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Abstract—Cyclone detection is a classic yet developing topic.
Various methods have been developed for the purpose of cyclone
detection based on sea level pressure, cloud imagery, and wind
field. In this article, a data fusion approach that utilizes the data
productions from multiple remote sensors is presented. A deep-
learning-based object detection algorithm was adopted to form a
global-scale cyclone detection model. Wind field data obtained from
mean wind field-advanced scatterometer was integrated with the
rainfall intensity data obtained from global precipitation measure-
ment as the dataset for model training and testing. Feature pyramid
network (FPN), which was designed for small target detection, was
integrated with faster-regions with convolutional neural network
to detect the cyclones within the fused dataset. The proposed model
consists of two modules: a feature extractor and region proposal
network based on FPN that searches for the potential areas of
cyclones within the fused dataset, and a regions of interests pro-
cessor that calibrate the locations of cyclone regions through a
fully-connected neural network and a bounding box regression. An
ablation experiment was also designed in the study in order to verify
the necessity of data fusion. The results from ablation experiment
suggested that the wind field data provided more contribution in
the cyclone detection than the precipitation data.

Index Terms—Cyclone detection, data fusion, deep learning,
precipitation, wind field.

I. INTRODUCTION

CYCLONE is a typical extreme weather condition that
negatively affects the safety of maritime transportation and

coastal residents. Therefore, cyclone detection is an important
topic in the related field. Since 1960s, remote sensing technology
has been developed and applied to monitor oceanic environment,
including cyclones on the sea surface. Meanwhile, thanks to the
improvements in the spatial coverage and resolution of remote
sensors, detecting cyclones in large spatial and temporal scales
became a trend in relevant studies. Researchers have made
attempts to accomplish such objective and their works can be
classified as follows based on the data they utilized.
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1) Cyclones are characterized as low-pressure centers [1].
Thus, low sea-level pressure (SLP) zone is a classic iden-
tifier for the presence of cyclones [2], [3]. By comparing
the Laplacian operator of SLP, Simmonds et al. [4] pro-
posed an automatic cyclone detection algorithm. Hanley
and Caballero [5] further developed an identification and
tracking method for multicenter cyclones by examining
the gradient of SLP. Nevertheless, less SLP application
is being made for cyclone detection in the recent studies
because of the lack of in situ and remote sensing data.

2) Because the wind field of cyclone wing is usually
characterized as high vorticity zone compared with
surrounding area, the remotely sensed wind field
data, which is usually obtained through satellite-based
scatterometer, have been widely applied in cyclone
detection. A classic approach for identifying cyclone in
the wind field is the Okubo–Weiss (OW) method, which
is proposed to quantitatively evaluate the significance
between rotation and deformation in the flow field [6],
[7]. The OW parameter W is defined specifically as

W = S2
s + S2

n − ω2 (1)

where Ss and Sn are the shear and normal components of
strain, and ω is the relative vorticity. These parameters can be
specifically calculated using
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+

∂U ′

∂y
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∂x
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where U′ and V′ are the zonal and meridional components of
the flow velocity and x and y are the spatial coordinates. Some
cyclone detection algorithms have been proposed based on the
wind field information derived from remote sensing data and
OW parameters [8], [9]. Tory et al. [10] took the product of
the normalized OW parameter and the absolute vorticity, and
proposed Okubo–Weiss–Zeta predictor (OWZP) to identify the
regions of enhanced vorticity with weak deformation in the wind
field, based on which they further designed a model-free cyclone
detection scheme. The major disadvantage of OW method is
that the threshold of OW parameter is only valid in a regional
area [11], [12]. Thus, the OW-based cyclone detection methods
are usually not capable for cyclone detection in large spatial
scale. In order to overcome this shortage, Xie et al. [13] designed
a deep-learning-based target detection algorithm and achieved
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global-scale cyclone detection using wind field data. The deep
learning model was able to recognize the characteristics of vor-
ticity in the wind field, but also reported false alarms including
monsoon gyre or other cyclone-like turbulence.

3) The infrared (IR) remote sensing images can capture the
shapes of cyclone clouds, which have a strong charac-
teristic of geometric symmetry. With the wide applica-
tion of advanced machine learning algorithms in image
processing, automatic cyclone detection using IR images
has become a hotspot in recent studies. Lee and Liu
[14] classified the shapes of clouds formed by tropical
cyclones in remote sensing images into eight categories,
based on which they proposed a cyclone detection method
using neural networks. Jaiswal and Kishtawal [15], [16]
conducted a series of studies on cyclone detection us-
ing IR remote sensing images based on spiral template
and gradient vectors of brightness temperature. Different
method was proposed by Liu et al. [17], who designed an
algorithm to detect cyclone’s edge using Sobel operator.
Xu et al. [18] derived the cloud motion wind (CMW)
field from IR images, and proposed a cyclone detec-
tion algorithm combining CMW and IR images. Shakya
et al. [19] developed a deep-learning-based model using
IR imageries and applied it to track the cyclone path in
Indian Ocean. Similar methods were proposed to detect
cyclone or storm using multispectral images [20], radar
images [21], and other earth observations [22]. There have
also been sufficient studies that developed the models to
estimate cyclone intensities using IR images [23], [24],
[25], [26], [27], [28], [29], [30], [31]. However, this topic
is considered beyond the scope of this article, and thus
will not be discussed in detail here.

As a state-of-the-art data mining technique, data fusion
method has become a focus in the researches on remote sensing
data processing. Researchers have also made some attempt to
identify the presence of cyclone using the datasets obtained from
multiple types of remote sensors. Ho and Talukder [32], [33],
[34] conducted a series of studies on cyclone detection using
multiple remote sensing datasets. They combined the wind field
data obtained from quick scatterometer (QuikSCAT) with the
precipitation data obtained from tropical rainfall measurement
mission (TRMM), and then distinguished the tropical cyclone
based on support vector machine. Warunsin and Chitsobhuk
[35] combined the wind data with cloud shape and developed a
fuzzy inference system for cyclone detection. They claimed that
the combined dataset could achieve higher detection accuracy
than using wind field data alone. Murata et al. [36] utilized two
quantities that derived from the radial gradient and the tangential
asymmetry of vortex properties cyclones to build a topological
model for tropical cyclone detection. These successful appli-
cations indicate that the integrated remote sensing data could
potentially be applied to analyze the complex meteorological
system, including cyclone detection.

Following the route of remote sensing data fusion, this article
presents a cyclone detection model based on deep learning. Wind
field and precipitation, which are two types of meteorological
features strongly related to the cyclone events, are selected to

Fig. 1. Wind field vectors over an island. (a) Raw data. (b) Interpolated data.

generate an integrated dataset. And an object detection method
based on deep convolutional neural network (CNN) is intro-
duced to identify the cyclones within the integrated dataset. The
data fusion approach, deep-learning-based model, and the design
of ablation experiment are described in detail in Section II.
The cyclone detection results at global and regional scales are
presented in Section III. The detection accuracies from ablation
experiment and comparison experiment are quantitatively ana-
lyzed in Section IV. The potential applications and limitations
of the proposed model are also discussed in Section IV. It is
expected that the proposed method could provide a novel method
for global cyclone detection, and promote the studies on remote
sensing data fusion approach.

II. METHODOLOGY

A. Data Acquisition and Processing

Draw on the successful experiences in the studies by Ho and
Talukder [33], [34], wind field vectors and precipitation data
were applied to the cyclone detection model. The details on data
acquisition and processing are discussed as follow.

1) Wind Field Data: As mentioned in the introduction, wind
field of cyclone events have strong characteristic of vorticity, and
wind field data have been applied to detect cyclones in previous
studies. The mean wind field (MWF) data used in this article
is derived from advanced scatterometer (ASCAT), which is
provided by European Remote Sensing program of the European
Space Agency. MWF-ASCAT was upgraded from QuikSCAT in
term of spatial resolution: it covers the wind field data on the sea
surface between 80°N-80°S and 180°W-0°-180°E, at the spatial
resolution of 0.25°×0.25°. Among the 15 variables included in
MWF-ASCAT dataset, northward and eastward windspeed are
utilized to capture the spirals in wind field.

Because ASCAT only records windspeed on water surface,
the wind field can be cut off by small island [see Fig. 1(a)]. As
reported by Xie et al. [13], this may negatively affect the cyclone
detection results. Therefore, the wind field data within the small
island (less than 4 pixels in either of the dimension) were interpo-
lated with the windspeed data around. The bilinear interpolation
method was applied to complete the spatial interpolation. The
interpolated wind field is shown as Fig. 1(b).

2) Precipitation Data: Cyclone events usually bring strong
rainfall in the cyclone wings, while low precipitation in the cy-
clone eyes. Nevertheless, it is unreliable to detect cyclone events
by using precipitation data alone. Instead of that, precipitation
can be applied as a side information with wind field. It can help
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distinguish between cyclone and anticyclone turbulences since
they have very different rainfall patterns.

In this article, the precipitation data is obtained from global
precipitation measurement (GPM), which is provided by Na-
tional Aeronautics and Space Administration and Japanese
Aerospace Exploration Agency (JAXA). GPM derived precip-
itation calculation based on dual-frequency precipitation radar
(13.6 GHz and 35.5 GHz). Upgraded from TRMM, GPM covers
the entire global area at the spatial resolution of 0.1°×0.1°.

3) Data Preparation: The input data of the cyclone detection
model is constructed based on the two types of data components
described previously. Generally, the integrated dataset consists
of three layers: eastward windspeed from wind field data, north-
ward windspeed from wind field data, and precipitation.

The three data layers need to be synchronized in terms of
both spatial coverage and resolution. For spatial coverage, it is
unrealistic to extent data coverage to the high-latitude area that
is not covered in source data. Therefore, the minimum spatial
coverage among the three data layers, which is 80°N-80°S
and 180°W-0°-180°E, was set as the spatial coverage of the
integrated data, and any cross-boundary data were cut off in
each data layer. For spatial resolution, it is also questionable to
interpolate the data layers with low spatial resolution. Therefore,
the lowest spatial resolution among the three data layers, which is
0.25°×0.25°, was set as the spatial resolution of the integrated
data. The spatial resolution of precipitation data needed to be
resampled accordingly. Judging from the data fusion approach
described previously, the spatial coverage and resolution of the
integrated dataset are strongly affected by “cask effect,” which
means that they are determined by the data layer that has the
lowest spatial coverage and resolution.

It should be noted that the input data of each component need
to be normalized before applied to the cyclone detection model,
because the value of windspeed in m/s is usually much small
than that of the precipitation in mm/h. If the data are directly fed
to the model, the neural network may fail to evaluate the impacts
of each component correctly. The overall data fusion process is
shown as the flowchart in Fig. 2.

The time and locations of the cyclones were obtained as
part from the cyclone and anticyclone dataset built by Xie
et al. [13]. The latitude and longitude information of cyclones
were verified with the hurricane data from Unisys Weather, and
then transferred to the coordinates of integrated dataset, based
on which the cyclones were labeeled. We tried to balance the
locations of cyclones: among the 1000 labelled cyclones, 469 of
them were from the northern hemisphere, and 531 of them were
from the southern hemisphere. The training data were randomly
shuffled so that the cyclones were detected only through the
integrated dataset but not the sequential patterns in time-series.

B. Model Structure

The cyclone detection model applied in this article was
constructed based on an object detection algorithm of deep
learning. Object detection is an important topic in the field
of artificial intelligent algorithm and various models have
been developed for this purpose. According to the model

Fig. 2. Flowchart of the data fusion process.

structures, the deep-learning-based object detection models
can be classified into two categories: 1) two-stage object
detection, such as faster-RCNN [37] and SSP-Net [38], which
usually consists of a regions proposal network (RPN) and a
neural-network-based classifier; 2) one-stage object detection
based on regression, such as YOLO [39] and SSD [40].

Since the cyclones usually appeared as small targets in the
integrated dataset at the global-scale, their spatial features may
be lost in the deep convolution operation. In order to solve
this problem, feature pyramid network (FPN) was integrated
with a modified faster-RCNN algorithm to construct the detec-
tion model. Specifically, the model consists of two parts: 1) a
feature extraction and RPN built based on FPN that seeks for
potential areas of cyclones within the feature maps generated
under different levels of convolution operations and proposes
regions of interests (ROI); 2) a ROI processor that calibrates the
locations of proposed cyclone regions with fully-connected (FC)
layer and bounding box regression. The overall structure of the
faster-RCNN model applied in this article is shown as Fig. 3.

As shown in Fig. 3, 5 convolution layers and 5 pooling
layers were applied on the integrated dataset and produced the
feature maps, based on which FPN-RPN proposed candidate
cyclone regions. The size of the convolutional kernel is 3×3. The
proposed regions were determined based on a fixed set of anchor
sizes and positions. Because the shapes of cyclone regions are
mostly close to a circle and can be enclosed in square regions,
the anchor shape were set as squares. In terms of side lengths
of the anchors, three types of anchor sizes were applied in the
model according to the sizes of commonly witnessed cyclones
on sea surface: 4, 8, and 16 pixels in integrated dataset, which
represent 1°, 2°, and 4° on the earth surface.
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Fig. 3. Overall structure of the detection model.

With the deepening of the convolutional levels, more detailed
information was learnt and the ability of feature expression
was strengthened. However, if the targets to be detected are
rather small (such as the cyclone regions at global-scale), the
corresponding feature maps are likely to be over-compressed
and lose some key information. As a result, it makes the cyclones
difficult to be detected correctly. In this article, FPN was intro-
duced to achieve multiscale feature fusion and object detection.
FPN uses the pyramid structure of CNN hierarchical features
and generates feature pyramids with strong semantics on all
scales [41]. Its architecture is designed as a top-down structure
with horizontal connections, which connect the shallow layer
with high resolution and the deep layer with rich semantic
information. As specifically shown in Fig. 3, the size of the
feature maps becomes smaller after each convolution operation.
The feature maps generated after each convolution operation
are extracted and form a feature pyramid. In this way, the size
of its feature map is increased while retaining the high-level
semantic information. Thus, the feature pyramid with strong
semantic information on all scales can be quickly constructed
from a single input image of a single scale at small computational
cost. The feature maps generated under level 2, 3, and 4 are used
for the bounding box of cyclones generated under the size of 4, 8,
and 16, respectively. Thus, the proposed bounding box with large
size will tend to choose the feature level with the greater depth.
In other words, the larger the target is, the lower the resolution
and the more abstract the feature map will be selected for
regression prediction. On the contrary, the regression prediction
of small targets will be carried out in the high-resolution feature
map. This can solve the problem of small target detection on
faster-RCNN.

The proposed regions of cyclones are processed through ROI
pooling and normalized as 5×5 feature maps, which are flattened

into feature vectors with the dimension of 1024×1×1. Because
there is only one class of target (cyclone) to be detected in the
dataset, the Softmax classifier in the final classification layer
of faster-RCNN is replaced by a bounding box regression that
calibrates the locations of proposed cyclone regions. The FC
layer and bounding box regression calibrate the location of the
anchor based on these feature vectors. The FC layer consist of
an input layer, three hidden layers, and an output layer.

Faster-RCNN model was intended to detect objects in RGB
images. The integrated dataset constructed in this article also
has a three-layers structure that is similar as RGB images. Nev-
ertheless, if additional data were integrated into the dataset and
further extent its dimension, the input size of feature extraction
part would need to be modified in order to work with the dataset
with extended dimension. Moreover, compared with regular
faster-RCNN model, the cyclone detection model proposed in
this article pruned a Softmax classification layer and its corre-
sponding FC layer. As a result, the computational complexity is
reduced and the model efficiency is improved.

C. Ablation Experiment

In order to evaluate the necessity of data fusion and determine
the contribution of each data component on the detection result,
an ablation experiment was designed and conducted. In addition
to the model described previously that uses the data layers of
wind field and precipitation, three additional contrasting models
were designed in the ablation experiment by using only the
wind field, precipitation, or windspeed from the input data. The
detection accuracies using the three types of data were compared
with that using the data fusion method.

It should be noted that when only one type of data in the
integrated dataset, the number of data layers changes. As a
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Fig. 4. Detection result on Feb. 25, 2020 at global scale.

result, the input size of the feature extractor needs to be modified
accordingly. More specifically, the wind field data consist of two
layers (northward wind and eastward wind), while the precip-
itation and windspeed data consist of only one layer and can
be treated similar as the grayscale images. Transformer-based
object detection model can be implemented with the similar RPN
module, and thus could theoretically

D. Implementation Details

The models used in this article and ablation experiment were
constructed and trained with Keras in the Tensorflow backend
[42] and Python 3.6 environment. Rectified linear unit [43] was
applied as the activation function between the convolutional and
pooling layers. For the hyperparameters, the initial learning rate
was set at 0.001, and reduced at a factor of 10 after 100 iterations.
The maximum number of iterations is set at 10000. Nonmax-
imum suppression was applied in the classifier to decide the
prediction, and the intersection-over-union thresholds of NMS
are 0.8 and 0.2 for training and testing, respectively. The models
were trained using the dataset built in the previous section. 70%
of the wind field data were used for training, 10% of the data
were used for validation, and 20% of the data were used for
testing.

III. RESULTS

The performance of the detection model was tested using the
wind field and precipitation data that collected from Feb. 25,
2020 to Mar. 5, 2020. Fig. 4 shows the cyclone detection results
at global scale. The vectors in Fig. 4 represent for the magnitude
and direction of windspeed. The background represents for the
intensity of rainfall. The spatial resolution of the windspeed
vectors in the insert panel is at 0.25°×0.25°, while that of

the global vectors is resampled down to 4°×4°. The spatial
resolution for the rainfall intensity is the same as the input
data (0.25°×0.25°). The results show that the model can detect
cyclones at different latitude.

In order to compare the accuracy of the proposed model
with those of the models for ablation experiment, the results
are quantitatively evaluated by precision, recall, and F-measure,
which are define as

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F − measure =
2 · precision · recall
precision + recall

(5)

where TP stand for true positive predictions, FP stand for false
positive predictions, and FN stand for false negative predictions.

When the confidence threshold is set at a higher level, less
object would be detected. This change would reduce the false
alarms but increase the number of undetected objects, in other
words, improving the precision at the cost of reducing the
recall. By adjusting the confidence threshold and recording the
corresponding precisions and recalls, a precision-recall (PR)
curves can be plotted. Each point in the PR curve corresponds
to a different threshold, and its value is determined by the
corresponding precision and recall [44]. The area under the PR
curve is a direct indicator of the models’ accuracies, and has been
widely-used to evaluate the performance of machine learning
models [45]. The PR curves of the four models used in the
ablation study is shown as Fig. 5. The results indicated that the
detection model using the integrated dataset achieved accurate
detection on cyclones, as the average precision (AP) values were
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Fig. 5. PR curve of the cyclone detection results in the ablation study.

Fig. 6. Confusion matrices of the detection results using different datasets. (a)
Integrated dataset. (b) Wind field data only. (c) Precipitation data only.

TABLE I
PRECISIONS, RECALLS, AND F-MEASURES OF THE DETECTION RESULTS USING

DIFFERENT DATASETS

more than 0.9. The high precision and recall values are achieved
with the confidence over 0.8. Therefore, the proposed regions
with the confidence over 0.8 are preserved for the model training.
However, the APs for the classification models that only uses
wind field, precipitation, or windspeed were significantly lower
than that using the integrated data. The confusion matrices of
the detection results are shown in Fig. 6. Based on the confusion
matrices, the accuracies can be calculated in Table I.

As shown in the confusion matrix (see Fig. 6), the proposed
model using the data fusion approach provided the cyclone
detection results with smallest number of FN and FP predictions.
It also achieved the highest F-measure of over 95%. The model
using only wind field data resulted in less FN and FP predictions,
and thus higher accuracies (about 75%) than that using only

TABLE II
PRECISIONS, RECALLS, AND F-MEASURES OF THE DETECTION RESULTS USING

DIFFERENT MODELS

precipitation data (about 63%) or windspeed data (60%). But all
of these three models achieved lower detection accuracies than
that of the proposed model using the data fusion approach.

A comparison study was also conducted by replacing the
classifier in the proposed model with other existing models
including Faster-RCNN [37] and YOLOv4 [39]. It can be
seen from the comparison results shown in Table II that the
proposed FPN+faster-RCNN model achieved higher detection
accuracies than existing models. Compared with the object
detection model proposed in [37] and [39], the proposed model
includes the FPN module that can effectively recognize the
small targets. Considering the size of cyclones at the global
scale, integrating FPN in the detection model should be an
appropriate improvement. This can also be verified from the
comparison results shown in Table II.

IV. DISCUSSION

A. Accuracy Analysis on the Ablation Experiment

As indicated by the cyclone detection results (see Fig. 4),
the proposed FPN+faster-RCNN model can effectively iden-
tify cyclones though the data fusion method. According to the
detection results using three different datasets (see Table I and
Fig. 5), the detection model using the data fusion approach can
achieve significantly better performance than those using single
type of data. Moreover, the detection model using wind field
data provide better prediction than that using precipitation data.
These results are also confirmed by the PR curves (see Fig. 5).

It should be noted that if the cyclone locates at the boundary of
the integrated dataset, part of the cyclone would be cut off by the
180° meridian or 80° parallel and the model would fail to detect
it. For the cyclones cut off by the 180° meridian, the problem
may be solved by adding a duplicating padding of the dataset on
the other boundary (e.g., 2° to 4° in longitude). However, this
would not solve the cyclones cut off by the 80° parallel, since
the polar area are not covered in ASCAT data and affected by
the “cask effect”. With the appropriate data coverage, the model
should also work for the cyclone detection in polar area.

Compared with the detection model using the data fusion
approach, the model that only used wind field data ended up in
much lower precision (see Table I), which indicated more false
alarms. According to a detailed examination on the false alarms,
this was because that the model was not able to distinguish
between the cyclones and anticyclones at global scale very well,
as they rotate in the different direction in north- and south-
hemisphere. This problem can be solved though data fusion by
introducing precipitation data, since cyclone, and anticyclone
events have very different rainfall condition. The model that only
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Fig. 7. Tracking the path of Hurricane Irma in the time-series data. (a) Aug. 31, 2017. (b) Sep. 5, 2017. (b) Sep. 8, 2017. (b) Sep. 9, 2017.

used the windspeed data provided detection results lower than
that using only wind field data because it lacks the information
in wind direct, which helps identify the cyclones through their
vortex structures. The model that only used precipitation data
was also not able to provided very accurate prediction, since
high rainfall intensity could be related to various weather condi-
tions besides cyclone events. Furthermore, because the detection
results using wind field data were more accurate than that using
precipitation data, wind field data were likely to have higher

contribution in the cyclone detection process of data fusion
approach than precipitation data.

B. Application Areas and Future Studies

A direct application of the proposed data fusion method would
be tracking the cyclone path. By processing the integrated dataset
in temporal sequence with the cyclone detection model, the
locational information of the cyclones can be obtained through
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the proposed regions and the movement of a cyclone can be
captured by the model. For example, we attempted to track the
path of Hurricane Irma that occurred in September 2017 with the
proposed model. The time-series results are shown sequentially
in Fig. 7. The spatial resolution of the windspeed vectors in the
insert panel is at 0.25°×0.25°, while that of the regional vectors
is resampled down to 1°×1°. The spatial resolution for the
rainfall intensity is set as the raw data (0.1°×0.1°). As indicated
in the results, the model was able to detect Hurricane Irma and
track its moving path, which started from the west Atlantic
Ocean [see Fig. 7(a)], passed over Cuba [see Fig. 7(b) and (c)],
and turned north toward Florida, United States [see Fig. 7(d)].

It should be noted that the proposed model has not been
developed into a completed cyclone tracking model yet for the
following reasons: 1) For the purpose of cyclone tracking, it is
usually important to determine the locations of cyclone eyes,
while the proposed model only indicated the cyclone regions.
The most straightforward way to locate the cyclone eyes is
to make the centers of the proposed regions as the location
of the cyclone eyes. This may not be accurate though, since
the wind fields of the cyclones could be asymmetric; 2) The
spatial resolution of the integrated dataset is not fine enough
to precisely determine the locations of cyclone eyes. As stated
previously in the methodology part, the spatial resolution of
the integrated dataset is influenced by “cask effect”. Thus, in
order to solve this problem, the data component with the lowest
spatial resolution needs to be improved. This problem could
be solved through the future development of remote sensing
technology; 3) ASCAT and GPM data are derived from polar
satellites that provide two passes in a day. However, cyclones
are moving phenomena, of which the spatial coverage may not
be correctly indicated on daily-averaged data. Geostationary
satellites collect continuous observations for cyclone tracking,
but with lower accuracy. Therefore, the proposed model can be
applied as an additional validation of cyclone tracking using
geostationary satellite.

For the same reasons, the proposed approach can be more
appropriately applied for the census of cyclone occurrences in
large spatial and temporal scales. Such studies usually do not
require precise location of the cyclone eyes. As a global-scale,
fully-automatic cyclone detection model with high efficiency
and accuracy, the proposed data fusion approach can be applied
to construct an archive of historical occurrences of cyclone
events in large temporal and spatial scale, and propel further
studies on the patterns of cyclone occurrences.

A direct application of the proposed data fusion method would
be tracking the cyclone path. By processing the integrated dataset
in temporal sequence with the cyclone detection model, the
locational information of the cyclones can be obtained through
the proposed regions and the movement of a cyclone can be
captured by the model. For example, we attempted to track the
path of Hurricane Irma that occurred in September 2017 with the
proposed model. The time-series results are shown sequentially
in Fig. 7. The spatial resolution of the windspeed vectors in
the insert panel is at 0.25°×0.25°, while that of the regional
vectors is resampled down to 1°×1°. The spatial resolution
for the rainfall intensity is set as the raw data (0.1°×0.1°). As

indicated in the results, the model was able to detect Hurricane
Irma and track its moving path, which started from the west
Atlantic Ocean [see Fig. 7(a)], passed over Cuba [see Fig. 7(b)
and (c)], and turned north toward Florida, United States [see
Fig. 7(d)].

Besides the data fusion approaches, we envision an improve-
ment on the performance of cyclone detection model as the
trends of future studies, and there are at least two ways to pursue
that. The first approach focuses on the configuration of neural
network structure. For instance, the lately-proposed transformer-
based object detection, which was built on object queries rather
than the bounding boxes used in the faster-RCNN or YOLO [46],
may be an alternative detector to process the integrated dataset.
Transformer-based object detection model can be implemented
with the similar RPN module [47], and thus could theoretically
be applied to detect small cyclone targets at the global scale.
However, considering the problem of tedious training time and
low running efficiency in the transformer-based object detection
model [48], its feasibility of global cyclone detection still needs
to be further verified. The other approach would be the integra-
tion of physic model and artificial neural network, which has
drawn the attentions of researches in different application fields
[49]. For the purpose of cyclone detection, the OW method may
be combined with the deep learning model where the distribution
of OWZP operator could provide additional information that
imply the exist of cyclones.

V. CONCLUSION

A data fusion approach for global scale cyclone detection is
proposed using deep-learning-based object detection algorithm.
Wind field vectors derived from ASCAT scatterometer and
rainfall intensity derived from precipitation radar are combined
and form an integrated dataset for model training and testing.
The experiment results showed that the detection model using
the data fusion approach was able to provide significantly more
accurate detection than those using single types of data. This fact
indicated the necessity of data fusion. Furthermore, according to
the results of ablation experiment, the wind field data seemed to
have higher contribution than precipitation data for the cyclone
detection model applied in this article.

The limitations and potential applications of the detection
model are also discussed in the article. The spatial resolution
of the dataset is affected by “cask effect”. In other words, the
spatial resolution of the dataset is determined by the data layer
with the lowest spatial resolution. Therefore, it may not be able
to accurately determine the locations of cyclone eyes according
to the current spatial resolution of remote sensing data. However,
by developing a fully-automatic cyclone detection model with
data fusion approach, this article is expected to promote the
researches on the cyclone occurrences and climate patterns, as
well as remote sensing data fusion methods.
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