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Abstract—The scientific outcomes of the 2022 Landslide4Sense
(L4S) competition organized by the Institute of Advanced Re-
search in Artificial Intelligence are presented here. The objective
of the competition is to automatically detect landslides based on
large-scale multiple sources of satellite imagery collected globally.
The 2022 L4S aims to foster interdisciplinary research on recent
developments in deep learning (DL) models for the semantic seg-
mentation task using satellite imagery. Over the past few years, DL-
based models have achieved performance that meets expectations
on image interpretation due to the development of convolutional
neural networks. The main objective of this article is to present the
details and the best-performing algorithms featured in this compe-
tition. The winning solutions are elaborated with state-of-the-art
models, such as the Swin Transformer, SegFormer, and U-Net.
Advanced machine learning techniques and strategies, such as hard
example mining, self-training, and mix-up data augmentation, are
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also considered. Moreover, we describe the L4S benchmark dataset
in order to facilitate further comparisons and report the results
of the accuracy assessment online. The data are accessible on
Future Development Leaderboard for future evaluation at https:
//www.iarai.ac.at/landslide4sense/challenge/, and researchers are
invited to submit more prediction results, evaluate the accuracy of
their methods, compare them with those of other users, and, ideally,
improve the landslide detection results reported in this article.

Index Terms—Deep learning (DL), landslide detection,
multispectral imagery, natural hazard, remote sensing (RS).

I. INTRODUCTION

LANDSLIDES are a frequent natural hazard observed in
mountainous terrains across the globe [1]. There are several

mechanisms by which soil, rock, and objects located on the
ground or underground on an unstable hill slope can move
downward and create a landslide [2]. Landslides mainly occur
in response to natural processes, such as heavy rainfalls and
earthquakes, or human-induced activities [3]. The downward
movement of the most catastrophic landslides is fast. They can
travel large distances and take down everything in their path,
creating scars on higher slopes and accumulating to deposition
in valleys [4]. Landslides in mountainous areas are a problem,
responsible for substantial losses, including damage to buildings
and infrastructure and even fatalities [5]. The current climate
changes, population growth, and rapid urbanization in areas
vulnerable to natural hazards have also increased the occur-
rence of landslides and their consequences [6]. As a result, in
recent years, a considerable amount of attention has been paid
to gaining a better understanding of the mechanisms of these
catastrophic hazards [7]. The most vital information regarding
these catastrophic events is the awareness of past movements
and their exact locations and extensions, ideally recorded in a
landslide inventory dataset [5]. Such a dataset is an essential
requirement for extracting advanced information, developing
knowledge in the field, and predicting the unstable slopes that
are prone to landslides [8], [9], [10]. Prediction maps generated
from such a dataset can be used for potential mitigation measures
for the region under the study [11]. Therefore, a more accurate
and detailed landslide inventory dataset is a prerequisite for a
precise disaster mitigation action [12].
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Over the past decade, deep learning (DL) has gained a great
deal of attention, both in computer vision and remote sensing
(RS) image analyses. The application of DL and convolutional
neural networks (CNNs) to the detection of landslides emerged
in early 2019, primarily using very high resolution (VHR) [14]
and hyperspectral RS data [15]. The prospect of generating
landslide maps with more accuracy than that can be achieved
with traditional methods such as semiautomated [16] and ma-
chine learning classifiers [17] has encouraged researchers in this
field to develop and apply more sophisticated DL algorithms.
To the best of our knowledge, no DL algorithm has been de-
signed specifically for the distinct characteristics of landslide
detection. Therefore, the application of existing DL models and
their variations for this task poses some new concerns, namely
their transferability to new geographical areas with different
landcovers and morphologies and the lack of any comprehensive
open-source benchmark dataset [12].

The artificial intelligence for remote sensing (AI4RS) group
of the Institute of Advanced Research in Artificial Intelligence
(IARAI) is a small international group of scientists working on
the development and application of state-of-the-art DL solutions
and algorithms for satellite imagery interpretation. This group
has organized the Landslide4Sense (L4S) competition to foster
ideas and progress in DL algorithms for the specific Earth
observation application of landslide detection. The competition
provides participants with a landslide benchmark dataset with
globally distributed multisource satellite imagery. The bench-
mark dataset is prepared and introduced as an explicit norm for
evaluating alternative DL approaches. The training set, which
is a subset of the whole benchmark dataset, is released and
thoroughly described by Ghorbanzadeh et al. [6]. The study
evaluates this subset of the benchmark dataset using 11 different
state-of-the-art DL segmentation models.

The L4S competition fosters interdisciplinary research in
computer vision, artificial intelligence (AI), and RS image anal-
ysis for image classification and landslide detection. The global
objective is to build DL-based models for understanding the dif-
ferentiating characteristics of landslides based on the provided
optical digital elevation model (DEM) and slope layers from
freely available satellite imagery acquired by Sentinel-2 sensors
and ALOS PALSAR. During the L4S competition, along with
the highest accuracy assessment results, a special prize was also
awarded for the most creative and innovative solution.

The competition is organized by IARAI and aims to improve
automatic landslide detection DL algorithms using multisource
satellite imagery. In this competition, the main objective is the
creation of landslide inventory maps using only the specified
labeled landslide benchmark dataset as training data.

The main focus of this article is on the scientific outcomes
of the L4S competition. The rest of the article is organized as
follows. Section II describes the L4S benchmark dataset used in
the competition. Section III provides statistics of submissions
and the overall results of the competition. In the next four
sections, we discuss the DL algorithms proposed by the first-
to third-ranked teams and the team of the special prize. Finally,
we summarize our concluding points in Section VIII.

II. DATA AND BASELINE OF LANDSLIDE4SENSE

COMPETITION 2022

A. Dataset

The benchmark dataset for the L4S competition comprises
14 layers of data: multispectral data from Sentinel-2 (band1–
band12), DEM, and slope data from ALOS PALSAR. All 14
layers in the landslide benchmark dataset are resized to the
resolution of about 10 m per pixel and are labeled pixelwise
to landslide and nonlandslide classes. The landslide benchmark
data consists of the training, validation, and test sets that en-
compass events occurring across a wide range of geographical
locations throughout the world’s mountainous regions. Specif-
ically, only the training subset is acquired from four different
sites: the Iburi-Tobu area of Hokkaido, the Kodagu district of
Karnataka, the Rasuwa district of Bagmati, and western Taitung
County. A number of methods have been proposed in various
relevant studies for the annotation of landslides, in particu-
lar, data preprocessing workflows [18], manual interpretation
methods [14], [19], [20], [21], [22], [23], conventional machine
learning models [24], and object-based methods [25]. Most
of the current landslide detection studies typically use manual
interpretation of satellite imagery as the basis for creating their
image labels. Whatever the case, landslides can be annotated,
and therefore, the images can be labeled in a variety of ways
depending on the expert’s opinion. [26]. Consequently, this
study used a two-step procedure for landslide annotation and
image labeling to address this issue. An object-based method
was first developed for detecting the landslide, followed by
manual verification and correction of all landslide annotations.
We begin by calculating the relevant image difference indexes
based on pre- and postevent images. The events may differ
for the case study areas considered for generating the training,
validation, and test datasets. With the resulting indexes (e.g., the
red-over-green, the brightness, and vegetation Index differences)
and the original postlandslide images, multiresolution segmen-
tation (MRS) technique was used to generate meaningful image
segments. The MRS technique produces the image segments
through an iterative process, grouping neighboring pixels until
the predefined scale and shape parameters are reached. A rule-
based image classification based on several thresholds that vary
depending on the study area distinguishes landslides from other
features. In [16], [17], [27], and[28], similar methodologies and
rule-based segmentation and classification have been described.
In the second step of our landslide annotation and image labeling
procedure, a variety of further data sources were then used to
visually correct landslide polygons, specifically Google Earth
images, and previous landslide inventory datasets provided in
a number of studies, such as [29], were used to enhance the
first step’s results. Annotations indicate the precise position and
clear boundaries of landslides; we do not include any other
information, including the type and volume of mass movement
of the landslide. The data collected from these four sites provide
3799 image patches with a size of 128× 128 pixels (see Fig. 1).
The validation and test sets contain 245 and 800 image patches
of the same size, respectively, which were acquired from other
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Fig. 1. Locations of the training sites on a global image of landslide susceptibility generated by Stanley and Kirschbaum[13] and the visualization of every image
layer in the 128× 128 window size patches of the landslide training dataset. Multispectral Sentinel-2 data are represented by bands 1–12, and slope and DEM
data are represented by bands 13–14. The patches in the last column refer to the corresponding ground truth polygons.

geographical sites. Details about the 14 layers of the landslide
benchmark dataset are given as follows.

1) Sentinel-2: The multispectral Sentinel-2 layers are pro-
vided in wavelengths of ultrablue, blue, green, red, visible
and near-infrared, and short-wave infrared (SWIR). The
bands (B2, B3, B4, B8) have a spatial resolution of 10 m,
whereas those of (B5, B6, B7, B11, B12) and (B1, B9,
B10) have a spatial resolution of 20 m and 60 m, respec-
tively. This imagery is captured during cloud-free days
after the event.

2) ALOS PALSAR: The ALOS phased-array type l-band
synthetic aperture radar layers have a spatial resolution
of 12.5 m and were acquired from 2006 to 2019. The
Alaska Satellite Facility is one of the distributed active
archive centers that provides high-resolution DEM from
ALOS PALSAR at no cost to the user. The slope layer is
derived from the DEM ALOS PALSAR, and both DEM
and slope layers are converted to 10 m spatial resolution.
More details about the landslide benchmark dataset can
be found in [6].

The task of the L4S competition is to predict landslides
from the dataset provided. The labels are only provided for
3799 image patches of the training dataset. The landslide de-
tection results are evaluated with the pixel-wise F1 Score on
the landslide category in both the validation and test phases.

Rankings for the competition were determined using only this
accuracy assessment metric. However, competitors also received
precision and recall metrics during the validation phase to get
more meaningful feedback for their landslide detection results.

B. Baseline

We provided a simple baseline in our public GitHub repository
prior to the start of the L4S competition.1 A state-of-the-art
DL model for semantic segmentation was implemented in Py-
Torch in order to provide this service. This model contains a
user-configurable training script for U-Net [30] and the data
loader for reading the training and test datasets. U-Net was
first applied to biomedical image segmentation, followed by nu-
merous semantic segmentation applications that demonstrated
successful results. This model is also common for the landslide
detection task and has been applied in a number of studies
[12], [31], [32]. U-Net comprises an encoder route capable of
capturing low-level representations and a decoder route designed
to capture high-level representations. As the decoder route is
asymmetrical, where the vanished content of the localization is
restored by using an asymmetrical design, the encoder route
follows a standard CNN design assembled from consecutive

1https://github.com/iarai/Landslide4Sense-2022

https://github.com/iarai/Landslide4Sense-2022
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Fig. 2. Global distribution and number of unique users per country or region, created in https://app.datawrapper.de.

convolution blocks. There is a max-pooling layer with a filter
size of 2× 2 and a stride of 2, after two convolutional layers with
a filter size of 3× 3, leveraging the rectified linear unit activation
function in each block [30]. The baseline model implemented in
the L4S competition includes 23 convolutional layers, of which
4 are convolutional-transpose layers. The baseline U-Net model
is trained using the training dataset and tested on 245 and 800
image patches of validation and test datasets, respectively. The
resulting baseline accuracy for the validation and test datasets
is represented in Table I. We used all 14 bands for training
and testing, and no additional measurements were applied (e.g.,
data augmentation, pre- or postprocessing. Adding any external
auxiliary data such as VHR images was forbidden, as specified in
the L4S competition terms and conditions. The best performance
of the baseline model achieves an F1 score of 59.92% on the test
set.

III. SUBMISSIONS AND RESULTS

There were 439 unique users within 85 teams that submitted
7775 landslide detection results to the validation phase of the
L4S competition website.2 The number of total submissions
to the test leaderboard was 219 landslide detection results. We
limited the submissions per team to ten for the test phase. The
final ranking was determined based on the highest F1 Score of
each team during the test phase. Moreover, a special prize was
also considered for the most creative and innovative solution in
landslide detection in the view of the L4S scientific committee.
The competitors were from 37 different countries or regions.
Most of the competitors were from mainland China, with 134
unique users, followed by 62 from Hong Kong, 50 from USA,
and 42 from Germany. Fig. 2 shows the distribution and the
approximate number of unique users per country or region.

The first three ranked teams that were selected based on their
highest F1 Scores and the team recipient of the special prize

2https://www.iarai.ac.at/landslide4sense/challenge/

TABLE I
BASELINE APPROACH RESULTS IN THE VALIDATION AND TEST PHASES

were named winners of the L4S competition and presented their
solutions during IJCAI-ECAI 2022, the 31st International Joint
Conference on Artificial Intelligence, and the 25th European
Conference on Artificial Intelligence at the Workshop on Com-
plex Data Challenges in Earth Observation, CDCEO 2022.

The four winning teams are as follows.
1) 1st Place: Kingdrone team: Junjue Wang, Hengwei Zhao,

Yang Pan, Ailong Ma, Xinyu Wang, and Yanfei Zhong
from Wuhan University, China.

2) 2nd Place: Seek team: Dong Zhao, Qi Zang, Zining Wang,
Dou Quan, and Shuang Wang from Xidian University,
China.

3) 3rd Place: Tanmlh team: Fahong Zhang, Zhitong Xiong,
Qingsong Xu, Wei Yao, Yilei Shi, and Xiao Xiang Zhu
from the Technical University of Munich (TUM), Ger-
many; German Aerospace Center, Germany.

4) Special Prize: Sklgp team: Qiang Xu, Weile Li, Lin Bai,
Kai Chen, Weihang Peng, Zhenzhen Duan, and Huiyan
Lu from the Chengdu University of Technology, China.

Table II summarizes the four winning solutions with F1
scores and types of backbone networks and strategies used. It
can be observed that all these winning solutions are based on
DL models. While the Tanmlh team and the Sklgp team adopt
advanced fully convolutional networks, such as DeeplabV3+
[33] and U-Net [30], as the main backbone networks in their
solutions, the Kingdrone team and the Seek team further take the
recent state-of-the-art Vision Transformer architectures such as
Swin Transformer [34] and SegFormer [35] into consideration.
Besides, it is interesting to find that all top three solutions adopt

https://app.datawrapper.de
https://www.iarai.ac.at/landslide4sense/challenge/
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TABLE II
FOUR WINNING SOLUTIONS WITH F1 SCORES ON THE TEST LEADERBOARD AND TYPE OF BACKBONE NETWORKS AND STRATEGIES USED

Fig. 3. Problem of small objects and class imbalance. The landslide has
some smaller branches and the background has 49 times as many pixels as
the landslide. (a) Small objects. (b) Class imbalance.

the Lovasz loss [36] and the self-training technique [37] as aux-
iliary strategies to train their models in addition to the traditional
cross-entropy loss. Considering that different channels may have
different effects on landslide detection, the Seek team and the
Sklgp team further adopt the band selection technique in their
solutions. Other strategies such as the mix-up augmentation
[38], dense conditional random field (DenseCRF) [39], and
ensemble learning are also considered in the winning teams.
Detailed descriptions of the winning solutions can be found in
the following sections.

IV. FIRST-PLACE TEAM

A. Analysis of the Characteristics of Landslide

A progressive label refinement-based distribution adaptation
landslide detection framework was proposed by the first-place
team for large-scale landslide detection. The unique characteris-
tics of landslides create two particular challenges for large-scale
landslide detection from RS images: small objects and class
imbalance, and distribution inconsistency.

The first challenge, small objects and class imbalance, is
shown in Fig. 3. In RS images, the morphology of landslides
is very complex, especially with many small branches, which
belong to small objects [see Fig. 3(a)]. Furthermore, the land-
slide is not the dominant ground object in large-scale RS images,
as shown in Fig. 3(b), which illustrates the statistical result of
the training dataset in which the proportion of pixels occupied
by the landslide is only 2%, and the number of pixels of other
ground objects (background) is 49 times that of the landslide.
Both of these challenges, of small objects and class imbalances,
lead to lower recall scores.

Distribution inconsistency is another difficult challenge for
large-scale landslide detection from RS imagery. In real-world
large-scale landslide detection applications, images of landslides

Fig. 4. Problem of distribution inconsistency. The statistical results are cal-
culated band by band and are significantly different among the training dataset,
the validation dataset, and the testing dataset.

to be detected come from all over the world. These images are
collected at different times, which leads to different imaging
conditions. This spatio-temporal difference leads, in turn, to
great differences in radiation values or pixel values of different
RS images, especially in the mountains [40] and is characterized
by statistical inconsistency. In Fig. 4, the mean and standard
deviation of the remote sensing images of the training, valida-
tion, and testing datasets are calculated and displayed band by
band. The histogram is the mean and the error bar represents
the standard deviations. The statistical results of the training
dataset and the validation dataset (testing data set) are quite
different, causing the poor generalization performance of the
model trained with the training dataset data on the validation
dataset (testing data set).

B. Progressive Label Refinement-Based Distribution
Adaptation Framework

To address the challenges of large-scale landslide detection,
a progressive label refinement-based distribution adaptation
framework is proposed by the first-place team for landslide
detection. As shown in Fig. 5, the proposed framework includes
data preprocessing, model ensemble, model training, model
inference, and pseudolabel refinement.

1) Data Preprocessing: Scale promotion is used to resist
the weak representation caused by small landslide branches;
the original images are scaled up from 128× 128 pixels to
512× 512 pixels. Random flip, random rotation, and color
perturbation also are adopted for data augmentation. Color per-
turbation is only used for multispectral data, not DEM and slope
data.

Separated normalization is proposed to alleviate the distri-
bution inconsistency challenge in the data preprocessing stage,
which uses the mean and variance from different domains to
normalize the data. For example, two different domains are the
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Fig. 5. Progressive label refinement-based distribution adaptation landslide detection framework.

training domain from the training dataset and the validation
domain from the validation dataset in the model validation stage.
The mean and standard deviation are calculated from the two
datasets, respectively, and then the data in the two domains are
normalized, respectively. Separated normalization is similar to
the normalization for cross-sensor transfer learning [41], but the
operation of domain-specific statistics is performed in the data
preprocessing stage.

2) Model Ensemble and Training: In the segmentation
model, three models are used to integrate the final landslide
detection results. The U-Decoder architecture considering mul-
tiple scales is selected as the decoder to further alleviate the
small object problem, and Swin Transformer [34] and Efficient-
NetV2 [42] are selected as encoders to capture complex features
of the landslide. This framework also uses SegFormer [35],
which utilizes self-attention operations to fit the variant shapes
of landslides, and the MLP, which is used to enhance the dif-
ficult sample features. To further increase the generalization of
the model, the batch normalization in the three segmentation
models is replaced by cross-sensor normalization [41] to encode
the statistical consistency between the training dataset and the
validation (testing) dataset.

As for model training, Lovasz loss [36] and an online hard
example mining strategy are used to address the problem of class
imbalance, and soft cross-entropy loss [43] is used to solve the
problem of noisy labels in the pseudo labels.

3) Model Inference and Pseudolabel Refinement: The prob-
ability values output by the above three models are averaged as
the final prediction results in the inference stage.

To further alleviate the distribution inconsistency problem,
the validation (testing) dataset is used in the training process,
and the progressive pseudolabel refinement is proposed to gen-
erate pseudolabels for validation or testing images. Based on
the prediction of the ith round, pseudolabels of the (i+ 1)th

Fig. 6. Experimental results on the validation leaderboard. Each proposed
module improves overall performance in the different aspects and is compatible
with the other modules. SN—separate normalization; SLO—soft cross-entropy
loss+Lovasz loss+OHEM; S×—scale promotion; R—refinement round.

round can be generated using a probability threshold of 0.7.
The models of the (i+ 1)th round can be trained by training
dataset and validation (testing) images with pseudolabels. The
domain-adaptive consistency training and the generation of
pseudolabels are performed iteratively, and the pseudolabels are
refined progressively.

C. Experimental Results

We conducted a series of experiments to evaluate our proposed
method on the L4S dataset. All bands in the multisource images
were used as inputs during training and testing.

The results in Fig. 6 show that each proposed module
improves landslide detection accuracy in the different aspects.
In particular, the separate normalization achieves the great-
est improvement, addressing the distribution inconsistencies in
multisource data. As the number of label refinements increase,
overall performance improves. After the final round, we combine
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Fig. 7. Experimental results on the test leaderboard.

these advanced models into an ensemble to obtain the highest
F1 score of 80.41%.

As for the test leaderboard, the best model in validation
experiments is utilized as the baseline and achieves an F1 score
of 73.07% (see Fig. 7). Consistent with the validation phase,
detection accuracy is progressively improved as the number of
rounds increase. Finally, the best model obtains the highest F1
score of 74.54%.

V. SECOND-PLACE TEAM

The network structure we propose for the L4S competition is
shown in Fig. 8. The details of each component of this proposed
structure are discussed in detail in the following.

A. Framework Introduction

The main framework of our model is the encoder–decoder
network, which uses an U-Net-like [30] skip connection struc-
ture and can better integrate shallow and deep features. Influ-
enced by the rapid development of transformer-based models
in the field of computer vision[34], [35], we introduce Swin
Transformer [34] as the encoder part in this structure. To enable
the Swin Transformer to reasonably capture the associations
between landslide regions on multispectral data, we performed
spectral selection experiments to use the spectra suitable for the
self-attention mechanism. Subsequently, in order to alleviate the
imbalance problem of positive and negative samples in landslide
detection, we design an unbalanced training strategy that utilizes
the unbalanced loss to first train compact feature representations,
and then use the feature representations to fine-tune the classifier.
Finally, we adopt a self-training strategy to further enhance the
generalization of the model in the test domain.

1) Spectral Selection: The Vision Transformer-based model
performs feature aggregations using the self-attention mecha-
nism to capture relations among pixels [34]. If irrelevant spectral
information occupies dominant information, it will degrade
the performance of the model. However, in the multispectral
data, the responses of different spectra to the landslide area
are quite different, and some spectra are even insensitive to
landslides. Therefore, these “unspecific” spectra interfere with
the execution of the self-attention mechanism. We performed
spectral selection experiments, as given in Table III, and find
that the fully convolutional model U-Net performs better with

TABLE III
SPECTRAL SELECTION EXPERIMENTS ON THE VALIDATION SET

more spectral inputs, while the Transformer model works better
when only the RGB spectrum is input. We further visualized the
negative effect on self-attention when a spectrum insensitive to
landslide responses was fed into the model, as shown in Fig. 9.
Finally, we use the RGB spectra as the input to the model.

2) Balanced Training: We design a two-stage training
method to reduce the impact of the imbalance in the proportion
of positive and negative samples. In the first stage, both the
encoder and the decoder are trained simultaneously. For any
input samplesxi ∈ Rw×h×3, we use weighted cross-entropy loss
Lwce and Lovasz loss Llov [36] for balanced training as follows:

argmin
E,D

Lwce + Llov + Lice. (1)

The Lice loss is the image-level loss performed in high-level
semantic features in the encoder to assist training, which is
defined as follows:

Lice = − 1

|X |
∑
xi∈X

δ(yi) logMP (E(xi)) (2)

where δ is a pointer function. If there is a positive sample
(landslide) in y, the value of δ is 1; otherwise, its value is 0.
MP (·) is a fully connected layer with a global pooling operation.
X denotes the total dataset. Optimizing theLice loss can increase
the model’s attention to landslides, since the task of finding a
landslide in an image is much easier than finding where the
landslide is. In order to reweight the learning of negative and
positive samples, the Lwce loss is defined as follows:

Lwce = − 1

|X |
∑
xi∈X

Nneg

Npos
yi logD(E(xi)) (3)

where Nneg denotes the number of negative samples (nonland-
slides) and Npos denotes the number of positive samples (land-
slides) in any input image x.

As mentioned in [45], this reweighting loss Lwce plays a
positive role in balancing the feature distribution of positive and
negative samples. However, the classifier will still be biased.
Therefore, in the second stage, we fix the trained encoder E and
use the standard cross-entropy loss Lce to train the decoder D

argmin
D

Lce + Lice. (4)
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Fig. 8. Model structure for landslide detection proposed by Seek team.

Fig. 9. Visualization of the feature activation map of the Swin Transformer
when inputting different spectral bands. (a) Image. (b) RGB. (c) RGB + SWIR.
(d) RGB + NIR + SWIR. (e) Ground Truth.

Once we have balanced feature representations, they can further
be exploited to de-bias the classifier.

3) Test Data Self-Training: RS imaging often faces the prob-
lem of data distribution shifts due to differences in geography
and sampling time. To fully adapt the model to the distribu-
tion of the test data, we adopt a self-training strategy [37] for
enhancing the generalization of the model. We sort the output
probabilities predicted in the previous stage, select the top λ%
high-confidence pixel-level pseudolabels, and add them to the
training data for self-training.

B. Experimental Results

In this section, we report the performance of the balanced
training and self-training methods.

Table IV presents that the two-stage balanced training method
better attenuates the influence of the imbalance problem than
focal loss [46] and other common methods[36]. Among them,
normal training is a one-stage training method using cross-
entropy loss. For weighted cross-entropy loss, we use the scale
coefficients of positive samples and negative samples as the

TABLE IV
BALANCE TRAINING EXPERIMENTS ON THE VALIDATION SET

Fig. 10. Visualization of pseudolabels obtained with different λ values. The
black area is the selected negative sample area (landslide), the red area is the
positive sample area (nonlandslide), and the white area is the filtered-out area.
(a) Test Image. (b) λ = 50%. (c) λ = 70%. (d) λ = 90%. (e) λ = 100%.

loss weighting coefficient of negative samples. This method
has achieved a certain improvement by weighting the positive
and negative pixels, but the improvement is relatively limited.
Focal loss [46] balances easy and hard samples by modifying
their gradients for back propagation and is also used in many
unbalanced scenarios. But on this task, the performance de-
grades when this loss is added. Our analysis is that it has a great
influence on the gradient, and inappropriate hyperparameters
will greatly affect the performance. Lovasz loss [36] is a loss
that directly optimizes the IoU coefficients, which is efficient and
used as the first-stage loss for our balanced training. Based on
this, the two-stage balanced training method achieves the better
performance, which further corrects the bias of the classifier.
Finally, the adopted two-stage balanced training improves the
F1 score by 4.1% on the basis of baseline.

Fig. 10 shows how the setting of λ affects the pseudolabel
selection. It can be observed that as lambda increases, more
samples are selected, including both high- and low-confidence
samples. Table V illustrates that the proposed self-training
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TABLE V
SELF-TRAINING EXPERIMENTS WITH DIFFERENT λ VALUES ON THE

VALIDATION SET

TABLE VI
EXPERIMENTS OF THE PROPOSED METHOD ON THE TEST SET

method can enhance the performance of the model and can also
balance precision and recall by adjusting the value of λ. When
λ is small, the pseudolabels corresponding to high-confidence
regions is picked. Since the confusing area is easy to appear
in the adjacent area of the positive (landslide) and negative
(none-landslide) samples, the high-confidence samples mostly
appear in the central area. With such pseudolabels, we found that
the model predicts more regions as positive samples, reducing
missed detections and increasing recall. However, the boundary
area is more blurred, resulting in increased overdetection. As
λ increases, more pseudolabels are picked, including uncertain
samples. This part of the sample provides more valuable infor-
mation about the confusing area, which makes the model not too
biased toward the positive sample area. Although these samples
contain noise, deep models can reduce the effect of noise by
fine-tuning and stopping training early [47]. When λ is set to
100, all pseudolabels are used for self-training, and experiments
show that it achieves a better balance between precision and
recall. In conclusion, we think that different λ values can be
used in different scenarios.

Finally, the proposed method achieved the second place in
the test leaderboard with an F1 score of 73.99%, as given in
Table VI, and it differs from the first place of 74.54% by only
0.55%. In summary, the transformer-based solution we use can
effectively detect landslide areas in multispectral RS scenes. In
the future, our team argues that adaptive spectral selection or
fusion technology is a necessary way to explore the performance
of this transformer model further and will become a follow-up
research focus of our team.

VI. THIRD-PLACE TEAM

The solution of the third-place team is illustrated in Fig. 11.
The methodology is detailed in the following sections.

A. Problem Formulation

Technically, the landslide detection problem can be formu-
lated as a binary semantic segmentation problem. The training,
validation, and test datasets can be denoted byDtrain = {xtr, ytr},
Dval = {xval}, and Dtest = {xte}, where xtr, ytr, xval, and

xte ∈ RH×W correspond to the training patch, training label,
validation patch, and test patch, respectively. Here, H and W
denote the datasets’ spatial size. The goal of the landslide detec-
tion task is to train a semantic segmentation model on Dtrain and
Dval so that the best performance can be achieved on Dtest. Since
the data are collected from different regions across the world,
improving the exploitation of the unlabeled validation data can
be beneficial to mitigate the domain gap between all the labeled
and unlabeled data. To this end, we propose to incorporate a
mixed supervised loss Lmix

sup and a mixed pseudolabel loss Lmix
pse

to train the network

L = Lmix
sup + Lmix

pse . (5)

The detailed formulation of Lmix
sup and Lmix

pse will be given in
Section VI-D.

B. Supervised Losses

A combination of the cross-entropy loss Lcet and the Jaccard
loss Ljac [48] is used as the supervised losses

Lsup = Lcet(Ms(xtr), ytr) + Ljac(Ms(xtr), ytr). (6)

HereMs(·) denotes the mapping function defined by the student
model Ms.

C. Self-Training

The authors propose a self-training strategy [37] to exploit
the unlabeled data. First, the teacher model Mt will be trained
solely on the training data Dtrain. Then it will be used to generate
pseudolabels on the unlabeled data Dval to supervise the student
model MS .

However, the raw predictions from Mt are likely to be in-
correct. To prevent the student model from overfitting to those
wrong predictions, a pseudolabel selection strategy is needed to
filter out misclassified pixels.

To achieve this, the Monte Carlo dropout strategy [49] is first
used to generate an uncertainty map for each unlabeled image
patch. More specifically, the unlabeled validation patch xval is
input to the teacher model Mt for ten different runs. During
each run, a dropout layer with 0.3 dropping rate is applied after
the first convolution layer to disturb the network. The variances
of ten different outputs are then calculated as the uncertainty
map.

Next, the uncertainty map is used to mask out those uncertain
predictions from the teacher model Mt. Inspired by class-
balanced self-training [37], the selection process is conducted in
a classwise manner, which means the top 90% of the background
pixels and top 70% of the landslide pixels with the lowest
uncertainty will be selected as the pseudolabels. Meanwhile, the
other predictions with higher uncertainty will be ignored when
calculating the losses.

To this end, the pseudolabel loss Lpse can be formulated by

Lpse = Lcet(Ms(xte), ŷte) + Ljac(Ms(xte), ŷte). (7)

Here, ŷte corresponds to the pseudolabels of xte generated by
the teacher model and followed by the pseudolabel selection
process.
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Fig. 11. Network architecture of the landslide detection method proposed by Tanmlh team. The overall architecture follows a self-training scheme, which consists
of a teacher model branch and a student model branch. For the teacher model branch, a teacher model pretrained on the training data is applied to generate
pseudolabels based on the unlabeled images, which will later be used to supervise the training of the student model. For the student model branch, both the labeled
and the unlabeled images are input to the student model after some data augmentation and mix-up operations. The training losses are then calculated based on both
the training labels and the pseudolabels. During the training phase, the teacher model is fixed.

D. Mix-Up Strategy

To prevent overfitting and further improve the generalizability
of the landslide detection model, a mix-up strategy [38] is
applied to both the labeled and the unlabeled data. Given a batch
of the training data xtr and the validation data xval, the mixed
data can be achieved by their linear mixing

x̃tr = λxi
tr + (1− λ)xj

tr

x̃val = λxi
val + (1− λ)xj

val. (8)

Here, xi and xj are two image patches from the corresponding
dataset, and λ is the mixing coefficient randomly sampled from
a beta distribution during each training step. After applying the
mix-up strategy, the supervised and pseudolabel losses can be
reformulated as

Lmix
sup = λLsup(x̃tr, y

i
tr) + (1− λ)Lsup(x̃tr, y

j
tr)

Lmix
pse = λLpse(x̃te, ŷ

i
te) + (1− λ)Lpse(x̃te, ŷ

j
te). (9)

By training on mixed images, the model will be less likely to be
overconfident about its predictions, and hence better generalize
to the unseen data.

E. Postprocessing

The DenseCRF [39] technique is applied to the model’s output
as postprocessing. This step helps to better match the predicted
landslide contours with the ground truths. Finally, the best model
obtains the highest F1 score of 73.5%.

VII. SPECIAL PRIZE TEAM

L4S provides data with 14 bands, while most DL semantic
segmentation models, such as [30], [33], [50], and[51], require
an RGB image as the input. This means we cannot utilize pre-
trained weights to improve the model performance and shorten
training time. On the L4S dataset, we try three types of models,
U-Net, Deeplabv3, and Deeplabv3+, but none of these models
yields a very high performance, with F1 scores of only 65%,
66%, and 67%, respectively. So, we explore the use of multispec-
tral satellite imagery for the DL-based landslide segmentation
task.

A. Multispectral U-Net

Considering the different resolution bands of the imagery in
the L4S dataset, we introduce a novel model called multispectral
U-Net, which has two input branches for the different resolution
inputs. The model structure is illustrated in Fig. 12. Multispectral
U-Net comprises two branches: the High-Resolution Branch
(upper part) and the General Resolution Branch (lower part),
whose features will be merged, and then contribute jointly to
the final segmentation prediction.

The High-Resolution Branch was used for the data with high
resolution, which can yield refined feature maps containing more
marginal information. Specifically, we implement this branch by
using the Inverted Residuals and Linear Bottlenecks introduced
in the MobileNetV2 [52] and consisting of two pointwise con-
volution layers and one depthwise convolution layer. To avoid
a dramatic increase in the dimensions of the feature maps, from
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Fig. 12. Structure of the multispectral U-Net. The inputs of the upper branch consist of band2, band3, band4, and band8, which have 10 m resolution, and the
inputs of the lower branch mix all the 14 bands, including 10, 20, and 60 m resolutions. Specifically, we implement the downsampling layer by using the convolution
with stride two and using the bilinear resize for the upsampling layer, and all the skip connection operations are additive. CBA means the sequential block of
convolution, batch norm, and activation.

4 to 128 dimensions, we first apply two simple convolution
layers. The feature dimensions will expand and then recovered
to the original dimension after the depthwise convolution layer.
Additionally, there is no downsampling layer in the branch, as
the only aim of this branch is to extract additional marginal
information in order to get a better segmentation prediction.

In the General Resolution Branch, we apply some modi-
fications to the original U-Net [30]. U-Net is an expandable
segmentation model that has a symmetrical architecture; this
kind of architecture has been widely used for other segmentation
tasks. It is very convenient to replace some implementations of
the U-Net, which is the main reason we chose it for our model.
The specific modifications are as follows. First, we reduce the
number of the downsampling layers due to the limited size
(128× 128 pixels) of the input image. To ensure the smallest
feature size is at least 16× 16, we use only three downsampling
operations in the U-Net model. Second, skip-connection intro-
duced in the ResNet is widely used in the model to mitigate the
vanishing gradient problem. Finally, we update the activation
function to SMU [53], which can improve model performance
without performance loss on inference speed, as follows:

erf(x) =
2√
π

∫ x

0

e−t2dt (10)

SMU(x) =
x(1 + α) + x(1− α)erf(μ(1− α)x)

2
. (11)

In the multispectral U-Net model, we input all 14 bands
to the General Resolution Branch and only 10 m resolution
bands (band2, band3, band4, and band8) to the High-Resolution
Branch. In order to balance the feature dimensions of two
branches, we make the High-Resolution Branch and the General

Fig. 13. Cosine learning rate with warmup and restart schedule. In detail, the
parameters are: warmup epochs 2, restart multiplier 2, init learning rate 0.00001,
and minimum learning rate 0.

Resolution Branch have the same output shape: 128× 128×
128. The features from two branches will be concatenated to a
feature map in the shape of 128× 128× 256, which is used for
the final pixel-level prediction.

B. Experiments

We trained the model with NVIDIA GeForce RTX 3090 GPU
and Intel(R) Core(TM) i7-7800X CPU @3.50GHz. To compare
the performance of the three models more clearly, we use a batch
size of 8, the Adam optimizer, warmup, and restarted cosine
learning rate (as shown in Fig. 13) and the cross-entropy loss. We
split the official training dataset into two parts, with 3539 images
for training and 260 images for testing. Then, we compared the
multispectral U-Net performance with Deeplabv3+ and U-Net
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Fig. 14. Landslide segmentation results for some representative data in the
validation dataset.

on it, after each model is trained with 200 epochs. In terms of
recall and F1 score, multispectral U-Net is significantly higher
than the other two models, but its precision is lower than that
of U-Net. Significantly, the precision of Deeplabv3+ is dramat-
ically lower than multispectral U-Net and U-Net, and we think
the potential reason is that a large number of downsampling
layers lead to the loss of marginal information.

For a better understanding of the different models’ perfor-
mance on the validation dataset, we analyze the prediction
segmentation results and choose three representative examples
in Fig. 14. In the first example, the landslide segmentation
results of the three models are similar, and it is clear that the
Deeplabv3+ tends to predict a wide range of area but does not
have very refined edge information about the landslide. In other
words, this may be the reason that the Deeplabv3+ has a higher
recall than U-Net, but the precision is significantly lower. We
cannot directly see the landslide from the image in the second
example; however, all three models can predict the landslide
very well, which means all the bands besides the RGB bands
(band2–band4) also contribute to the final prediction. The third
example is a very complex landslide scenario, in which we
can clearly view the superior performance of the multispectral
U-Net.

In the test phase of the L4S competition, we use the well-
trained model to predict the validation dataset first and get an-
notations from the prediction result. Then, we get a new training
dataset by combining the annotated validation dataset and the old
training dataset. Finally, after training the multispectral U-Net
on the new training dataset, we get an F1 score of 71.29% in the
test set.

VIII. CONCLUSION

In recent decades, RS techniques have been predominantly
used for natural hazard-related applications, i.e., landslide de-
tection. There are many advantages to using Earth observation
and RS products in these applications but the most critical one
is their timeliness and objectivity. Early detection is vital for a
rapid response and effective management of the consequences

of a landslide event. Due to the increasing number and quality of
space-borne sensors, the RS community has recently had access
to high-quality images with a higher spatial-temporal resolu-
tion. In light of the improved availability of data, attention has
turned towards the methodologies for retrieving information and
knowledge from the data itself [54]. Therefore, there has been
a great desire to replace the use of experts’ knowledge-based
physical methodologies with automatic interpretation methods
of RS images.

Although promising results have been obtained by DL models
for a wide range of RS applications, the need for solutions to
landslide detection challenges such as extracting landslides from
RS data has only been brought to the attention of the machine
learning and computer vision communities in recent years. The
solutions, however, have only been implemented at the local
level and have followed a common procedure that includes
training the DL model using an annotated data set of landslides
covering a relatively small area [12], [21]. The local level is
taken into consideration for several reasons related to how model
generalization handle high-level issues, such as the impacts
caused by different triggers, the types of mass movements,
and the geology and morphology of the region, as well as the
source of inventory datasets and the method in which they were
developed. The landslide inventory datasets that are used for
training modern DL models are usually created based on manual
or knowledge-based physical semiautomated methods. Thus,
implementing such methods for semantic annotations and creat-
ing inventory datasets at a large scale is generally a tedious and
expensive process. In preparing a precise inventory of landslides,
an even greater amount of work is required since it involves not
only the analysis of one image but also a comparison of two
images from the pre- and postevent for each case study area.
Therefore, it is very unlikely that landslide inventory datasets
with highly accurate annotations can be found on a large scale.
As a result of the lack of these datasets, serious concerns about
the performance of currently available landslide detection DL
solutions are warranted, particularly, when applied directly to
a new case study area that has not yet been investigated. To
address all the above-mentioned issues, the L4S competition has
been organized by the IARAI and provides a globally distributed
landslide inventory dataset. The competition promotes develop-
ment and demonstration of innovative algorithms for automatic
landslide detection using RS images throughout the world, as
well as providing fair and objective comparisons of different
DL solutions for automatic landslide detection.

This article presents a summary of the top winners of the
2022 L4S competition. The competition was dedicated to de-
veloping DL solutions for solving unsolved challenges in the
detection of landslides using RS images collected from various
regions around the world. Different strategies and algorithms
were brought to light by our winning teams. The first-ranked
team identified three main challenges: a large number of small
landslides and the huge class imbalance between landslides
and nonlandslides, as well as the distribution inconsistency of
the landslides in the study areas and, consequently, the im-
age patches. In addressing these challenges, they conducted a
series of experiments to obtain the competition’s highest F1
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score value of 73.07%. For the weak representation of small
landslides, they applied a scale promotion of original image
patches from 128× 128 pixels to 512× 512 pixels. This team
integrated three models of Swin Transformer, EfficientNetV2,
and SegFormer by emphasizing self-attention operations. Fur-
ther landslide detection improvements were effected by the
second-place team using the Swin Transformer as the encoder
part and the self-attention mechanism. In addition, a self-training
strategy was used to enhance the generalization of their proposed
model on the competition’s test data. To overcome the imbalance
between landslide and nonlandslide classes, the first-place team
adopted and applied the Lovasz loss and online hard example
mining strategy. An unbalanced approach to training, however,
led to the second team’s success. The third-place team pro-
posed an integrated approach of a mixed supervised loss and
a self-training consisting of pseudolabels and the Monte Carlo
dropout strategy to train their network for landslide detection.
Using DenseCRF, this team postprocessed the network’s outputs
to improve the borders of landslides. The special prize team
introduced a multispectral U-Net inspired by MobileNetV2 to
handle the multispectral Sentinel-2 and ALOS PALSAR data
for landslide detection provided by the competition. As part
of the competition’s test phase, they generated annotations for
the validation dataset using the well-trained model, and by
adding new labeled data to the training dataset, they trained their
introduced U-Net. The DL solutions provided by the competi-
tion’s four winners were presented by the corresponding authors
at the CDCEO 2022 Workshop as a satellite event at IJCAI-
ECAI 2022, the 31st International Joint Conference on Artificial
Intelligence, and the 25th European Conference on Artificial
Intelligence.

The data remain accessible after the L4S competition and
the Future Development Leaderboard for future evaluation at
https://www.iarai.ac.at/landslide4sense/challenge/ is active to
allow further research developments and contributions. In this
way, anyone can submit landslide detection results on the test
dataset, make comparisons of their performance to that of
other users, and, ideally, enhance the accuracy presented in
this outcome article. It is noteworthy that L4S was the first
competition to be based on multisource satellite imagery for
landslide detection and had a significant impact on this field;
furthermore, participants agree that the competition is also an
extremely interesting challenge from a computer vision and
machine learning perspective.

As the consequences of climate change pose an accelerating
quantity and range of challenges to the world’s scientists, they
may not have sufficient time and resources to generate landslide
inventory datasets based on fieldwork. Yet modern DL solutions,
particularly those based upon such a large source of RS data,
must be able to cope with monitoring natural hazards and risk
assessment. Therefore, developing innovative DL solutions and
training them on a global dataset will be crucial to generating
timely information from RS data for future landslide events. The
L4S 2022 data provide a valuable benchmark dataset for evalu-
ating all new DL algorithms developed for landslide detection,
and the algorithms developed as part of the L4S competitions

will, it is hoped, inspire development of increasingly efficient
and accurate algorithms.
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