [149]. Banerjee et al. [149] proposed a hierarchical
subspace learning-based unsupervised DA technique for mul-
titemporal RS image classification, where node-specific sub-
spaces are learned from a binary-tree. Shen et al. [27] presented
a hyperspectral feature adaptation and augmentation (HFAA)
method for cross-scene HSI classification, which iteratively
learns a common subspace by introducing two separate projec-
tion matrices and augments it with a feature selection strategy.
Li et al. [28] proposed an iterative reweighting heterogeneous
transfer learning (IRHTL) framework, which iteratively learns
a shared space of source and target data based on a weighted
SVM and conducts an iterative reweighting strategy to reweight
the source samples.

9845

Invariant feature-based methods can be regarded as a special
case of subspace-based adaptation. It aims to select a set of
features that are not affected by shifting factors. The selected
features can form a new subspace. Bruzzone et al. [29] proposed
a multiobjective optimization framework to select spatially in-
variant features for the classification of spatially disjoint scenes.
The multiobjective framework ensures the selected features with
both high discrimination ability and high spatially invariance.
The invariant feature selection can also be performed in an
RKHS [30]. Paris et al. [31] presented an invariant-feature-based
sensor-driven hierarchical DA method. Yan et al. [32] proposed a
TrAdaBoost based on an improved particle swarm optimization
(PSO) method for cross-domain scene classification, which can
select an optimal feature subspace for classifying “harder” and
“easier” instances.

There are other subspace-based adaptation methods. Ye
etal. [33] proposed a dictionary learning-based feature-level DA
technique, which learns acommon dictionary to represent source
and target data and then aligns their representation coefficient
features to reduce the spectral shifts between domains. Wang
et al. [34] proposed a pairwise constraint discriminant analysis
and nonnegative sparse divergence (PCDA-NSD) method for
HSI classification. The PCDA learned potential discriminant
information of sample sets in the source and target domains
by using pairwise constraints and NSD measured the diver-
gence between different distributions. Lin et al. [35] proposed
a dual space unsupervised structure preserving transfer learning
(DSTL) framework for HSI classification. It first transfers the
data on both domains to a specific subspace, on which the initial
classification results for the target HSI are obtained. Then, the
initial results on the original target data space are optimized
by applying the Markov random field (MRF) approach. Chen
et al. [36] proposed a semisupervised dual-dictionary nonneg-
ative matrix factorization (SS-DDNMF) method for heteroge-
neous transfer learning on cross-scene HSIs, where two different
dictionaries are designed for source and target scenes to project
two different feature spaces into a shared subspace. Gui et al. [37]
proposed a general feature paradigm (GFP) for PolSAR image
classification, where information scattering and statistical infor-
mation are used to reduce the domain shifts.

B. Transformation-Based Adaptation

The transformation-based DA methods transform the original
data into new representations to minimize the statistical distri-
bution (i.e., marginal and conditional distributions) discrepancy
and geometrical divergence between domains while preserving
the underlying structure of original data [5], as shown in Fig. 3.

The MMD, Kullback-Leibler divergence (KL-divergence), or
Bregman divergence are usually used to measure the domain’s
distribution discrepancy [38]. The MMD is defined as

MMD(X,. X)) = [ = 3 o) - = Y o), @
% xi€X, x;€X¢

where ¢ is a nonlinear map induced by a universal kernel. Pan
et al. [38] introduced the MMD to measure the distribution
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Fig. 3. TIllustration of transformation-based adaptation. The transformation

matrices A and B can be the same or different.

discrepancy and proposed a transfer component analysis (TCA)
method. TCA intends to learn a set of transfer components
in an RKHS using the MMD such that marginal distribution
differences between domains are reduced and data variance is
maximized [38]. The transformation matrix W € R(=F7)xd jp
the TCA can be solved by the following optimization problem:

min tr(WTKLKW) + p tr(WTW) )
s.t. WTKHKW = I,,, ®)

where 1 is a regularization parameter, I,,, € R"*™ is an identity
matrix, H is the centering matrix, K is the kernel matrix defined
on all source and target data. Here, L; ; = 1 / nz ifx;,x; € Xg;
Li,j = 1/n§ if x;, X5 € Xy; otherwise, Li)j = —1/(7’L5nt).

The unsupervised TCA can be extended to semisupervised
TCA (SSTCA) by using the source labels [38]. Matasci et al. [39]
directly applied the TCA and SSTCA for the DA of RS image
classification. Long et al. [40] proposed a transfer joint matching
(TIM) method, which performs feature matching and instance
reweighting simultaneously in a unified optimization framework
to reduce marginal distribution differences between domains.
Pengetal. [41] proposed a discriminative transfer joint matching
(DTIM) for HSI classification by considering the label informa-
tion of source domain.

To align both the marginal and conditional distributions be-
tween domains, Long et al. [42] further proposed a joint distribu-
tion adaptation (JDA) method. JDA finds a linear transformation
A € RP*4to align the marginal distribution based on the MMD

1 1
MMD(X, Xo) = = 7 A= — > A"x[;
s x;€X s t X;€X¢
=tr(ATX Mo XTA) (6)

and to align the conditional distribution based on a conditional
MMD

CMMD (X, X;) —H* > ATXI—— S AT}
s x;€X¢ x;€Xy

=tr(ATXM.XTA), c=1,....,C (1)

where M, and M, are the MMD matrices [42].
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The above TCA, TJM, and JDA methods assume that there
exists a unified transformation A to map source and target
samples into a common space. However, if domain shift is
large, it is very different to find a common transformation [43].
Zhang et al. [43] proposed a joint geometrical and statistical
alignment (JGSA) method to learn two coupling mappings A and
B for source and target domains, respectively. The distribution
divergence minimization in the JGSA can be represented as

I},H};H* Z Asz—— Z BT ]HF ®)
s X; €Xs xJEXt
mmZH— Z ATxZ—— Z BT JHF 9)
SxEX” x]EXC

Inspired by the JGSA, Zhou et al. [44], [45] proposed a DA
technique based on transformation learning (DATL) for HSI
classification. It learned two different transformations using
the idea of linear discriminant analysis (LDA) to minimize the
the ratio of within-class distance to between-class distance. A
distance-based objective function is designed to optimize the
transformations and meanwhile to preserve stochastic neigh-
borhood and discriminative information of domains in a latent
space [44], [45]. Li et al. [46] proposed a locality preserving
joint transfer (LPJT) method to improve the JGSA by con-
sidering the local discriminative information preservation and
landmark selection in a unified optimization framework. Huang
et al. [47] proposed a graph embedding and distribution align-
ment (GEDA) method for HSI classification, which used the
graph embedding method to preserve discriminative informa-
tion of source and target domains and a pseudo-label learning
method to refine the target pseudo labels [47]. Similarly, they
further proposed a distribution alignment and discriminative fea-
ture learning (DADFL) method [48], which performs classwise
discriminative information preservation and uses a structural
prediction method to learn pseudo-label of target samples.

Sun et al. [49] proposed a correlation alignment (CORAL)
method, which finds a linear transformation A to transform the
source data such that the variances of transformed source data
and target data can be minimized

min [|Cg — Crl% = min |ATCsA — Cr||%2  (10)
where Cg is the covariance of the transformed source fea-
tures AT Xg. The solution to (10) has the closed-form: A =
C;l/ 2C’ 1/2 .Pengetal. [50] proposed a sparse matrix transform-
based CORAL method for HSI classification. Zhu et al. [51]
proposed a class centroid alignment method, which aligns the
class centroids by moving the target domain samples toward the
source domain. To consider the first- and second-order statistical
alignment, a class centroid and covariance alignment (CCCA)
method was developed for classification of RS images [52]. The
proposed method included three main steps: 1) spatial filtering
preprocessing, 2) overall centroid alignment-based coarse adap-
tation, and 3) CCCA-based refined adaptation.

Many canonical correlation analysis (CCA)-based transfor-
mation methods were proposed for DA. Qin et al. proposed a
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cross-domain collaborative learning (CDCL) method for het-
erogeneous DA of HSIs. It consisted of three parts, i.e., ran-
dom walker (RW)-based pseudo-labeling, cross-domain learn-
ing via cluster canonical correlation analysis (C-CCA), and final
classification based on extended RW (ERW) algorithm [53].
Samat et al. [54] proposed a supervised and semisupervised
multiview CCA ensemble method for heterogeneous DA in RS
image classification. Li et al. [55] proposed a sparse subspace
correlation analysis-based supervised classification (SSCA-SC)
method for HSI classification, which integrated the idea of CCA
into a sparse representation subspace learning framework and
directly classified the target samples based on the sparse rep-
resentation reconstruction residuals. Volpi et al. [56] proposed
a kernel CCA transformation (kCCA) method to align spectral
characteristics of multitemporal cross-sensor images for change
detection.

To correct nonlinear variation between domains, Tuia et al.
constructed a nonlinear transform based on vector quantiza-
tion and graph matching to describe the data changes under
different acquisition conditions [57]. They further proposed a
semisupervised manifold alignment (SS-MA) method to align
the manifolds of RS images [58] by solving a standard Rayleigh
quotient

opt __ . T ~1 T

FP = argmin {w ((F'VF)'F'UF)} (1)
where the affinity matrix V' can be used to maximize the dis-
tances between samples of different classes, and U enhances
class similarity between the labeled instances between domains.
The matrices U and V' can be constructed based on the graph
Laplacian. The SS-MA method can be used for multitemporal,
multisource, and multiangular classification. Yang et al. [59]
proposed a global aligned local manifold (GALM) method to
align two globally similar manifolds and to minimize the impact
of spectral changes at the local scale. They further extended the
MA and proposed spectral and spatial proximity-based MA for
multitemporal HSI classification [60]. Hong et al. [61] proposed
a learnable MA (LeMA) for semisupervised cross-modality
hyperspectral-multispectral classification. Ma et al. [62] pro-
posed a unsupervised MA method for cross-domain classifica-
tion of RS images, which used an SVM-prediction-based cross-
domain similarity matrix and a per-class MMD constraint. To
exploit the manifold structure of data, Luo et al. [63] proposed a
manifold regularized distribution adaptation (MRDA) algorithm
to minimize the per-class MMD and meanwhile preserve the
manifold structure of source and target data in the subspace.
Wang et al. [64] proposed a DA broad learning (DABL) method
for HSI classification, which combined the DA and broad learn-
ing system (BLS) to perform MMD-based distribution align-
ment and manifold structure preservation. Dong et al. proposed
a spectral-spatial weighted kernel manifold embedded distribu-
tion alignment (SSWK-MEDA) for RS image classification [65],
which applied spatial filter to preprocess the hyperspectral data
and constructed a spatial-spectral composite kernel for kernel-
based adaptation. Gross et al. [66] proposed a nonlinear feature
normalization alignment (NFNalign) transformation to mitigate
nonlinear effects in hyperspectral data.
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There are also some other transform-based methods.
Chakraborty et al. [150] proposed an artificial neural network-
based DA strategy, which unified the common data transforma-
tion and transfer learning methods. Tardy et al. [67] applied
the optimal transport (OT) for land-cover mapping of high-
resolution satellite images time series. Jia et al. [68] applied the
3-D Gabor transformation to extract spatial-spectral features of
HSI for DA.

V. CLASSIFIER-BASED ADAPTATION

The classifier-based DA methods adapt a classifier trained on
a source domain to a target domain by considering unlabeled
samples of the target domain.

The classifier-based DA can be performed by the adaptation
of classifier parameters [69], [70], [71], [72], [151]. Bruzzone
et al. [69] proposed a classifier-based DA method to solve the
data distribution difference between multitemporal RS images
by updating the parameters of a trained maximum-likelihood
(ML) classifier on the basis of the distribution of a new image
to be classified. The ML-based DA technique was further ex-
tended to the Bayesian cascade classifier, multiple-classifier, and
multiple cascade-classifier [70], [71], [72]. Zhong et al. [152]
proposed a classifier updating method by considering spec-
tral features and guided-filter-based posteriori spatial features.
Izquierdo-Verdiguier et al. [73] updated the SVM classifier by
adding virtual support vectors (VSVs) for training, where the
VSVs contained the invariances to rotations, reflections, and
object scale. An SVM-based sequential classifier training (SCT-
SVM) approach was proposed for multitemporal RS image
classification [74]. By casting the DA as a multitask or multiple-
kernel learning problem, many multiple-kernel learning-based
DA methods were proposed [75], [76], [77], [78]. Xu et al. [79]
proposed a DA method through transferring the parameters of
ELM. Considering the simplicity of ELM, many ELM-based
classifier adaptation methods were proposed, such as cross do-
main ELM (CDELM) [80], ELM-based heterogeneous DA [81],
interpretable rule-based fuzzy ELM (IRF-ELM) [82], ensemble
transfer learning based on ELM (TL-ELM) [83]. Wei et al.
investigated the combination of multiple classifiers for DA of
RS image classification. The multiple domain adaptation fusion
(MDAF) method and the multiple base classifier fusion (MBCF)
method were proposed to obtain a more stable classification
performance [84]. Zhang et al. [85] considered the open set
DA problem for RS scene classification via updating the clas-
sifier by exploring transferability and discriminability. Wang
etal. [86] proposed an easy transfer learning (EasyTL) approach
by exploiting intradomain structures to learn both nonparametric
transfer features and classifiers.

Semisupervised learning (SSL) and active learning (AL) tech-
niques can also be used to solve the domain shift problem by
updating a source classifier with the use of unlabeled target
samples [153], [154]. Rajan et al. [87] proposed a binary hi-
erarchical classifier (BHC) framework for knowledge transfer
from an existing labeled source domain to a spatially separate
and multitemporal target domain, where an SSL technique was
used to update the BHC to reflect the characteristics of new
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Fig. 4. Flow chart of the AL method for DA.

data. The classical supervised SVM was also extended to a
semisupervised case to solve the DA problem [88], [155]. A
typical semisupervised SVM is the domain adaptation SVM
(DASVM) [88], which built a standard SVM on a source domain
and then iteratively adjusted the SVM model using unlabeled
target samples. Kim et al. proposed an adaptive manifold classi-
fier (MRC) in a semisupervised setting, where a kernel machine
was first trained with labeled data and then iteratively adapted to
new data using manifold regularization [89]. The AL technique
was also adopted to update existing classifiers [90], [91], [92],
[93], [94], [95], [96], [97]. As shown in Fig. 4, the AL method
first built a classifier on the source data and then classified
target samples. By selecting some candidates with the highest
uncertainty and providing user labels for them, these samples
can be used to expand the training set to update the classifier.
Deng et al. [140] proposed an active multikernel DA method
for HSI classification, which combines the AL with multikernel
learning for DA. Kalita et al. [156] proposed a standard deviation
(SD)-based AL technique to exploit the labeled source im-
ages to generate the “most-informative” target samples. Saboori
etal. [157] proposed an active multiple kernel Fredholm learning
(AMKFL) method, where a Fredholm kernel regularized model
was presented to label samples.

VI. DEEP DOMAIN ADAPTATION

Unlike hand-crafted features in traditional DA methods,
deep learning methods can automatically learn features using
deep neural networks (DNNs) [158]. Most of the current deep
DA methods add adaptation layers to an original deep net-
work architecture to realize the source-to-target adaptation or
adopt an adversarial learning strategy to minimize the cross-
domain discrepancy. Deep DA methods are mainly divided
into discrepancy-based methods, adversarial-based methods,
and others [5], [159].

A. Discrepancy-Based Adaptation

The discrepancy-based deep DA methods mainly aim to
match marginal or/and conditional distributions between do-
mains by adding adaptation layers (e.g., MMD-based metric) in
deep neural networks (DNN) for task-specific representations,
as shown in Fig. 5.
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Fig. 5. Flow chart of discrepancy-based deep DA method.

Long et al. [98] proposed a DNN which was the first time to
utilize the DNNS to learn transferable features across domains
for DA. In DAN, three adaptation layers based on multiple kernel
variant of MMD (MK-MMD) are designed to align marginal
distributions between domains. In order to reduce both marginal
and conditional distribution differences, they further proposed
a joint adaptation network (JAN) which used source labels and
target pseudo labels to construct MMD and conditional MMD
to align the joint distribution according to an adversarial training
strategy. Based on DAN, Zhu et al. [99] proposed a multirepre-
sentation adaptation network (MRAN) [100], which performs
cross-domain classification tasks through multirepresentation
alignment. They further proposed a deep subdomain adaptation
network (DSAN) using the idea of subdomain adaptation [101].
Zhu et al. [160] developed a weakly pseudo-supervised decor-
related subdomain adaptation (WPS-DSA) network for cross-
domain land-use classification. Sun et al. [102] proposed a
DeepCORAL method to extend the CORAL to deep learning.

For HSI classification, Ma et al. [103] designed a class
centroid alignment module in the DNN for cross-domain HSI
classification. Garea et al. [104] proposed a TCA-based network
(TCANet) for DA of HSIs, which used the TCA to construct
an adaptation layer. Wang et al. [105] proposed a deep DA
with MMD-based classwise distribution alignment and manifold
structure preservation in the target domain. Ma et al. [106]
proposed a deep DA network (DDA-Net) for cross-dataset HSI
classification, which minimized the domain discrepancy and
transferred the task-relevant knowledge from source to target in
an unsupervised way. Li et al. [107] proposed a two-stage deep
DA (TDDA) method, where in the first stage, the distribution
distance between domains is minimized based on the MMD to
learn a deep embedding space, and in the second stage, a spatial—
spectral Siamese network is constructed to learn discriminative
spatial-spectral features to further decrease the distribution dis-
crepancy. Zhang et al. [108] proposed a topological structure
and semantic information transfer network (TSTnet). It employs
the graph structure to characterize topological relationships and
combines the graph convolutional network (GCN) and CNN for
cross-scene HSI classification. The optimal transmission (OT)-
based graph alignment and MMD-based distribution alignment
work cooperatively. Wang et al. [109] proposed a graph neural
network (GNN) DA method for multitemporal HSIs, which
incorporated the domainwise and classwise CORAL into the
GNN network to align the joint distributions of domains. Liang
et al. [110] proposed an attention multisource fusion-based
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deep few-shot learning (AMF-FSL) method for small-sized
HSI classification, which contains three modules, namely, the
target-based class alignment, domain attention assignment, and
multisource data fusion. It can transfer the learned ability of
classification from multiple source data to target data.

Othman et al. [161] proposed a DA network for cross-scene
classification. It uses a pretraining and fine-tuning strategy to
ensure that the network can correctly classify the source samples,
and align source and target distributions and preserve the geo-
metrical structure of target data [161]. Similarly, Lu et al. [111]
proposed a multisource compensation network (MSCN) for
cross-scene classification task. In the network, a cross-domain
alignment module and a classifier complement module are de-
signed to reduce the domain shift and to align categories in multi-
ple sources, respectively. Zhu et al. [112] proposed an attention-
based multiscale residual adaptation network (AMRAN) for
cross-scene classification, which contains a residual adaptation
module for marginal distribution alignment, an attention module
for robust feature extraction, and a multiscale adaptation module
for multiscale feature extraction and conditional distribution
alignment [112]. Geng et al. [113] proposed a deep joint dis-
tribution adaptation networks (DJDANSs) for transfer learning
in SAR image classification, where marginal and conditional
distribution adaptation networks are developed.

B. Adversarial-Based Adaptation

Inspired by generative adversarial nets (GAN) [114], [115],
adversarial DA approaches learn transferable and domain in-
variant features through adversarial learning. GAN contains a
generator model G and a discriminator model D. The generator
aims to produce samples similar to the source domain, and to
confuse the discriminator to make a wrong decision. Among
them, the training purpose and process can be summarized

Ig}}g ﬁcls (Xs ) Y—s)
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= —Ex, yoX.vs) O L=y, log C(G(x.))
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mDin Laavp (X5, Xy, G) = — Ex_x_[log D(G(x5))]

- ExtNXt [lOg(l - D(G(Xt)))]

mgn Lodve (X, X, D) = —Ex,x, [log D(G(x¢))]

where C'is the classifier, L is the classification loss on labeled
source data, L4y, and L,y are the loss functions of the
adversarial training of G and D. The discriminator then tends to
discriminate between the true source data and the counterfeits
generated by model G [5]. After GAN-based adaptation, a
task-specific classifier built on the source domain can be used to
classify target samples. Fig. 6 illustrates the GAN-based DA.
Tzeng et al. [116] introduced an adversarial CNN-based ar-
chitecture that aligned distributions between domains by mini-
mizing the classification loss, soft label loss, domain classifier
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loss, and domain confusion loss. Pei et al. [117] proposed a
multiadversarial DA (MADA) method that constructed multiple
classwise domain discriminators to reduce the joint distribution
difference between domains. Yu et al. [118] proposed a dynamic
adversarial adaptation network (DAAN), which can dynamically
assess the relative importance of global and local domain dis-
tributions. Saito et al. [119] proposed a deep DA method based
on the maximum classifier discrepancy (MCD) that leverages
task-specific decision boundaries and adversarial learning ideas
to adjust the distribution of source and target domains. The MCD
method aims to learn domain-invariant features, which may have
lower discriminative ability. To solve this problem, a dynamic
weighted learning (DWL) method was proposed to adjust the
weights of domain alignment learning and class discrimination
learning in the MCD framework [120].

Recently, many adversarial-based DA approaches were de-
veloped for HSI classification. Ma et al. [121] proposed an
adversarial learning-based DA method for the classification of
HSIs, which included a variational autoencoder (VAE)-based
generator and a multiclassifier-based discriminator. The gen-
erator learns features such that the source classification error
is minimized and the classification disagreement on the target
dataset is maximized. The discriminator deceives the generator
by adjusting classifiers such that the classification disagreement
on the target data set is minimized. Miao et al. [122] also used
the VAE module to construct a generative model and further de-
signed a joint distributions alignment module to perform coarse-
to-fine joint distributions alignment for HSI classification. Yu
et al. [123] proposed a contentwise alignment method within
an adversarial learning framework. Pande et al. [124] proposed
a class reconstruction driven adversarial DA method, which in-
corporates an additional class-level cross-sample reconstruction
loss to make the learned space classwise compactness and an ad-
ditional orthogonality constraint over the source domain to avoid
any redundancy within the encoded features. Liu et al. [125]
proposed a classwise adversarial adaptation network for HSI
classification, which performed classwise adversarial learning.
Saboori etal. [126] proposed an adversarial discriminative active
deep learning (ADADL) method for HSI classification. Similar
to MCD, it incorporates two different land-cover classifiers as a
discriminator to consider class boundaries when aligning feature
distributions, and combines the entropy measure along with
the cross-entropy loss during training to use the information
in unlabeled target data [126]. Wang et al. [127] proposed a
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domain adversarial broad adaptation network (DABAN) for
HSI classification. It included a domain adversarial adaptation
network (DAAN) and a conditional adaptation broad network
(CBAN), which can align the statistical distribution between
domains and also enhance the representation ability of domain-
invariant features. Yu et al. [123] proposed an unsupervised DA
architecture with dense-based compaction (UDAD) for cross-
scene HSI classification. It incorporated spectral—spatial feature
compaction, unsupervised DA, and classifier training into an
integrated framework and utilized adversarial domain learning
to reduce the domain discrepancy. Deng et al. [128] proposed a
deep metric learning-based feature embedding method for HSI
classification, which uses an adversarial learning strategy to
align source and target features and to preserve the similar clus-
tering structure of source and target features. Fang et al. [162]
developed a confident learning (CL)-based DA (CLDA) for HSI
classification, where the CL module is designed to select high-
confidence pseudo-labeled target samples. Li et al. [129] pro-
posed a deep cross-domain few-shot learning (DCFSL) method
for HSI classification, which combines FSL and DA, where a
conditional adversarial DA is employed to reduce domain shift
and FSL is used to learn transferable knowledge from source to
target for classification.

Adversarial-based DA approaches also used for the scene
classification of RS images. Teng et al. [130] presented
a classifier-constrained deep adversarial domain adaptation
(CDADA) method exploiting the idea of MCD for cross do-
main semisupervised classification of RS scene images, where
a deep convolutional neural network (DCNN) is used to build
feature representations and adversarial DA is used to align the
feature distribution of domains. Zhang et al. [131] proposed
a domain feature enhancement network (DFENet) to enhance
the discriminative ability of the learned features for dealing
with the domain variances of scene classification. Specifically,
a context-aware feature refinement module is first designed
to recalibrate global and local features by explicitly modeling
interdependencies between the channel and spatial for each
domain. Then, a multilevel adversarial dropout module is fur-
ther designed to strengthen the generalization capability of the
network. Yan et al. [132] proposed a triplet adversarial domain
adaptation (TriADA) method for pixel-level classification of
very high resolution (VHR) RS images, which learned a domain
invariant classifier by a domain similarity discriminator. Zhu
et al. [133] proposed a semisupervised center-based discrimi-
native adversarial learning (SCDAL) method for cross-domain
scene classification of aerial images using adversarial learning
with center loss. Liu et al. [163] proposed an unsupervised
adversarial DA network for remotely sensed scene classification,
where a GAN model-based feature extractor makes the source
and target distributions closer, and a transferred classifier trained
by transferred source domain features is able to acquire a better
classification accuracy on the target domain. Zheng et al. [134]
proposed a two-stage adaptation network (TSAN) for RS scene
classification considering single source domain and multiple
target domains, which utilizes the adversarial learning to align
single source features with mixed-multiple-target features and
self-supervised learning to distinguish the mixed-multiple-target
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domain. Adayel et al. [164] developed a deep open-set DA
method for cross-scene classification using adversarial learning
and pareto ranking. To exploit the classification information
in target domain, Zheng et al. [165] proposed a DA via a
task-specific classifier (DATSNET) method for RS scene classi-
fication, where an adversarial learning strategy is used to adjust
task-specific classification decision boundaries.

Adversarial-based approaches were also applied for other
DA tasks of RS images. Bejiga et al. [135] proposed a do-
main adversarial neural network (DANN) for large-scale land
cover classification of multispectral images, where the network
consisted of a feature extractor, a class predictor, and domain
classifier blocks. Rahhal et al. [166] proposed an adversarial
learning method for DA from multiple remote sensing sources.
It aligns the source and target distributions using a min-max
entropy optimization method. Elshamli et al. [136] employed the
denoising autoencoders (DAE) and domain-adversarial neural
networks (DANN) to tackle the DA problem for multispatial
and multitemporal RS images. Martini et al. [3] developed
self-attention-based domain-adversarial networks for land cover
classification using multitemporal satellite images, where the
deep adversarial network can reduce the domain discrepancy
between distinct geographical zones. Ji et al. [167] proposed an
end-to-end GAN-based DA method for land cover classification
from multiple-source RS images, where the source images are
translated to the style of the target images through adversar-
ial learning for training a fully convolutional network (FCN)
for semantic segmentation of target images. Tasar et al. [137]
proposed a multisource DA method (i.e., StandardGAN) for
semantic segmentation of VHR satellite images. They further
designed a unsupervised, multisource, multitarget, and life-long
DA method for semantic segmentation of satellite images [168].
Wittich et al. [169] deployed a deep adversarial DA network us-
ing semantically consistent appearance adaptation for the classi-
fication of aerial images. A color mapping generative adversarial
network (ColorMapGAN) was built for DA of RS image seman-
tic segmentation [170]. Makkar et al. [171] adopted adversarial
learning to extract discriminative target domain features that are
aligned with source domain for geospatial image analysis. Mateo
et al. [172] investigated a cross-sensor adversarial DA method
of Landsat-8 and Proba-V images for cloud detection.

C. Others

There are some other deep DA methods. Yang et al. [138]
proposed a transfer learning-based two-branch CNN model for
HSI classification, where the spatial and spectral CNNs are used
to extract joint spectral-spatial features from HSIs followed
by target network training using transfer learning with limited
labeled samples of target domain. Zhou and Prasad [139] pro-
posed a deep feature alignment neural network (FANN) for HSI
classification, where discriminative features for both domains
were extracted using deep convolutional recurrent neural net-
works (CRNN) and then aligned layer-by-layer according to
the transformation learning-based domain adaptation (DATL)
method. Deng et al. [140] proposed an active transfer learning
network for HSI classification, which exploited a hierarchical
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stacked sparse autoencoder (SSAE) network to extract deep joint
spectral-spatial features and an active TL strategy to transfer
the pretrained SSAE network and the limited training samples
from source to target domains. Song et al. [173] added an
SA layer into CNN models for DA, which can fulfill domain
alignment in feature subspace by fine-tuning the modified CNN
models. Liu et al. [174] combined transfer learning and virtual
samples in a 3D-CNN model to solve the problem of insufficient
samples. Zhong et al. [141] proposed a cross-scene deep transfer
learning network with spectral feature adaptation (SFA) for
HSI classification, which designed a multiscale spectral—spatial
unified network (MSSN) with two-branch architecture and a
multiscale bank to extract discriminating features of HSI. Chen
et al. [142] proposed an augmented associative learning-based
DA (AALDA) method for HSI classification, which employs
the criterion of cycle consistency to generate features that are
domain-invariant and discriminative. Mdrafi et al. [143] pro-
posed an attention-based DA using residual network for HSI
classification, which considers different levels of attentions.
Saha et al. [175] developed a graph neural network for mul-
titarget DA in RS classification. Lasloum et al. [176] presented
a multisource semisupervised DA method using a pretrained
CNN for RS scene classification.

Othman et al. [144] designed a three-layer convex network
termed as 3CN for DA in multitemporal VHR RS images. It is
composed of three main layers: 1) mapping source training sam-
ples to the target domain via ELM; 2) target image classification
via ELM; and 3) spatial regularization via the random-walker
algorithm. Kellenberger et al. [177] combined the CNNs with
AL for animal detection in UAV images, which used the OT to
find corresponding regions between source and target data sets
in the space of CNN activations. Kalita et al. [178] investigated
the DA problem for land cover classification by utilizing the
ensemble decision approach of deep neural networks to address
the extra and missing class problem. Chakraborty et al. [179]
proposed a multilevel weighted transformation based neuro-
fuzzy DA method using stacked auto-encoder for land-cover
classification. Lucas et al. [145] proposed a Bayesian-inspired
CNN-based semisupervised DA method to produce land cover
maps from satellite image time series data. Tong et al. [180]
proposed a transferable deep model for land-cover classification
of multisource high-resolution RS images, which used a pseudo-
label learning strategy to automatically select training samples
from the target domain and extracted multiscale contextual
information of RS for classification.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

Two images in the 2013 and 2018 IEEE GRSS data fusion
contest, i.e., Houston2013 and Houston2018, are used in the ex-
periment. The two images were acquired by the ITRES Compact
Airborne Spectrographic Imager (CASI)-1500 sensor over the
University of Houston campus and the neighboring urban area
on June 23, 2012 and February 16, 2017, respectively [181],
[182]. Houston2013 has the size of 349 x 1905 pixels, 144
spectral bands, and 15 categories. Houston2018 has the size of
4172 x 1202 pixels, 48 spectral bands, and 20 categories. For
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Fig. 7. RGB composite image and ground-truth map for Houston2013 in (a)
and (b) and Houston2018 in (c) and (d).

TABLE I
NUMBER OF SAMPLES IN THE HOUSTON TASK

Houston2013 and Houston2018 data
Source Target
No. Class (Houston2013) | (Houston2018)
1 Grass healthy 345 1353
2 Grass stressed 365 4888
3 Trees 365 2766
4 Water 285 22
5 Residential buildings 319 5347
6 | Non-residential buildings 408 32459
7 Road 443 6365
Total 2530 53200

consistency, 48 spectral bands of Houston2013 are selected and
seven common classes in these two images are considered for
the DA task [108]. The Houston2013 and Houston2018 images
are set as source and target domains, respectively. The RGB
composite image and ground-truth map of two images are shown
in Fig. 7. The number of samples are shown in Table II.

In the experiments, we compare some traditional shallow
methods and recent deep DA methods, as shown in the upper
and lower part of the line in Table III. The 1-nearest neighbor
(1-NN) classifier is chosen as the base classifier. The NA (no
adaptation) uses the 1-NN classifier built on the source domain
to directly classify target samples. The GFK [13], SA [15],
and KSA [25] are subspace-based adaptation methods. The
TCA [38], [39], IDA [42], JGSA [43], LPJT [46], DADFL [48],
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TABLE III
CLASSIFICATION ACCURACIES FOR THE HOUSTON DATA
Class

Method ] 5 3 1 5 c 5 OA(%) K
NA 78.94 | 94.82 | 66.52 100 64.00 | 68.10 | 60.91 69.49 | 0.5386
GFK 77.38 | 95.50 | 66.27 100 63.89 | 67.66 | 60.52 | 69.17 | 0.5348
SA 78.79 | 94.82 | 66.56 | 100 | 64.02 | 68.23 | 60.71 | 69.55 | 0.5392
KSA 99.26 | 30.34 | 14.64 | 81.82 | 56.27 | 78.61 | 19.71 | 62.08 | 0.3588
TCA 52.92 | 53.60 | 68.87 | 100 | 52.93 | 59.26 | 48.56 | 57.18 | 0.3755
Shallow DA JDA 81.82 | 80.36 | 65.80 100 60.50 | 59.86 | 72.07 | 64.15 | 0.4865
JGSA 92.68 | 81.87 | 72.52 | 100 | 71.97 | 73.71 | 70.02 | 74.28 | 0.6132
LPIT 82.26 | 91.98 | 59.44 | 100 | 63.76 | 69.15 | 68.83 | 70.51 | 0.5602
DADFL 88.40 | 84.49 | 72.52 100 | 70.75 | 6798 | 7493 | 71.38 | 0.5819
CORAL 50.41 | 64.75 | 72.85 100 63.34 | 60.25 | 61.21 61.51 0.4443
EasyTL | 99.63 | 16.43 | 20.35 | 54.55 | 81.20 | 65.60 | 13.17 | 54.89 | 0.3114
DAN 63.78 | 75.57 | 62.80 100 | 46.04 | 69.89 | 73.44 | 67.92 | 0.5206
MRAN 58.31 | 74.00 | 67.53 | 81.82 | 55.71 | 69.07 | 58.55 66.57 | 0.5091
DSAN 26.46 | 78.07 | 73.17 | 100 | 41.05 | 72.16 | 61.30 | 67.18 | 0.5079
Deep DA | DeepCoral | 13.30 | 60.17 | 45.41 | 40.91 | 54.67 | 72.77 | 19.25 | 60.44 | 0.3776
TSTnet 86.99 | 83.16 | 61.64 | 95.45 | 86.09 | 78.33 | 58.21 | 76.50 | 0.6378
DAAN 68.00 | 89.85 | 68.33 100 | 49.24 | 75.20 | 65.95 | 72.30 | 0.5751
MCD 65.85 | 87.77 | 55.60 100 85.17 | 72.57 | 75.04 | 74.49 | 0.6139
DWL 86.47 | 83.53 | 63.77 | 100 | 55.86 | 76.49 | 67.37 | 73.58 | 0.5937

and CORAL [49] are transformation-based adaptation meth-
ods. EasyTL [86] is a classifier-based method. In the LPJT
method, the landmark selection for source and target domains
are considered. For the deep DA methods, the DAN [98],
MRAN [100], DSAN [101], DeepCORAL [102], and TST-
net [108] are discrepancy-based methods. The DAAN [118],
MCD [119], and DWL [120] are adversarial-based methods.
For subspace-based DA algorithms, the dimensionality of the
subspace is set to 20. The optimal learning rate I of all deep
learning algorithms is chosen from {0.0001, 0.001,0.01,0.1},
the batch size of the network is all set to 128, and the number
of training iterations is 100. For DAN, DAAN, MRAN, and
DSAN, there is a regularization parameter A whose value is
chosen from {0.001, 0.01, 0.1}. For all compared deep learning
algorithms, to ensure the fairness of the comparison experi-
ments, the backbone network is the ResNet18. The classifica-
tion evaluation indicators are overall accuracy (OA) and kappa
coefficient (k).

From Table 111, we can see that some traditional DA methods
provide poor adaptation performance and their OAs are even
worse than NA. It demonstrates that not all of the DA methods
can reduce distribution discrepancy, and it is likely to produce
negative transfer when there is significant spectral difference
between domains. The JGSA, LPJT, and DADFL provide rela-
tively better results than NA because these methods align the
statistical and geometrical discrepancy between domains by
learning two projections for source and target domains, respec-
tively, and taking into account the local or global discriminative

information of domains. The Houston2013 and Houston2018
datasets have great spectral differences, so there may not exist
a shared subspace generated by a unified transformation. In
addition, the discriminative information of source or/and target
domain can be used to improve the DA performance.

For deep DA methods, the adversarial methods, such as
DAAN, MCD, and DWL, show better results than NA. Through
an adversarial learning, the ability of generator and discriminator
are simultaneously improved. The feature generator is likely
to produce target features that are highly similar to the source
features, and then a task-specific classifier built on the source do-
main can be used to classify target samples. Among all methods,
the recently proposed TSTnet produces the best results. In the
feature extraction part of TSTnet, the GCN and CNN are used to
extract convolutional and topological structure features. In the
adaptation part, the optimal transmission-based graph alignment
and MMD-based distribution alignment work cooperatively.
By exploiting the topological structure and semantic informa-
tion of HSIs and considering the distribution alignment and
topological relationship alignment, TSTnet generates excellent
results.

The classification map on the target domain of different meth-
ods are shown in Fig. 8. It can be seen that some methods, such as
TCA, CORAL, EasyTL, misclassify the class “Grass stressed”
in green color to the class “Grass healthy” in purple color due
to the high spectral similarity between these two classes. In
addition, many methods misclassify the class “Nonresidential
buildings” to the class “Road.”
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(p)

Houston task. (a) Ground-truth. (b) NA (69.49%). (c) GFK (69.17%). (d) SA (69.55%). (e) KSA (62.08%). (f) TCA (57.18%). (g) JDA (64.15%).

(h) JGSA (74.28%). (i) LPIT (70.51%). (j) DADFL (71.38%). (k) CORAL (61.51%). (1) EasyTL (54.89%). (m) DAN (67.92%). (n) MRAN (66.57%). (0) DSAN
(67.18%). (p) DeepCoral (60.44%). (q) TSTnet (76.50%),. (r) DAAN (72.30%). (s) MCD (74.49%). (t) DWL (73.58%).

TABLE IV
EXECUTION TIME (IN SECONDS) OF TRADITIONAL DA METHODS

Method NA
Time(s) 1.18

GFK SA
0.49 0.46

KSA
806.77

TCA  JDA
118.92 210.76

Method JGSA LPJT DADFL CORAL EasyTL
Time(s) 298.26 6095.4 1369.70 0.31 67.63

Here, we list the computational time of each algorithm on
the Houston task. All experiments are conducted on a com-
puter with a 2.7 GHz Intel Xeon Gold 6258R CPU and two
NVIDIA GeForce RTX 2080 Ti GPUs. The traditional methods
are implemented on Matlab and their running times are shown
in Table I'V. The deep learning methods are implemented on the
Pytorch deep learning framework. The execution time for one
epoch training of deep DA methods are shown in Table V. Some
traditional methods, such as JGSA, LPJT, and DADFL, need to

TABLE V
EXECUTION TIME (IN SECONDS) FOR ONE EPOCH TRAINING OF DEEP
DA METHODS

Method DAN MRAN DSAN DeepCORAL
Time(s) 1.26 1.23 1.45 0.74
Method TSTnet DAAN MCD DWL
Time(s) 6.58 1.32 3.24 0.54

iteratively update the transformation matrix and pseudo labels,
so their running times are relatively long.

VIII. CONCLUSION

The early DA methods focus on either instance reweight-
ing or subspace adaptation or transformation-based adaptation.
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For RS image classification, due to the existence of large spec-
tral drift between domains, it usually needs to simultaneously
consider instance reweighting, subspace learning, and feature
transformation. For traditional DA methods, we can incorporate
landmark selection or feature weighting, target pseudo-label
learning, local discriminative preservation into a subspace-based
transformation framework to improve the discriminative ability
of DA models.

For deep DA methods, the feature extraction module can be
further improved by considering the data characteristics of RS
images. The adversarial learning strategy can be combined with
the discrepancy-based adaptation. In addition, the target pseudo-
label learning can be used in the deep DA methods to iteratively
update the network and improve the discriminative ability.

Currently, many existing RS DA methods focus on the general
homogeneous unsupervised DA problem where the source and
target domains have similar or same dimensionality feature
spaces and there are no labeled instances in the target domain.
In real situations, the RS classification problem may be more
complex. The feature space and class space of source and target
domains may be different. The classical DA problem can be
extended to the following cases.

1) Heterogeneous DA [183]: The dimensionality of source
and target domains are different and features of two do-
mains are disjoint. For example, due to the difference in
hyperspectral sensors, different HSIs usually have differ-
ent spectral bands.

2) Multisource DA [184]: There are multiple source domains.
The challenges lie in the unavailability of target labels and
complex composition of multiple source domains [185].
For long-term RS image series analysis, there may exist
multiple historical labeled images as sources. Compared
with a single source domain, the joint use of multiple
sources is likely to improve the DA performance.

3) Open set DA [186]: Only a few categories of interest
are shared between source and target data. That is, the
class space of source and target domains are different
and intersect. Due to the changes of ground materials and
acquisition regions, the source and target domains usually
have some different classes especially for large-scale RS
classification.

4) Partial DA [187]: It is assumed that the target label space
is a subspace of the source label space. For example, if we
only focus on some special classes in the target domain, the
rich information of source domain can be used to perform
partial DA.

5) Few-shot DA [188], [189]: The combination of DA with
few-shotlearning for using very few labeled target samples
in training. When the source and target domains have great
distribution differences and the number of classes is large,
the unsupervised DA will fail. In this case, the limited
labeled target samples can play a great role in building a
connection between source and target classes.

6) Domain Generalization [190]: It aims to achieve out-of-
distribution generalization by using only source data for
model learning. There are many RS images obtained by
different sensors or acquired in different conditions. It is
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likely to learn a model with high generalization ability
from available RS images, and then applies the model to
classify other images in real-time RS analysis.

The DA techniques can be used for large scene and long-term
RS image processing. The labeling process for a large scene
is costly and time-consuming. The DA technique can help to
transfer the labels from a small region to the whole scene. For
long-term image processing, historical images can be used to
predict unseen images, and change analysis among RS images
of different times can be performed.
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