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Abstract—Timely and accurate large-scale mapping of the
spread of winter wheat (Triticum aestivum) is crucial to guarantee
food security, study climate change, and monitor operational agri-
culture. Traditional winter wheat mapping frameworks are con-
strained by insufficient spatial resolution and heavy dependence on
field surveys, while traditional machine learning models excessively
rely on subjective judgment. Furthermore, collecting sufficient field
samples covering a large area is expensive and time-consuming. In
this context, an automatic label update deep learning solution is
developed to produce 10-m resolution winter wheat maps using
Sentinel-2 data and existing coarse-resolution (30 m) winter wheat
mapping products. In particular, a label update module considering
the unique phenological (seasonal) characteristics of winter wheat
is designed to update labels in the training phase. The results
indicate that our method yields a satisfactory classification result
with an overall accuracy exceeding 92% and an F1 score greater
than 0.85 for all validation samples, even when no field survey data
were used for training. In addition, a 10-m spatial resolution winter
wheat map for the entire Shandong province is generated, showing
a significant correlation between the computed winter wheat map
and the agricultural statistical land, with correlation coefficients of
0.95 and 0.78 at the municipal and county levels, respectively. The
proposed methodology can serve as a viable and promising method
for high-resolution, operational agricultural monitoring over large
areas.
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I. INTRODUCTION

A S the second of the 17 Sustainable Development Goals
of the United Nations, “Zero Hunger” aims to eliminate

all forms of hunger and malnutrition by 2030, ensuring that all
people, especially children, have continuous access to sufficient
and nutritious food [1]. Given this demand, the agricultural
sector now plays a more important role than ever before. Wheat,
one of the world’s most extensively farmed food crops, is the
primary source of carbohydrates for millions of people [2].
China is a major global wheat producer, accounting for 17.9%
of the global wheat production with 11% of the worldwide
wheat planting acreage [3]. Moreover, winter wheat accounts
for 95% of China’s total wheat production [4]. Wheat sown
areas and their yields are directly related to national food se-
curity and social stability. Thus, the assessment of winter wheat
sowing areas is an integral part of wheat growth monitoring
and yield estimation. Conventional methods like ground survey-
ing are generally reliable methods of sowing area assessment,
however, they are considered time-consuming and expensive
methods for China, where the cropland is usually small and
fragmented [5].

Due to the advancements in remote sensing technologies,
satellite images offer effective means to quickly and accurately
determine the spatial distribution of wheat cultivation. Signifi-
cant efforts have been made to explore the distributions of crop
types based on moderate resolution imaging spectroradiometers
(MODIS) [6], [7], [8]. However, MODIS data have a relatively
coarse spatial resolution (1000, 500, and 250 m), resulting in
numerous mixed heterogeneous pixels. Thus, MODIS data are
generally utilized for large-scale winter wheat mapping tasks.
However, using MODIS data to perform accurate crop mapping
in China, where the cropland is usually small and fragmented, is
challenging [5]. To address this issue, various researchers have
devised methods for distinguishing winter wheat from other
various land cover types based on Landsat imagery with a spatial
resolution of 30 m, which is substantially higher than that of
MODIS data [9], [10], [11]. However, the temporal resolution of
Landsat data is also too coarse for accurate crop mapping. There-
fore, Sentinel-2 data, which allows for frequent land monitoring
at a spatial resolution of 10 m with a revisit frequency of five
days, have been employed in multiple studies for reliable crop
mapping [12], [13], [14]. The use of sentinel-2 data could acquire
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high classification performance for small agriculture fields, thus
reducing the statistical errors due to low resolution. However,
operationally generated annual winter wheat mapping products
with a resolution of 10 m are difficult to produce on a large scale.
This issue stems from the collection of field training samples not
being conducted regularly. Therefore, it is necessary to explore
a mapping method that does not rely on a large number of field
samples.

According to the literature cited earlier, regardless of the
remote sensing data used, the most prevalent strategy to map
winter wheat is to link satellite-derived features and winter
wheat classification methods by utilizing algorithms and train-
ing samples. Many supervised classification algorithms have
been successfully implemented, yielding acceptable prediction
performance, including support vector machine (SVM) [11],
[15], random forest (RF) [14], [16], decision tree (DT) [9],
[17], and neural network (NN) classifiers [10], [18], [19].
However, in these machine learning methods, feature extrac-
tion and processing are highly reliant on a user’s subjective
judgement, potentially resulting in biased and inaccurate clas-
sification [20]. Problems tied to limitations linked to subjective
judgement can be circumvented using NN. NN is an end-to-end
approach that can automatically extract discriminating features
that have not only been used in numerous tasks but that have
also consistently exhibited satisfactory performance [19], [21],
[22], [23]. More importantly, these supervised classification
methods rely largely on accurate and reliable training samples,
typically gathered by in situ surveying or visual interpretation
of remote sensing images with excellent spatial resolution. In
general, field samples should be collected regularly for crop
type mapping; however, in situ surveying is labor-intensive
and uneconomical. Therefore, routinely obtaining ground-
surveyed samples is challenging, significantly limiting the im-
plementation of these approaches, particularly for large-area
mapping [24], [25].

As an alternative approach, several studies have attempted
to accomplish refined and accurate land cover mapping using
low-resolution and freely available labels [26], [27], [28], [29],
[30], [31]. For instance, Malkin et al. [28] introduced a label
super-resolution network based on the joint distribution of low-
and high-resolution labels. Although a noise-robust approach
seeks to lessen the effects of noise, it is challenging to completely
avoid the influence of noisy labels during training. Accordingly,
Zhu et al. [31] devised a method called “Pick-and-Learn” (PAL)
for automatically evaluating the relative quality of the noisy
labels in the training set and tuning the network parameters to
ensure that the relevant ones are used. Dong et al. [26] proposed
a novel approach that jointly optimizes the model parameters
and corrects the noisy label with a “synergistic noise correction
loss,” which reduces the impact of noisy labels, improving
classification performance. However, in this study, only the class
probability distribution was used to determine which labels need
to be updated. When faced with a variety of real-world problems,
researchers are recommended to account for the peculiarities of
the individual noisy scenarios to identify the best answers, for
example, using unique phenological characteristics to update
noisy labels for crop mapping.

Overall, various flaws can be identified in the current
winter wheat mapping framework, such as the inadequate
spatiotemporal resolution of remote sensing image data, subjec-
tive assessment in traditional machine learning algorithms, and
a heavy dependence on field survey samples. To address these
issues, the major objective of our work is developing a novel win-
ter wheat mapping method based on high-resolution Sentinel-2
data and existing lower-resolution labels rather than expensive
field training samples. Therefore, we proposed a framework
based on Sentinel-2 imagery with a 10-m spatial resolution
and an existing coarse-resolution (30 m) winter wheat mapping
product and applied it across China’s Shandong Province. This
mapping method, named “automatic label update deep learning”
(ALU-DL), is automated, easy to operate, and efficient. More
importantly, ALU-DL could perform high-resolution mapping
of winter wheat without using field samples to train the model.
In this method, we leverage the advancements in the U-Net
model [32] to provide a reliable and accurate high-resolution
mapping methodology for winter wheat observation and man-
agement applications. The multilayered nature of deep learning
architectures facilitates the gathering of spatiotemporal infor-
mation from satellite data. Notably, a label update module that
considers the unique phenological (seasonal) characteristics of
winter wheat was designed to update the noisy labels in the
training phase. Furthermore, the experiments suggest that the
proposed framework could be effectively applied to distinguish
winter wheat on a broad scale, with acceptable classification
accuracy.

The main contributions of this study are as follows.
1) Considering the unique phenological (seasonal) charac-

teristics of winter wheat, this study develops a novel
winter wheat mapping method based on high-resolution
Sentinel-2 data and lower resolution products rather than
expensive field training samples.

2) Field validation and statistical data are used to evaluate the
performance of the proposed model. The results show that
our model significantly outperforms other conventional
approaches.

3) A 10-m spatial resolution winter wheat map for Shandong
province is produced based on the proposed method. The
derived winter wheat cultivation area is consistent with
municipal and county statistical data.

II. STUDY AREA AND DATA

In this section, we describe the study area and properties of
the data used for training and evaluation. Sentinel-2 satellite data
with a 10-m spatial resolution were used as training data, and the
30-m resolution winter wheat mapping product was regarded as
the training label. Field samples and statistical data were used
to evaluate the performance of our approach.

A. Study Area

The study was carried out in Shandong (SD) Province (Fig. 1),
one of China’s major food bowls and agricultural bases. SD
is located approximately between 33 ◦N–38 ◦N latitude and
114 ◦N–122 ◦N longitude, with a wide area of 158 000 km2.
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Fig. 1. Digital elevation model (DEM) maps of the Shandong Province. A–H represent the training areas. The winter wheat maps are sourced from Dong et al. [5].

Fig. 2. Winter wheat phenological calendar of China.

SD has a warm temperate monsoon climate and annual precip-
itation ranging from 550 to 950 mm, with most of the rainfall
concentrated in the summer. The annual average temperature of
SD is 13.4 ◦C, with the lowest and highest temperatures typically
occurring in January and July, respectively. The topography of
SD is characterized by plains, with a few mountains in the center
of the province. According to data from the National Bureau
of Statistics (NBS), in 2018, the cultivated land area of SD
was approximately 110 768 km2, accounting for approximately
70.11% of the province’s land area. The primary crop planted
in SD is winter wheat, with a sown area of 40 585.90 km2,
accounting for approximately 17.85% of China’s total winter
wheat planted area.

To produce a relatively accurate and reliable model, we
dispersedly selected eight 20 × 20 km training areas (A–H)
representing the major grain-producing regions based on the
principles of random and homogeneous distribution. The models
were trained using the training areas data to learn distinctive
feature representations of winter wheat fields, ensuring excel-
lent spatial transferability and applicability across the entire
province.

B. Phenological Characteristic

In Shandong province, winter wheat is seeded from Septem-
ber to October and harvested from late May to June of the
following year (Fig. 2) [33]. The most prominent difference
between the winter wheat and other crops is that winter wheat
overwinters, leading to the NDVI or EVI value of winter wheat
from the day of year (DOY) initially increasing and then decreas-
ing, and finally increasing in the spring of the following year, as
shown in Fig. 3. In contrast, other crops are sown in spring and
harvested in autumn [34]. Therefore, the phenological difference
between winter wheat and background objects is notable. This
discriminative feature can be extracted from remote sensing
data, and it is feasible to discriminate winter wheat in this
region.

C. Sentinel-2 Data

Winter wheat crop area estimation was based on satellite data
acquired and digitized by Sentinel-2, a high-resolution multi-
spectral imaging satellite with a multispectral instrument (MSI)
for land monitoring, which provides imagery of vegetation,
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TABLE I
SPECTRAL BANDS FOR SENTINEL-2 SENSORS (MSI)

Fig. 3. Multitemporal NDVI and EVI profiles of winter wheat in Shandong
province.

soil, water cover, inland waterways, coastal areas, and emer-
gency rescue services [35]. Sentinel-2 consists of two satellites,
Sentinel-2 A and Sentinel-2B. With a ten-day revisit interval
for a single satellite and a five-day offset for two satellites, the
observation period in the study area can be reduced to five days.
The MSI, which was placed on Sentinel-2, collected 13 spectral
bands in the visible and near-infrared (VNIR) and shortwave
infrared (SWIR), with spatial resolutions ranging from 10 to
60 m (Table I). In this study, eight surface-related bands at 10-
or 20-m resolution (B2-7, B11, and B12) and two commonly
used vegetation indices (normalized difference vegetation index,
NDVI; and enhanced vegetation index, EVI) were utilized for
training the models. Note that all bands used were resampled at a
resolution of 10 m via bicubic interpolation for further analysis.

For our study, the Google Earth Engine (GEE) platform was
used to collect Sentinel-2 satellite images. Because surface
reflectance (SR) data were unavailable on the GEE platform,
we alternatively utilized the top of the atmosphere (TOA) re-
flectance data. The S2 TOA archived in the GEE was corrected
radiometrically and geometrically, including orthorectification
and spatial registration on a global reference system with sub-
pixel accuracy [36]. Although SR data are more persuasive than
TOA reflectance data, earlier research has demonstrated that
TOA data are more reliable for crop type classification. For

instance, Emelyanova et al. [37] evaluated classification perfor-
mance between TOA reflectance and SR data, and observed that
the datasets performed similarly. Other researchers [14], [36],
[38] employed TOA reflectance data to classify crops, obtaining
reliable results. In this situation, in the absence of SR data, the
classification results based on TOA reflectance data could be
utilized to assess the performance of the proposed method.

Sentinel-2 TOA reflectance data include a QA60 band, which
uses spectral criteria to detect opaque and cirrus clouds. Because
the existing QA60 band cannot give reliable cloud detection
results, we chose a low cloud cover criterion (20%) to filter and
collect the Sentinel-2 imagery; this was done to limit omission
errors in cloud/cloud shadow detection [39]. Therefore, a total of
1582 Sentinel-2 scenes were collected in the study area during
the study period (9/2017–6/2018) from the GEE platform and
the results are shown, as in Fig. 4. The statistical results indicated
that most of the study area had a high availability of Sentinel-2
imagery, with > 30 scenes during the study period [Fig. 4(a)].
More than 100 Sentinel-2 observations for each month were
selected for this study [Fig. 4(b)].

D. Winter Wheat Distribution Map of China at 30-m
Resolution

Dong et al. [5] constructed 30-m spatial resolution winter
wheat distribution maps for the 2016–2018 period using the
time-weighted dynamic time warping approach and monthly
maximum composite NDVI from Landsat and Sentinel. The
results reported based on the field samples revealed an overall
accuracy (OA) of 89.88%.

In addition, the 30-m winter wheat distribution data were
used as targets to train the NN. Thus, the 30-m winter wheat
distribution map was resampled to a 10-m resolution to maintain
consistency with satellite data. However, since resampled labels
inevitably have numerous labeling errors, we treated resampled
label data as noisy labels. Note that noise is caused by missing
details in low-resolution labels and misidentification of different
land cover categories across a large area.

E. Field Data

To evaluate the performance of our method, we collected 730
ground reference samples (Fig. 5), comprising 65 field survey
samples and 665 Google Earth samples. The georeferenced field
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Fig. 4. Availability of Sentinel-2 data in the study area during the study period. (a) Temporal frequency of Sentinel-2 scenes used in this study. (b) Temporal
distribution of Sentinel-2 scenes used in this study (total 1582).

Fig. 5. Distribution of field samples over Shandong Province, China.

survey over Shandong Province was conducted in cooperation
with other researchers in 2018. An MG858 handheld GPS was
employed for the ground survey. Furthermore, Google Earth
samples from 2018 were obtained by visual interpretation of very
high-resolution images from Google Earth to replenish the field
samples. To maintain the reliability of Google Earth samples,
prior knowledge gathered from the in situ investigation was
employed for visual interpretation. In total, 357 winter wheat
and 353 nonwheat samples were collected.

F. Statistical Data

National agricultural statistical data were collected for com-
parison with satellite-derived crop area estimates to assess the
classification results. Statistical winter wheat planting acreage
(2018) at the municipality and county levels was acquired from
the NBS [4]. The farming areas in the NBS of China were
inferred based on the weights of the sampling croplands, which
were reported by agrotechnicians who collected winter wheat
growth conditions from survey samples by investigating regis-
tered farmlands or gathering estimates made by farmers. This
indicated that the area’s statistical data were dependable and

accurate [5]. Finally, statistical data for 16 municipalities and
137 countries in the study area were collected.

III. METHODOLOGY

Traditional winter wheat mapping methods require manual
annotation, model training, and wheat prediction when geoloca-
tions, sensor characteristics, or imaging conditions vary, which is
time-consuming and inefficient [40]. Thus, this study presents a
novel framework for automated and effective large-scale winter
wheat mapping lacking the abovementioned repetitive opera-
tions. The framework is organized into three sequentially inte-
grated parts (Fig. 6): 1) data preprocessing, 2) model training,
and 3) validation. Consequently, the extent of winter wheat was
mapped using the 10-m Sentinel-2 data and 30-m winter wheat
mapping products.

A. Data Preprocessing

The preprocessing consisted of satellite data processing and
label data processing, all of which were completed in the GEE
platform using JavaScript. For label data, the processing proce-
dures mainly involved resampling and reprojection. The 30-m
winter wheat mapping production was resampled to 10-m reso-
lution and reprojected to World Geodetic System 1984 (WGS84)
for consistency with Sentinel-2 data. The preprocessing of
Sentinel-2 satellite data included clouds and shadow masks,
vegetation index calculation, temporal aggregation, and linear
interpolation. The details of this process are described below.

Cloud and Shadows Masks: Cloudy observations of Sentinel-
2 TOA data were eliminated based on the QA60 quality assess-
ment band. The cloudy and shaded pixels were then masked and
removed.

NDVI and EVI Time Series Creation: The two most regularly
used spectral indicators were selected: 1) the NDVI [41] and
2) the EVI [42]. The NDVI and EVI time series have been
frequently utilized to mine temporal features or phenological
metrics of various crops [14], [43]. Moreover, these two indi-
cators were superimposed on the Sentinel-2 data as two new
bands.
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Fig. 6. Proposed framework for high-resolution winter wheat mapping based on the 10-m Sentinel-2 data and 30-m winter wheat mapping product.

TABLE II
SUMMARY OF THE FEATURE CANDIDATES FOR WINTER WHEAT MAP GENERATION

Fig. 7. Overview of the proposed ALU-DL model.

Temporal Aggregation: A time aggregation with regular time
intervals can overcome the spatial heterogeneity of the observed
data, producing consistent time series [36]. For the study area,
cloud-free or near cloud-free images could be created according
to the phenological stage, resulting in a total of ten time periods
over ten months (Fig. 2). Finally, a 30-d composite was obtained
by deriving the median value of all valid observations during
each interval.

Gap Filling With Linear Interpolation: Owing to the effects of
clouds, snow, or other conditions, it was sometimes impossible
to gather continuous good-quality observations in some regions.
To overcome this problem, the gaps caused by these factors
were linearly interpolated over each band using the nearest valid
values before and after the time step [14], [44].

Finally, monthly time series data were composited into a
single image by concatenating the multitemporal spectral bands.

Here, eight bands were selected, and two vegetation indices
were calculated every month, culminating in the emergence of
100 candidate features during the ten months (Table II). In this
study, spatiotemporal and spectral information was leveraged
simultaneously.

B. Proposed ALU-DL Method

In this section, a novel automated winter wheat mapping
framework, ALU-DL, is presented (Fig. 7). First, we describe
the motivation for our method. Then, we introduce our ALU-DL
method for accurate high-resolution winter wheat mapping, in-
cluding the backbone segmentation model, label update module,
and loss functions.

1) Motivation: Because the most traditional winter wheat
classification method relies largely on accurate and trustworthy
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Fig. 8. Schematic overview of U-Net architecture. Figure modified from Ronneberger et al. [32].

training samples, which are costly and time-consuming, map-
ping of accurate large-scale winter wheat distribution results
based on the existing low-resolution mapping product was a
promising method. To alleviate the influence of noisy labels
on accurate winter wheat mapping, we proposed the ALU-DL
approach, which contains a label update module and can it-
eratively correct noisy labels based on the special phenologi-
cal (seasonal) characteristics of winter wheat. In the proposed
ALU-DL method, we exploited U-Net architecture with a strong
generalization ability to extract crop types from satellite data.

2) Segmentation Model: Ronneberger et al. [32] proposed a
U-Net model with encoder–decoder architecture for biomedical
image segmentation (Fig. 8). Intermediate feature fusion was
presented by U-Net, promoting the reuse of features in image
segmentation tasks by concatenating multilevel feature maps
with the same dimensionality via shortcut connections. Heller
et al. [45] proved that deep learning models perform robustly on
data with random perturbations. In particular, the superior per-
formance of U-Net considering massive choppy perturbations
is noteworthy. Thus, we selected U-Net as the convolutional
neural network (CNN) backbone as it has been widely used
for segmentation tasks, yielding favorable segmentation perfor-
mance compared to state-of-the-art approaches in land cover/use
mapping [12], [46], [47], [48].

In this article, the U-Net model analyzed multiband satellite
observations throughout the winter wheat growing season and
estimated the class probability distribution, which was used
to input the label update module. Notably, the 30-m winter
wheat mapping product was resampled to a 10-m resolution and
considered the noisy label for model training.

3) Label Update Module: As shown in Fig. 7, the predicted
distributions obtained by the CNN backbone were used as inputs
for the label update module, which determined the accuracy

of pixelwise labeling using phenological information and then
updated labels according the accuracy. Finally, the updated
labels were used as the label input for the next epoch. Note
that noisy labels were the input of the label update model at the
beginning of the training.

The proposed label update module was adapted from the
framework designed by Dong et al. [26], which was applied
to produce high-resolution land cover maps from a lower-
resolution product in China. The primary steps of the noise
correction and label update modules are illustrated in Fig. 9.
First, the predicted probability distribution obtained by the U-
Net backbone was used as the input for the label update module.
The pixels predicted to be winter wheat with a probability greater
than 0.9 were perceived as reliable predictions for winter wheat,
and their observation band (OB) and/or vegetation index (VI)
time series curves were averaged as the standard seasonal change
curve of winter wheat. We then measured the distance/similarity
between the standard seasonal change curve and the curve for
each pixel in the original training samples. A greater distance
value indicated that a pixel was more likely to be annotated
as “nonwheat.” In this article, the update ratio threshold was
set at 0.7, and the details are discussed in Section V-A. Fi-
nally, we sorted the distances in ascending order according
to numerical magnitude. The pixels whose value of distance
(similarity) was greater (less) than the threshold were considered
nonwheat pixels, and those labeled “wheat” were regarded as
noise labels following label update processing. Similarly, pixels
with a distance (similarity) less (greater) than the threshold
were considered wheat, and those labeled “nonwheat” were
also updated. Therefore, the updated labels were acquired and
utilized for training for the next epoch.

In this study, class separability between the winter wheat
and the nonwheat type in the time series OB and/or VI data
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Fig. 9. Process of the label update module in the ALU-DL method.

was investigated using three commonly used distance/similarity
statistics: 1) Euclidean distance, 2) cosine similarity, and 3)
dynamic time warping, which are reportedly effective measures
for this task [49], [50], [51], [52], [53], [54]. A greater distance
or lower similarity between two classes indicated more different
characteristics, encouraging successful class discrimination.

We denote the spectrum vector of each pixel as Sk(k = 1,
2, . . ., H ×W );H is the height of the image, andW is the width.
Let Sa = 〈a1, . . ., an〉 and Sb = 〈b1, . . .bn〉 be two spectrum
sequences, where n is the length of the spectrum vector and δ
is the distance between two sequence members, i.e., δ(ai, bj)
represents the distance of the element ai ∈ Sa∀i = 1, . . ., n and
bj ∈ Sb∀j = 1, . . ., n.

For each image, the standard seasonal change curve can be
represented as

S̄ =
1

Nw

Nw∑

i=1

Si (1)

where Nw denotes the number of pixels annotated as reliable
winter wheat prediction results.

Because each satellite image had a different scenario com-
plexity, we strived to update the labels of each image individually
rather than using statistical information from all samples. Thus,
the training efficiency was improved by skipping an extra infer-
ence step on the entire training dataset. It is worth noting that
every training epoch updated all labels across the entire dataset.
The ALU-DL models based on three distance/similarity-based
update strategies were termed ED-UNet, CS-UNet, and DTW-
UNet.

4) Loss Function: An illustration of ALU-DL is shown in
Fig. 7. To determine the labels to be updated, an adaptive label
update module was introduced (Fig. 9). In each mini-batch
phase, forward computation and backward propagation were
used to simultaneously update the network parameters and train-
ing labels.

Referring to the work of Dong et al. [26], we assume that
high-resolution satellite data and noisy labels are available
for training the models. The high-resolution training dataset
can be denoted as X = {xi|xi ∈ RH×W×C , i = 1, 2, . . ., N},
where N is the number of training images and xi represents
each image with H (height), W (width), and C (channels).

Y = {yi|yi ∈ [0, 1]H×W , i = 1, 2, . . ., N} denotes the associ-
ated training label set, where [0, 1] indicates whether xi denotes
winter wheat. In general, the optimization problem on reliable
labels implies minimizing a standard loss functionL concerning
the parameters θ of the network, i.e., min

θ
L(θ|X,Y ). Neverthe-

less, the models trained using this standard loss function were
susceptible to being misled by the wrong labels. Therefore,
label update information was considered to improve model
performance.

As previously described, the network parameters and
noisy labels were optimized simultaneously in this study,
i.e., min

θ,Y
L(θ, Y |X). The predicted distribution is defined as

Ŷ d = f(X; θ), where f denotes the prediction output using the
Softmax function. The updated label was set as Ŷ = {ŷi|ŷi ∈
[0, 1]H×W , i = 1, 2, . . ., N}. In training epoch t, Ŷ t was ob-
tained by correcting the label Ŷ (t−1) from the previous epoch,
t− 1. At the start of the training, Ŷ was obtained by updating
noisy labels Y .

To acquire an accurate winter wheat map based on the noisy
labels, we applied a joint loss function L(θ, Y |X), which is
composed of two parts and can be expressed as

L(θ, Y |X) = Lupdate(θ, Ŷ ) + αLinitial(θ, Y ) (2)

whereLupdate(θ, Ŷ ) andLinitial(θ, Y ) represent the cross-entropy
loss with the updated label and the original noisy label, respec-
tively, andα is a hyperparameter that balances the two loss terms
during training.
Lupdate(θ, Ŷ ) is the major loss used to govern the update of

the network parameters θ. The loss function is the cross-entropy
loss between the predicted class probability distribution and the
updated labels from the last epoch. The updated labels used in
each epoch were obtained from the previous epoch using the
label update module. Lupdate(θ, Ŷ ) is defined as

Lupdate(θ, Ŷ ) = −
H×W∑

m=1

[ŷm log fm(xm; θ)

+ (1− ŷm) log(1− fm(xm; θ))]. (3)

Meanwhile, to prevent increasingly coarse boundaries, the
original noisy label Y is also used for training, and Linitial(θ, Y )
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is formulated as

Linitial(θ, Y ) = −
H×W∑

m=1

[ym log fm(xm; θ)

+ (1− ym) log(1− fm(xm; θ))]. (4)

C. Model Training

The network was set up to use multispectral, spatiotemporal,
mosaic satellite data as inputs and predict the distribution of
winter wheat. The mosaic satellite images were cropped into
chips of 128× 128 pixels with 20% overlap and matched with
the corresponding 10-m resolution resampled winter wheat map
through their geographic coordinates. Thus, paired satellite im-
ages and labels were obtained as the original training dataset. A
total of 3200 experimental patches were acquired, all of which
were used as training samples. The test dataset consisted of
reliable point-based field samples collected in situ or from visual
interpretations.

Although the original labels contained a considerable portion
of correct labels, the U-Net model was pretrained using the
original noisy labels to boost the representational capacity of
the backbone model. Therefore, we pretrained the backbone
network using loss Linitial(θ, Y ) to obtain the initial network
parameters to be used in the next phase of the label update. To
avoid overfitting noisy labels, the baseline U-Net model was
trained for 5 epochs at a fixed learning rate of 0.01.

To correct the noisy label and iteratively train the U-Net model
using the updated label, we obtained the network parameters for
wheat mapping by training the backbone network with joint
loss L(θ, Y |X). In this phase, the inputs of the U-Net backbone
were satellite data and noisy labels. The label update module
then determined the accuracy of the labels on a pixel-by-pixel
basis based on phenological information and reversed the labels
deemed inaccurate. Hence, we acquired a relatively clean label
set by performing the label update process. For the label update
process, the network parameters acquired by the pretraining
phase were utilized to initiate the model, and the fixed learning
rate was set to 0.01. The network was trained for 10 epochs when
there were no noticeable changes in test precision.

The Adam optimizer was used to train all the networks from
scratch using the PyTorch framework with a batch size of eight.
The algorithms were implemented on an NVIDIA GeForce RTX
2080Ti GPU.

D. Accuracy Assessment

The performance of the proposed method was assessed using
730 field locations obtained through field surveys and Google
Earth visual interpretation. To objectively evaluate the perfor-
mance of our method, we used the following evaluation indica-
tors to measure the mapping results: the OA, the producer’s
accuracy (PA), the user’s accuracy (UA), the F1 score, and
the Kappa coefficient (Kappa). The OA value could assess
the overall model performance with which all samples were
classified; this approach has been used extensively in previous
research [55]. The F1 score is the harmonic average of PA and

UA; while Kappa is a ratio that represents the error reduction of
the classification model’s misclassification versus the misclas-
sification of a random classification procedure.

E. Comparison With Other Methods

To prove the efficiency of the proposed approach, we com-
pared the performance of ALU-DL with that of other frequently
used classifiers by conducting winter wheat mapping in the study
area. In this study, two machine learning methods and three deep
learning models were selected: SVM, RF, the baseline U-Net
model, the method proposed by Dong et al. [26], and the PAL
model.

The SVM and RF are supervised learning methods proven
useful for land use and cover classification. SVM uses ker-
nel functions to map samples from the original space to the
high-dimensional feature space and then searches the mapped
space for the partition hyperplane with “the greatest margin”
[56]. RF is an ensemble learning strategy that uses bagging to
combine many DT classifiers to minimize the model prediction
variance. To successfully restrict the risk of overfitting, each
tree is formulated using random sample selection and feature
number selection [57]. SVM and RF are widely used as base-
line models for remote sensing tasks because they can handle
high-dimensional input variables.

Moreover, the baseline U-Net model without the label update
module was applied to map winter wheat, and the results were
compared with those of the proposed ALU-DL model to verify
the effectiveness of the label update module. Since the method
proposed in this study was motivated by Dong et al. [26], we
compared the mapping performance of our model with the initial
noise correction (INC) model proposed by Dong et al. [26] to
evaluate whether phenological characteristics would improve
the performance of the mapping method. The PAL model, which
is a significant segmentation network for noisy labeled datasets,
is also regarded as one of the baseline methods. All the baseline
methods were implemented with their default settings.

IV. RESULTS

A. Winter Wheat Mapping Accuracy of ALU-DL

As there is no official reference crop data layer, it is impossible
to validate the accuracy of large-scale high-resolution winter
wheat mapping pixel by pixel. Thus, pixel-level validation sam-
ples were used to quantify the classification performance of
different models in terms of the aforementioned indices. The
winter wheat in Shandong Province was classified using the
proposed ALU-DL method with three update strategies, and the
assessment metrics are presented in Table III.

As shown in Table III, the CS-UNet model achieved outstand-
ing classification performance, with an OA of 92.19% and a
Kappa of 0.827. Furthermore, the CS-UNet model’s PA, UA, and
F1 scores all exceeded 90%. The results show that the CS-UNet
model was adequate and robust for winter wheat mapping in
this area, even when no field samples were used for training.
The accuracies for the other two label updated models were
considerably lower, while OA decreased by 2.05–8.08% (Kappa
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TABLE III
ACCURACIES OF WINTER WHEAT USING ALU-DL IN SHANDONG PROVINCE

TABLE IV
ACCURACIES OF WINTER WHEAT USING ALU-DL IN SHANDONG PROVINCE

reduced by 0.05–0.156) compared with CS-UNet, implying that
some nonwinter wheat pixels were mistakenly categorized as
winter wheat. The OA of DTW-UNet was slightly lower than that
of the other models, implying that DTW-UNet might introduce
additional noise information in the label update module.

As a result, the CS-UNet model, which achieved the best
classification performance among the three update strategies,
was selected as the ALU-DL model to compare with other
models and perform the follow-up evaluation.

B. Comparisons of the Performance With Other Mapping
Methods

Table IV compares ALU-DL to the other five winter wheat
mapping models previously described. The ALU-DL model
produced the most competitive performance with an OA of
92.19% and a Kappa of 0.827, demonstrating the stable and
robust capacity of ALU-DL to distinguish winter wheat from
other land cover types.

Compared to the four deep learning models, the accuracy of
the two machine learning methods, SVM and RF, was consid-
erably lower, with 80.41% and 84.52% OA, respectively. Given
that no reliable high-resolution training labels were used in any
of the models, the agreement between the field samples and the
mapping results of the deep learning models demonstrated that
deep learning approaches have considerable potential to build
maps by overcoming the influence of noisy labels.

In contrast, the mapping accuracy of the ALU-DL model
increased dramatically compared to that of the baseline U-Net
model, with the OA rising by 5.61%; this increase confirmed
the advantages of the label update module with the CS update
strategy in correcting wrong labels. The classification perfor-
mance of the INC model was comparable to that of the baseline

U-Net model and inferior to that of ALU-DL. This indicates that
phenological characteristics, rather than the class probability
distribution, were better suited for determining which labels
needed to be updated for this task. Compared with the ALU-
DL, the performance of PAL is poor, with the OA decreasing
by 4.95%. In general, these results indicate that the proposed
method outperforms all the adopted baselines.

C. Visual Assessment

As no complete high-resolution winter wheat validation exists
for this task, visual inspection was used to qualitatively evaluate
the results. Because of the better mapping performance over the
validation samples, ALU-DL was employed for winter wheat
mapping in Shandong Province, and all pixels were divided into
two categories, 1) winter wheat and 2) nonwinter wheat. The
resulting winter wheat maps are shown in Fig. 10; Fig. 10(a)
shows the produced 10-m binary winter wheat/nonwinter wheat
maps of Shandong Province. The distribution of winter wheat in
this area was consistent with the geographical distribution; major
winter wheat zones were frequently located in plains with ample
water supply. More specifically, winter wheat planting areas in
Shandong Province were primarily concentrated in the western
plains, southern region, and northeastern areas of the middle
mountainous regions, whereas planting areas were scattered and
less abundant in central hilly regions and eastern coastal areas.
This result is generally consistent with the distribution of winter
wheat mapping for Shandong Province [34].

Fig. 10(b) and (c) show the 10-m winter wheat map of Binzhou
City derived by the ALU-DL model and the baseline U-Net
model, respectively. Two local zones (A and B) are shown in
Fig. 10(A-I, A-II, A-III B-I, B-II, B-III) to highlight more de-
tails, displaying the mapping results and the original Sentinel-2
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Fig. 10. Winter wheat maps with 10-m spatial resolution derived with ALU-DL in the (a) Shandong Province and (b) Binzhou City. (c) Winter wheat map with
10-m spatial resolution generated by the baseline U-Net model. A-I and B-I represent the local 10-m winter wheat mapping results of the ALU-DL method, and
A-II and B-II are the 10-m winter wheat mapping results of the baseline U-Net model. A-III and B-III are the Sentinel-2 optical image calculated in GEE (the
median value through the grown stage). The Sentinel-2 images are false-color composited with near-infrared (B8), red (B4), and green (B3) bands displayed in
RGB channels.

images. Sentinel-2 images were false-color composites with
near-infrared (B8), red (B4), and green (B3) bands displayed
in RGB channels. Generally, winter wheat distributions derived
with the ALU-DL model [Fig. 10 (A-I, B-I)] were consistent
with optical images [Fig. 10 (A-III B-III)] in the two local
zones, indicating that the ALU-DL model could effectively dis-
tinguish winter wheat from other land cover types. In particular,
because of the higher resolution input images and label updating
module, the suggested technique not only accurately maps the
fragmented winter wheat parcel (Zone A) but also detects the
scattered field paths (Zone B).

D. Areal Comparison

Ideally, large-scale field or pixel-level validation information
should be available; however, this is unlikely in fact due to the
lack of relative productions. The NBS does, however, publish

municipal- and county-level crop acreage statistics, which were
used as a comparison to evaluate the performance of our method.
Using the previously computed ALU-DL model, we estimated
the cultivated areas for winter wheat at the municipal and county
levels. Fig. 11 shows the scatterplots and linear fits for the
mapping results at the municipal and county levels. Several
municipalities lacked available statistical areas for winter wheat,
such as Laiwu City and Rizhao City. Thus a total of 14 mu-
nicipalities and 123 counties were used for evaluation and are
presented in Fig. 11.

A correlation coefficient (R2) of 1.0 indicates a perfect agree-
ment between the area of the mapping product and the agricul-
tural statistical areas. At the municipal level [Fig. 11(a)], the
R2 between the classified and statistical areas was 0.95, indicat-
ing a significant correlation. However, the approach performed
slightly less efficiently at the county level, with an R2 value
of 0.78 [Fig. 11(b)]. Overall, there was a significant agreement
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Fig. 11. Comparison between the estimated planting area (km2) of winter
wheat and agricultural statistical area at (a) the municipal and (b) county level
for 2018. The red dotted line denotes the 1:1 line. The unit of root mean square
error (RMSE) is km2.

Fig. 12. Classification performance of the ALU-DL method with different
update ratios for the noisy label in the label update module when both optical
bands and vegetation indices are used.

between our results and statistical data. These findings provide
compelling evidence of the reliability of the proposed model.

The slope and intercept of the linear model for each sample
were also relevant for understanding the utility of the output [58].
The average linear regression slopes for winter wheat at the
municipal and county level were 0.95 and 0.78, respectively, and
the average intercepts were 395.51 and 95.31 km2, respectively.
Ideally, the linear regression slope and intercept term should be
close to 1 and 0, respectively. Thus, a slope < 1 and positive in-
tercepts imply that the ALU-DL model analysis under-classifies
large-area regions and over-classifies small-area regions. Based
on the above analysis, the expected crop area of winter wheat
was slightly overestimated by the ALU-DL model, implying that
although our method could mitigate the effects of noisy labels,
acquiring a completely clean label set is still challenging.

V. DISCUSSION

A. Performance Comparison of Different Threshold Values for
Label Update Module

Determining the threshold value for the label update module
is associated with assumptions that should be further discussed.
In this section, we discuss the five tested threshold values in
0.1-step intervals from 0.5 to 0.9; OA andF1 scores were used as
classification accuracy measures with alternative thresholding.
Validation samples were used to determine the optimal ratio
parameters.

As shown in Fig. 12, satisfactory performance was achieved
by the CS-UNet model when the threshold value was 0.7, and
the OA value and F1 score were maintained at approximately

Fig. 13. Classification performance of the ALU-DL with different combina-
tions of bands used.

92% and 0.91, respectively. Moreover, a threshold that was too
low or too high for both CS-UNet and ED-UNet models led to
slightly poorer mapping accuracy, whereas the highest mapping
accuracy was achieved when the threshold value was set to 0.7.
Regarding the DTW-UNet model, when the thresholds were less
than 0.7, the mapping accuracy decreased significantly. Satisfac-
tory performances of the DTW-UNet model were achieved with
a threshold value ranging from 0.7 to 0.9; within this range, the
mapping accuracy remained almost steady.

The above results demonstrate that the accuracy of the raw
labels was close to 70%; in other words, the percentage of noisy
labels in the original labels approached 30%. However, the field
survey results of Dong et al. [5] revealed an OA of 89.88%. The
decrease in the accuracy of the raw labels was mainly caused
by the large number of labeling errors introduced by the data
resampling process. In a word, the noise was not only sourced
from the misclassification of the initial 30-m resolution data
product but also from the missing details in the low-resolution
labels.

B. Performance Comparison of Input Bands

An experiment was conducted to quantify the effect of multi-
spectral information in the input time series of the update module
on the classification performance of the ALU-DL model. All
bands and individual OB or VIs were compared to determine
how limited spectral lengths affected winter wheat mapping in
the study area. In this section, the OA and F1 scores were used
as performance indicators.

As shown in Fig. 13, the complete time series (OB+VIs)
input yielded the highest OA of 92.19% for the CS-UNet model
compared to individual OB or individual VIs input. The F1

scores demonstrated a similar superiority. The results showed
that incorporating multitemporal information could enhance the
classification performance of the ALU-DL model. A possible
explanation could be that detailed spatiotemporal information
enables better accuracy when distinguishing between winter
wheat and nonwinter wheat, which has been proven by other
studies [59].

C. Visual Comparison of Models by T-Distributed Stochastic
Neighbor Embedding

After dimensionality reduction, high-dimensional features
could be presented in a plane for feature separability analy-
sis [55]. Using multilayer processing modules, input charac-
teristics of crop categorization were translated into high-level
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Fig. 14. Feature separability comparison based on t-SNE visualization of input features and learned features. Six thousand samples of each crop type are randomly
selected for illustration; each point represents a sample.

feature representations, also referred to as hidden features in
deep neural networks. Hidden features contained fine-grained
temporal information and exhibited complicated patterns, chal-
lenging intuitive interpretation. Therefore, we used t-distributed
stochastic neighbor embedding (t-SNE), a powerful nonlinear
dimension reduction approach, to project high-dimensional in-
put and learned features into a 2-D space [60]. This approach
facilitated the visual comparison of two feature types. The ability
of feature representations to distinguish winter wheat could be
assessed by comparing the separability of features between win-
ter and nonwinter wheat samples. Feature separability analysis
can be considered a general complement to model-specific inter-
pretation methods to understand feature transformations within
deep neural networks. Although a visual comparison could not
provide a quantitative explanation, it could aid in the intuitive
appraisal and investigation of the consequences of sophisticated
feature learning.

In this study, we used the output of the hidden feature from
the last hidden layer as the learned spatiotemporal feature of
two deep learning models. After being projected into a 2-D
space using t-SNE, a separability comparison of high-dimension
features for input features and the features derived by two
models was conducted, as shown in Fig. 14. Notably, using
input features, a substantial number of winter wheat samples
(red circles) were indistinguishable from nonwinter wheat sam-
ples (blue circles). However, learned features of the winter and
nonwinter wheat samples showed better separation. Expectedly,
the best separability was exhibited by the features retrieved by
the ALU-DL model than another two types of features, showing
that the ALU-DL model retrieved more valuable information
for winter wheat mapping than the raw input features and the
baseline U-Net model.

VI. CONCLUSION

This study aimed to develop a new classification method to
automatically recognize winter wheat across large areas for oper-
ational agricultural monitoring. We selected Shandong Province
as the study area using images acquired by the Sentinel-2 satel-
lite. Therefore, an automated winter wheat mapping method,
ALU-DL, based on Sentinel-2 data for large-scale applications

was developed. More importantly, no field-level samples were
adopted in the framework used to train the model. The method
could withstand the harmful effects of noise caused by the lower
resolution (30 m) label, benefiting from a label update module
based on the special phenological (seasonal) characteristics
of winter wheat. The efficiency and validity of our proposed
framework were validated using field survey samples. The win-
ter wheat mapping results derived using the ALU-DL model
achieved an OA of > 92%, demonstrating the effectiveness and
accuracy of the proposed method. Our proposed method sig-
nificantly outperformed other widely used methods in terms of
a variety of evaluation indicators, yielding sufficient classifica-
tion performance. Furthermore, certain impact factors regarding
the applicability of models for Sentinel-2-based winter wheat
monitoring were discussed. Using the proposed method with
the existing 30-m resolution winter wheat maps, we produced
refined 10-m resolution winter wheat maps across Shandong
province without in situ samples for training. The accuracy of the
mapping product was evaluated by crop acreage statistics at the
municipal and county levels. The R2 values between estimated
areas of winter wheat and the agricultural statistical area were
0.95 and 0.78 at the municipal level and the county level,
respectively. The results of this study indicate that the proposed
methodology could offer a viable and promising method for
high-resolution, operational agricultural monitoring over large
areas.

For future research, we aim to derive a method to automat-
ically identify the ratio of correct labels in the label update
module and characterize winter wheat at the field level, rather
than the pixel level. Field-level classification may lead to better
classification performance. Notably, the label update technique
enabled the application of current knowledge and products to
remote sensing scenarios, such as the extraction of water body
borders using high-resolution images.
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