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Abstract—This article addresses the problem of superpixel-bases
segmentation of synthetic aperture radar (SAR) images. Most
superpixel segmentation methods have difficulties in segmenting
adjacent regions with similar gray values, due to only considering
spatial and gray information. To solve this problem and improve
segmentation accuracy, this article proposes an SAR image seg-
mentation method based on Fisher vector superpixel generation
and label revision. First, the Fisher vector is obtained by processing
the Gaussian mixture function. By introducing the Fisher vector,
a distance formula is constructed for superpixel segmentation.
Therefore, the adjacent regions with similar gray values can be
segmented effectively in the generated superpixel map. Second, the
superpixels are clustered using the K-means algorithm to obtain
the initial label map. Then, with extracted edge information as
constraints, the pixel labels obtained by K-means are repaired pixel
by pixel to get the middle label map, according to the number
and gray value difference of labels. This overcomes the influence
of noise generated by K-means. Finally, the middle label map is
relabeled using the region growth algorithm to divide pixel blocks.
Isolated pixel blocks surrounded by similar labels are corrected,
based on the gray mean difference. The final label result has a better
segmentation accuracy. Experiments on synthetic SAR images and
real images demonstrate that the proposed algorithm achieves
higher segmentation accuracy than six state-of-the-art clustering
algorithms for SAR image segmentation.

Index Terms—Fisher vector, label revision, superpixel, synthetic
aperture radar (SAR), unsupervised segmentation.

I. INTRODUCTION

RADAR-BASED machine vision is an important applica-
tion of image processing [1], [2]. Machine intelligence

and artificial intelligence are two main types of intelligence.
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In machine vision useful for developing electronic systems,
machine intelligence is mainly used [3]. Synthetic aperture radar
(SAR) image segmentation can be applied to military target
detection, ocean monitoring, and crop estimation. Automatic
SAR image segmentation has attracted increasing attention in
the literature [4], [5]. As a critical step in the processing of
SAR images, there are difficulties in segmenting SAR images
correctly due to multiplicative speckle [6].

Well-known algorithms for SAR image segmentation include
a series of methods such as threshold segmentation [7], segmen-
tation based on edge detection [8], segmentation methods based
on clustering [9], and segmentation using neural networks [10].
With the rise of neural networks, some researchers have begun
to apply deep learning to applications such as targets classifi-
cation [11], video processing [12], object detection [13], etc.
In [12], Davari et al. used faster R-CNN to perform object
detection on power devices in each frame in the video, and
used color thresholding to identify corona discharges in the
frame. Later, the ratio of corona to equipment area was used to
determine the fault degree of power equipment. The algorithm
could automatically identify early faults in distribution lines,
and has strong practicability. Zalpour et al. [14] used deep
learning to perform object detection on oil tanks. First, an
improved faster R-CNN was used to extract the target of interest,
and then a convolutional neural network (CNN) was used to
extract high-order features. The algorithm used deep learning
to have a high prediction accuracy for oil tank detection. Geng
et al. [15] proposed a semisupervised depth joint distributed
adaptive network model using transfer learning. It could match
the original and target region’s joint distribution probabilities
and achieve high classification accuracy. While these algorithms
generate satisfactory results, they also require significant time
for training the network model. Feng et al. [16] designed a
simple sampling method to train a semisupervised CNN, which
reduced the running time. However, the method of deep learning
relies heavily on training data. Furthermore, the training process
often consumes large computing resources. Due to the limited
open-source training datasets, some scholars still use traditional
methods for SAR image segmentation.

In traditional SAR image segmentation, in order to obtain
high segmentation accuracy, edge detection can be introduced
as reference information. Its fundamental premise is to locate
the gray value transition in an image. Traditional edge detection
algorithms use a rectangular window to obtain pixel ratios. To
reduce the influence of speckle on gray ratios, Shui et al. [17]
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applied a Gaussian Gamma window to mitigate false edge in-
formation. Ganugapati et al. [18] used ratio of averages detector
(ROA) to obtain the edge information of SAR image. Based on
the mean ratio of ROA, the influence of noise can be weakened,
and an accurate edge map can be obtained. Xiang et al. [19]
proposed to use the sketch edge map to refine the segmentation
of the generated superpixels further. Then the statistical region
merging (SRM) framework was proposed to merge superpixels
to obtain segmentation results quickly. Experimental results
showed that this algorithm had high computational efficiency
and a good segmentation effect. Jing et al. [20] introduced a new
image-filtering method to maintain edges while smoothing ho-
mogeneous regions and obtained the edge strength map (ESM)
using a Gaussian smoothing window. The NMS and double
thresholding methods exploit the edge segmentation map. To get
accurate edge information, Shang et al. [21] proposed a super-
pixel boundary-based edge description algorithm for SAR image
segmentation (SpBED). This algorithm used the Gabor window
and three edge detectors, the ROA, cross-correlation-based (CC)
detector, and gradient detector, to find the edge information.
Three types of edge information were fused interactively to
reduce the effect of noise and obtain smoother edge detection.
The edge map obtained was more stable because of its ability
to identify gray values with high contrast. Edge detection is
one of the important processes in SAR image segmentation
since it provides information that can be used to achieve high
segmentation accuracy.

Segmenting SAR images by clustering is a common approach.
For the relationship between each pixel and adjacent pixels,
if they are similar in color, texture, or gray level, they should
be merged into the same label. Traditional methods include
K-means, fuzzy C-means clustering (FCM), seed region growth
method, etc. For K-means, it can cluster quickly, but it also
has inherent disadvantages, which will produce noise spots.
Each pixel is classified based on its membership matrix by
FCM. Gong et al. [22] proposed a new Markov random field
(MRF) energy function and added an additional term to modify
the membership in FCM. FCM iteratively updates each pixel’s
membership, resulting in slow segmentation speed. To overcome
this problem, Szilagyi et al. [23] directly calculated the gray
histogram of the image to achieve fast segmentation. However,
the algorithm proposed by Szilagyi must manually provide a
parameter to balance noise and preserve image details, and this
method has defects in boundary information preservation. Jing
et al. [24] proposed to use the density peak (DP) algorithm and
the knee point to select the number of clusters automatically.
Then the improved K-means clustering was used for generated
superpixels. The algorithm did not require clustering parameters
and had high segmentation accuracy. Ji et al. [25] suggested
a nonlocal FCM method for SAR image segmentation based
on the between-cluster separation measure (NSFCM). To limit
the influence of speckle, the program exploited nonlocal spatial
information. In addition, the goal function included a fuzzy
between-cluster variation term. Experimental results showed
that the algorithm was better for image segmentation with
some compact classes in feature space. However, this algorithm
was prone to segmentation errors at edges. Xiang et al. [26]

proposed combining kernel FCM with pixel intensity and lo-
cation information (ILKFCM). In addition, the energy measure
of SAR image wavelet decomposition was used to represent
texture information, which made the algorithm more robust.
However, each step of the fuzzy factor requires iterations, so
ILKFCM takes a long time to run. Based on the fact that the
Gamma distribution resembles the probability distribution of
speckles, Zhao et al. [27] introduced the Gamma distribution into
the distance formula of FCM (Gamma-FCM), showing that the
shape parameters were derived, and updating the membership of
each pixel iteratively. Experiment results showed that each class
in the image conformed to a Gamma distribution. However, due
to the classification of each pixel separately, the algorithm was
prone to noise. Compared with the region segmentation algo-
rithms, the implementation of FCM and its improved methods
are relatively simple, but they have some disadvantages. The
segmented images have noise classification errors, and the FCM
point-by-point iterative calculations are time-consuming.

Due to the noise problems of FCM clustering mentioned
above, region-based segmentation has also been applied to SAR
image segmentation. Classical methods include the Simple Lin-
ear Iterative Clustering algorithm (SLIC), watershed algorithm,
meanshift, etc. Kurtosis wavelet energy (KWE) was proposed by
Akbarizadeh as a high-order feature that can extracts more sta-
tistical information for SAR image [28]. Akbarizadeh combined
the KWE feature, wavelet energy feature, and gray values into
a normalized feature vector which was used to train the SVM
classifier. Experiments showed that the algorithm was effective
for the classification of different textures in SAR images. In addi-
tion, Tirandaz et al. [29] proposed to use kurtosis curvelet energy
(KCE) to design the optimal kernel function. The boundaries of
each layer were determined by using the estimation function
of KCE. Since KWE and KCE are two efficient estimating
methods, they can be applied to superpixel segmentation. Zou
et al. [30] introduced a local clustering scheme combining spatial
proximity and data similarity and used generalized Gamma
distribution to model SAR images accurately. Lei et al. [31]
developed a method based on superpixel and fast fuzzy C-means
clustering for color image segmentation (SFFCM). SFFCM
utilized generated superpixels to simplify the images and obtain
image histograms. Then the color images were clustered based
on the fuzzy C-means of the histogram, which reduced the run-
ning time. Due to satisfactory performance in color image seg-
mentation, SFFCM was extended to gray image segmentation.
However, due to the lack of edge information, it was insensitive
to adjacent regions with approximate gray values. Jing et al. [32]
introduced a new superpixel generation method and clustered
the superpixels using a shrinkage expansion strategy instead
of K-means. This algorithm could obtain superpixels with low
computational cost and high edge adhesion. Wang et al. [33]
accurately detected ship targets at a low signal-to-clutter ratio
by combining local contrast of Fisher vectors (LCFVs) with
superpixels. The algorithm can segment different target regions
of the SAR image accurately.

Because SLIC is simple to implement and can resist speckle,
this algorithm is often used for SAR image segmentation.
Tirandaz et al. [34] proposed to incorporate improved SLIC
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results under the constraints of feature and edge information.
The label map produced by K-means was then optimized us-
ing Hidden Markov random field-expectation maximization
(HMRF-EM) and zero padding weighted neighborhood filter
bank (ZPWNFB). The final segmentation was obtained by com-
bining the above results. The experimental results showed that it
could effectively resist noise and achieve high accuracy. Ghaffari
et al. [35] used robust FCM clustering to classify SAR images
into homogeneous and nonhomogeneous regions. The super-
pixel was generated by SLIC and the fast weighted conditional
random fields (FWCRF) algorithm was used to mark the image
to obtain the higher segmentation accuracy. A potential area
for improvement is that the L0 smoothing method used by the
algorithm makes regions with similar gray values have closer
values, hence two regions with similar gray levels cannot be
effectively segmented. Shang et al. [21] used SLIC and boundary
information to generate superpixels and obtained the segmenta-
tion results through K-means. Experimental results showed the
segmentation result could maintain the boundary information.
However, SpBED ignores the noise produced by K-means. The
effect of speckle on image segmentation can be avoided to some
extent through the use of superpixels in region segmentation.
However, it is still a challenge to accurately segment regions
with insignificant gray contrast.

To reduce the effect of speckle on segmentation, some schol-
ars use region segmentation to segment SAR images, but tradi-
tional methods cannot effectively segment adjacent regions with
similar gray values. To solve this problem, an SAR image seg-
mentation method based on Fisher vector superpixel generation
and label revision (FVSGLR) is proposed. First, the Gaussian
mixture model (GMM) is estimated by maximum likelihood, and
then the variables are derived to obtain the mixture parameter
set {ωk, μk, σk}. Then the third-order information of the Fisher
vector is acquired by normalizing and regularizing the variables
in the mixture parameter set. A superpixel generation algorithm
based on Fisher vector (FV-SLIC) is proposed. The third-order
information is introduced into the superpixel distance formula,
and the labels of all pixels are iteratively updated to obtain
the superpixel result map. Since the distance formula considers
more dimension information, the above steps can effectively
distinguish adjacent regions with similar gray values. Second,
according to the edge information generated by previously pro-
posed algorithm SpBED, the superpixel result map is segmented
again to obtain finer superpixels. The edge information is inte-
grated into the superpixels, and then the small superpixels are
fused. Third, K-means is used to cluster the fused superpixels,
and the Canny algorithm is utilized to obtain the edge result
image. Fixed window label revision based on label and gray
information (LRLG) is proposed to eliminate the noise points
generated by K-means. The edge result image is combined with
the edge information obtained by SpBED to get the final edge
information. Under the condition of edge limitation, the label is
updated by using the gray value and the number of labels. Finally,
the region growth algorithm is implemented to find isolated pixel
blocks with no boundaries in the homogeneous region. Using
the isolated pixel blocks label revision (IPBLR) algorithm, the
isolated pixel blocks that meet the fusion conditions are fused

into the neighborhood label, and the final segmentation result is
obtained.

The main contributions of this article are as follows.
1) The superpixel distance formula introduces the Fisher

vector third-order information to update the label of pixels
iteratively. It can effectively segment the adjacent regions
with similar gray values.

2) LRLG, under the constraints of edge information, can
revise the noise points by using gray information and the
number of labels. This method can eliminate the noise
points generated by K-means.

3) IPBLR, using region growth algorithm to calibrate isolated
pixel blocks in the homogeneous region, can solve the
label error in pixel blocks caused by superpixel segmen-
tation.

The rest of this article is organized as follows. Section II
discusses in detail the proposed FVSGLR algorithm. Section III
analyzes the results of the experimental results performed by
each algorithm on synthetic and real images. Finally, Section IV
concludes this article.

II. PROPOSED METHOD

To achieve a higher segmentation accuracy, and avoid gen-
erating noise points, this article proposes an SAR image seg-
mentation method based on FVSGLR. The block diagram of
the proposed FVSGLR algorithm is shown in Fig. 1.

As shown in Fig. 1, first, the Fisher vector is introduced into
the superpixel distance formula, and SLIC superpixel segmen-
tation is used. This method can effectively segment the adjacent
regions with similar gray values. The ESM obtained by edge
detection is introduced into the superpixel result image for
resegmentation and fusion to obtain the superpixel. Second, to
get the Initial result, K-means is used to cluster superpixels. To
eliminate the noise points generated by K-means, under the given
edge information constraint, the target pixel label is repaired by
a label revision algorithm based on label and gray information
(LRLG) to obtain a revised result. Finally, to solve the pixel
blocks with label errors caused by superpixel segmentation, a
region growth algorithm is used to find isolated pixel blocks in
the revised result. The isolated pixel blocks that meet the fusion
conditions are fused into neighborhood labels by the IPBLR
algorithm to obtain the final result. The remainder of this section
focuses on superpixel generation based on the Fisher vector and
edge constraints, fixed window label revision based on label and
gray information, and revision of isolated pixel block labels.

A. Superpixel Generation Based on Fisher Vector and Edge
Limitation

The edge detection technique locates the pixel position with
the maximum difference in the gray area. The SAR images
also have adjacent regions with small differences in gray value.
In order to segment the SAR image correctly, it is necessary
to detect weak edges, which can be obtained by generating
superpixels.

Traditionally, SLIC, watershed algorithm, or ecological meth-
ods were used to over-segment images. However, when the
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Fig. 1. Block diagram of the proposed FVSGLR algorithm.

difference of gray values in the segmentation area is too small, it
is impracticable to segment effectively in this way. Therefore, the
Fisher vector is introduced to introduce additional information
into the distance similarity formula when superpixel segmenta-
tion is performed on ground objects. Parameter set {ωk, μk, σk}
is constructed by deriving the variables of a GMM

fG(x) =

K∑
k=1

ωkfk(x) (1)

where K denotes the gaussian function’s total number. The
kth Gaussian function is fk(x).

∑K
k=1 ωk=1, where the weight

of the kth Gaussian function is represented by ωk. Then the
parameter set in the GMM are normalized separately to get the
Fisher vector α(ω,μ,σ)

p

α(ω,μ,σ)
p =

[
αω1
p , . . ., αωK

p , αμ1
p , . . ., αμK

p , ασ1
p , . . ., ασK

p

]T
(2)

αωk
p =

1√
βk

(ϕp,k − βk)

αμk
p =

xp − μk

σk

√
βk

ϕp,k

ασk
p =

ϕp,k√
2βk

(
(xp − μk)

2

σ2
k

− 1

)
(3)

where βk = exp(ωk)∑K
k=1 exp(ωk)

, ϕp,k =
ωkfk(xp)

∑K
k=1 ωkfk(xp)

. ωk, μk, and

σk represent the weight, mean, and standard deviation of
the kth GMM, respectively. αω

p = [αω1
p , . . ., αωK

p ]T , αμ
p =

[αμ1
p , . . ., αμK

p ]T , ασ
p = [ασ1

p , . . ., ασK
p ]T . αω

p , αμ
p , ασ

p are up-
dated by their signed inner product square root and l2-
normalization, respectively.

Before generating superpixels, to prevent noise from affecting
the segmentation, Gaussian smoothing is applied to the input
image. SLIC is used to segment the image due to its simple
implementation and good segmentation effect. The size of the
superpixels is Sp. Next, each seed point interval S is

√
Sp.

Each initial center point falls at a lower gradient in the 3× 3
neighborhood to prevent falling into the edge and affecting the

Fig. 2. Exploration range of superpixel centroid.

segmentation. The similarity detection range of superpixel seed
points is shown in Fig. 2. As shown in Fig. 2, each superpixel
center point calculates the distance similarity within its explo-
ration range. The purple superpixel seed judges the similarity of
each point within the range (2S + 1)× (2S + 1) with itself as
the center, where S is the step of each superpixel seed. Each
superpixel seed point is assigned a label. If the point in the
range has the shortest set distance from the seed point, it will be
assigned as the label of this superpixel seed. As analyzed above,
this process is performed for each superpixel seed point.

Each pixel point is finally marked with the label of the super-
pixel center with the shortest set distance. The superpixel cen-
ter’s gray value and coordinates are then modified. The update
process will not stop until the number of iterations is reached.
The Fisher vector obtains three-order information by deriving
the weights, means, and standard deviations in a GMM with
maximum likelihood estimation. αω

i , α
μ
i , α

σ
i denote the weight,

expectation, and standard deviation vector of the Fisher vector
for the ith pixel. The distance similarity formula generated by
superpixels is then as follows:

dij =
Sp

θ

(
Iis − Ijs

)2
+ Eij+ ‖ α

(ω,μ,σ)
i − α

(ω,μ,σ)
j ‖2 (4)

Eij = (xi − xj)
2 + (yi − yj)

2 (5)
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Algorithm 1: Description of FV-SLIC Algorithm.
Input: SAR image I , Gaussian smoothing σ, Gaussian
window Gw, the balance parameter θ, the number of
Gaussian mixture function K, the size of the superpixel
Sp;

Input: initial label map;
1: Use Gaussian filter function to smooth image I to get Is;
2: Use formula (1) Gaussian mixture function for

maximum likelihood estimation of Is to get the best
parameter set;

3: Get the Fisher vector by normalizing and regularizing;
4: Use the SLIC method and fomula (4) to segment

superpixel;
5: Post-processing with seledge information;
6: Under the constraints of seledge, smooth the gray

values of superpixels;
7: Use K-means to cluster the smoothed superpixels.
8: Get the initial label map.

where the similarity distance between the ith and jth points is
denoted by dij , with lower values indicating higher similarity.
xi and yi represent the horizontal and vertical coordinates of the
ith point. i, j ∈ {1, 2, . . ., R ∗ C}, where the input image’s row
and column are denoted by R and C. θ is the balance parameter.
Iis represents the gray value of the ith pixel in the smoothed
image.

The edge information after over-segmentation is obtained by
generating superpixels based on the Fisher vector. Then edge
information selEdge is generated in SpBED, which is used to
segment the superpixels once more to get smaller superpixels.
The region growth algorithm is then used to mark labels of strong
edge pixels as superpixel labels with the closest gray values.
After processing the superpixels, small blocks of superpixels are
merged into adjacent superpixel blocks with the smallest pixel
mean difference without strong edges between them. Finally,
the superpixels are clustered by K-means to generate the initial
result map. The description of the FV-SLIC algorithm is shown
in Algorithm 1.

B. Fixed Window Label Revision Based on Label and Gray
Information

K-means has its inherent shortcomings and tends to fall into
local optimality. After the clustering mentioned above of super-
pixel blocks, a window may have multiple missegmented labels
due to incorrect classification of some superpixels. In addition,
K-means generates noise points, especially in the boundary.
Fig. 3 demonstrates the steps involved in the label revision
process.

The revision process is shown in Fig. 3. The red box in
Fig. 3(a) shows that there are purple and blue pixel points in the
yellow and green borders. The purple and blue points represent
noise points. The bottom of Fig. 3(b) shows the repair process
of the purple pixel group. Among them, there is a boundary
between yellow and green pixels. Under the fixed window, the
number of purple pixels is first counted. Then the region growing

Fig. 3. Image revision process. (a) Error label. (b) fixed window label revision
process. (c) Fixed window label revision result.

algorithm is used to count the number of pixel groups adjacent to
the purple pixels which have no boundaries. The ones that meet
the conditions and have the largest number are the green pixel
groups. The difference between the gray mean of the green pixel
group and the purple pixel group is less than the set threshold,
so the purple pixel is marked as the green pixel group. Fig. 3(c)
shows the result after restoring the purple and blue pixel points.
The specific process of the above label revision algorithm is as
follows.

The final edge map edge is created by applying the Canny
algorithm to the initial label map and then combining it with the
strong edges selEdge. The algorithm searches for nearby pixels
with the same label starting at the center point. Those whose
number is less than the quantity threshold Tn are regarded as the
blocks to be processed, and the label is labeli. It will otherwise
be moved. The pixels of other objects are accumulated under
the edge limit. A vector is used to find the pixel block with the
maximum label value labelmax in the fixed window. The gray
mean difference between the labeli and labelmax is judged. If it
is less than the threshold Tgray , labeli is changed to labelmax.
Otherwise, the label is assigned to the labelj that is a different
label and the neighborhood’s nearest pixel value. This process
is defined as follows:

labelmax = argmax(num(labeli)) ∀i ∈ L (6)

graymax = gavg(labelmax) (7)

grayi = gavg(labeli) (8)

Tgray =
gmax − gmin

P
(9)

labeli =

{
labelmax, if abs(graymax − grayi) < Tgray

labelj , else if abs(grayi − grayj) = M

(10)

where L denotes the total number of label sets under the fixed
window, labeli denotes the ith label, and num(labeli) denotes
the number of ith labels. labelmax represents the maximum
number of labels for the fixed window. gavg(labeli) is the ith
label’s gray mean value. grayj is the mean gray of the jth
neighborhood pixel group of label i, and Tgray is the set pixel
value difference threshold. gmax, gmin represent the maximum
and minimal gray value in the image.P is the number of clusters.
M is the minimum difference between the ith pixel block and
the surrounding pixel block.

After restoring the image by the above algorithm LRLG, the
boundary information edge is combined with the resultant map.
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Algorithm 2: Description of LRLG Algorithm.
Input: initial label map, seledge, the edge information
canny obtained by the Canny algorithm, the fixed
window wg , quantity threshold Tn, gray threshold Tgray;

Input: middle label map;
1: Merge the edge information canny with seledge to get

edge;
2: while pixel in initial label map has not checked do
3: Under the edge limit, perform window sliding to find

the same pixel as the center pixel label, if it’s amount
< Tn, set it as the block to be processed, and
label=labeli;

4: Continue to find the labelmax with the largest number
of labels in the fixed window;

5: Using formula (7) and (8) to calculate the mean gray
value of labelmax and the labeli;

6: if abs(graymax − grayi) < Tgray then
7: labeli = labelmax;
8: else
9: labeli is covered with the smallest difference

between the gray values of the pixel groups adjacent
to labeli;

10: end if
11: end while
12: Get the middle label map.

For the case that the boundary will have isolated points, each
pixel will be checked to see whether its four neighborhoods are
not of the same label. If the condition is met, the label with the
largest number in the eight neighborhoods of the edge pixel is
found to cover the boundary point

label(x,y)m = argmax(num(label(x,y)n8
)) (11)

label(x,y) =

{
label(x,y)m , if label(x,y) �= label(x,y)n4

label(x,y) else

(12)

where label(x, y) denotes the label at (x, y) in the initial result
map, and label(x,y)n4

represents the label value in the four
neighborhoods of point (x, y). label(x,y)m denotes the label
with the largest number of labels in the eight neighborhoods
of point (x, y). The description of LRLG algorithm is shown in
Algorithm 2.

C. Isolated Pixel Block Labels Revision

The speckle in some homogeneous regions results in a signif-
icant difference between the generated new superpixels and the
neighborhood superpixel blocks, leading to K-means clustering
errors. In this article, a correction strategy based on is also pre-
sented to resolve this issue. Algorithm 3 shows the description
of the IPBLR algorithm.

It can be seen from Algorithm 3 that the region growth
algorithm is used to reassign the labels of the middle map. For
each separated label pixel block, the labels are reassigned. The
bigger location of the global pixel block is then determined to see

Algorithm 3: Description of IPBLR Algorithm.
Input: middle label map, quantity threshold Tm, the
threshold of gray mean difference T ;

Input: final label map;
1: Use the region growth algorithm for the middle label

map to reassign the pixel labels;
2: while the pixel of middle label map has not checked do
3: Find isolated blocks of pixels smaller than a threshold

Tm, and label = labeli;
4: Check whether the isolated pixel blocks labeli has

boundary;
5: Using formula (13), update the value of labeli;
6: end while
7: Get the final label map.

Fig. 4. Correction process of Isolated pixel block. (a) Isolated pixel block in
homogeneous area. (b) Label revision process. (c) Restoration results.

if this region has just one sort of neighborhood. The pixel block
will not be handled if it is on the border. The gray difference
between the target and neighboring pixel blocks is computed
otherwise. If the difference is less than the threshold T , the pixel
block will be fused into the neighborhood to get the final label
result. The process is shown in Fig. 4.

It can be seen from Fig. 4 that there are yellow isolated pixel
blocks in the purple pixel blocks. The yellow pixel blocks are
transformed into purple using the region growth algorithm and
formula 13. Each pixel block is relabeled using the region growth
algorithm. The yellow pixel group whose number of pixel blocks
is less than the threshold is found by setting the threshold Tm.
The adjacent pixel blocks of the yellow pixel block in the red box
only have purple pixel groups, and the yellow pixel block is not at
the boundary. The yellow pixel block is corrected to the purple
pixel block according to formula 13. Because the difference
between the pixel mean value of the yellow pixel block and the
purple pixel group is smaller than the set threshold T , which
meets the criteria in formula 13. This process is defined as

labeli =

⎧⎪⎪⎨
⎪⎪⎩
labelj ,

if num(labeli) < Tm

and adjacency[i] = 1
and grayi − grayj < T

labeli, else

(13)

T =
2× (gmax − gmin)

P
(14)

where j represents the different neighborhood subscripts of the
ith pixel block. The ith pixel block does not contain boundary
pixels. gavg denotes the gray mean value of pixels. adjacency[i]
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Fig. 5. Flowchart of the proposed FVSGLR algorithm.

represents how many neighboring pixel blocks the ith pixel block
has. The Tm value indicates the threshold value for identifying
tiny blocks. The threshold of difference of gray values between
two pixel blocks is represented by T .

D. Flowchart and Pseudocode of the Algorithm

To better understand the FVSGLR algorithm, the flowchart of
the proposed FVSGLR algorithm is shown in Fig. 5. As shown
in Fig. 5, the proposed FVSGLR algorithm has three main steps.
First, the similarity formula of SLIC introduces the third-order
information of the Fisher vector. The improved SLIC is used
to generate superpixels on the Gaussian smoothed image. The
superpixels are further divided using the extracted edge infor-
mation. The initial label result is obtained by using K-means.
Second, each point in the initial label result is traversed by a
fixed sliding window. Under the limitation of edge information,
label revision is performed on the noise points generated by
K-means by referring to the gray value and number of labels.
The revised label result is obtained. Third, the region growth
algorithm is used to find the isolated pixel blocks. The spatial
and gray information is used to correct the labels of the eligible
isolated pixel blocks. The segmentation result is obtained.

To achieve high segmentation accuracy, dealing with speckle
is a key issue. After introducing the algorithm, how the proposed
FVSGLR algorithm handles speckle during image segmenta-
tion is described below. First, the proposed FVSGLR uses the

Algorithm 4: The Framework of the Proposed FVSGLR
Algorithm.

Input: SAR image I , superpixel initial size Sp, the number
of cluster P , the number of Gaussian mixture function K,
maximum iteration count Iter;

Input: the result map of segmentation S;
1: Bias derivative of the weights, means, and standard

deviations of the log-likelihoodized global GMM; Get
the third-order information of the Fisher vector;

2: for i < Iter do
3: With FV-SLIC algorithm generates superpixels;
4: i++;
5: end for
6: Create a Gabor function edge detection template, and

use three edge detection algorithms to extract edge;
7: Use the nonmaximum suppression algorithm and double

threshold method to obtain the final edge selEdge;
8: Integrate selEdge into superpixels;
9: while Finish smoothing superpixels do

10: if Adjacent superpixels exist selEdge then
11: Continue;
12: else
13: Use gray information to smooth each other;
14: end if
15: end while
16: Use K-means to cluster superpixels to obtain Initial

result;
17: while Initial result map exists noise pixels do
18: Use LRLG algorithm to revise noise points;
19: end while
20: Get the Revised result;
21: while Pixel blocks meet (13) do
22: Use IPBLR algorithm to revise the isolated pixel

blocks;
23: end while
24: Get the Final result S.

Gaussian kernel function to perform simple filtering on the input
image I . Second, using superpixel generation, the pixels with
similar characteristics are formed into sub-regions, and the gray
values in the sub-regions are set as the average value. This
method averages the influence of speckle on different pixels.
Finally, due to speckle, superpixels will have missegmented
regions, resulting in K-means clustering errors. The proposed
FVSGLR algorithm uses a region growth algorithm to find
isolated pixel blocks and uses gray and spatial information to
correct the labels of eligible pixel blocks. Through the above
method, the influence of speckle on image segmentation can be
effectively reduced. When all steps are completed, the frame-
work of the proposed FVSGLR algorithm is shown in Algorithm
4.

E. Computational Complexity Analysis

Suppose the input image size is n×m. The size of the mul-
tiscale gabor window function is scale× scale, the direction is
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Fig. 6. Synthetic SAR images. (a) SI1. (b) SI2. (c) SI3. (d)–(g) and (j) 2-, 4-,
and 6-look of SI1. (e)–(h) and (k) 2-, 4-, and 6-look of SI2. (f)–(i) and (l) 2-, 4-,
and 6-look of SI3.

dirnum, and the total product is recorded as N . The number
of superpixels to be fused is K. The main time consumption of
the algorithm in this article can be divided into three parts, the
first is edge information generation, the second is superpixel
generation and subsequent processing, and the third is label
revision. The time complexity of edge information generation is
O(N × n×m). The time complexity of superpixel generation
and subsequent processing is O(K × n×m), and the label
revision is O(n×m). Since superpixel generation needs to
perform iter times, and superpixel fusion uses 8 neighbor-
hood exploration, iter ×K × 8 can reach 104, so the overall
computational complexity of the algorithm in this article is
O(K × n×m).

III. EXPERIMENTAL SETUP AND ANALYSIS OF RESULTS

A. Experimental Configuration

In the same environment, performance of the proposed FVS-
GLR is compared against that of six state-of-the-art algorithms,
on the both synthetic SAR images and real SAR images. The

Fig. 7. Real SAR images. (a) Noerdlinger image. (b) Maricopa image. (c)
Xian image. (d) Ground truth of Noerdlinger. (e) Ground truth of Maricopa. (f)
Ground truth of Xian.

proposed FVSGLR algorithm and the comparison algorithm are
implemented using MATLAB programming. All the algorithms
run in the following environment: CPU Intel Core i5-4590 CPU
@ 3.30GHZ 3.30GHZ, 8 G RAM, Win10 64-b operating system,
and MATLAB2021a.

B. Experimental Images

Three sets of synthetic SAR images are selected for the
dataset. They are synthetic image 1 (SI1), synthetic image 2
(SI2), and synthetic image 3 (SI3), as shown in Fig. 6.

The three sets of synthetic SAR images are generated by
simulating the effect of coherent speckle noise on noiseless
images. The generated synthetic SAR images are 2-,4-, and
6-look of synthetic images, respectively. The first set of synthetic
SAR images SI1 is shown in Fig. 6(d)–(g) and (j), and the size
of this synthetic SAR image is 256× 256, which contains four
classes. The SI2 image has a size of 384× 384 and consists
mainly of curves. It can be segmented into four types of targets
with different gray values, as shown in Fig. 6(e)–(h) and (k). The
synthetic SAR image SI3 has a size of 512× 512 and consists
of both curves and lines. It can be segmented into five classes, as
shown in Fig. 6(f)–(i) and (l). The SI3 image is more difficult to
segment because it has more corner points, and the gray values
between targets are more similar. Since both SI2 and SI3 contain
corner-point targets, they are possible to test the algorithm to
segment small corner-point targets.

In this section, a set of real SAR images is also selected as a
test image. They are Noerdlinger, Maricopa, and Xian image, as
shown in Fig. 7.

Fig. 7(a) is an SAR image named Noerlinger with the original
resolution of 1 m, HH polarization, and in X-band. It was cap-
tured by TerraSAR-X, situated in the middle of the Swabian Jura
in southwestern Germany, which is 256× 256 in size and can be
segmented into four different types of farmland areas. Fig. 7(b)
shows the second real SAR image named Maricopa, imaged
in the Ku-band and VV polarization, located at the Maricopa
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Agricultural Center near Arizona. The size is 350× 350 and
the resolution is 1. The image contains four types of targets
such as farmland, roads, and water. Fig. 7(c) shows Xian’s real
SAR image, taken in the X-band by TerraSAR viewing Xi’an,
China, at a resolution of 1 m. Xian image is an eight-look
SAR image. The size of image Xian is 256× 256 and can be
divided into four regions, including three kinds of farmland and
water. Fig. 7(e)–(f) are the ground truth images for the three
real SAR images, which are manually annotated to directly
and objectively compare the proposed FVSGLR algorithm and
contrastive algorithms.

C. Comparison Algorithms and Evaluation Metrics

In this section, six better algorithms in recent years are used as
comparison algorithms. SFFCM, FWCRF, and SpBED are SAR
image segmentation based on superpixel, and ILKFCM, NS-
FCM, and Gamma-FCM are SAR image segmentation based on
FCM. This article takes three evaluation metrics for comparison:
Segmentation accuracy (SA), the consistency test coefficient
(Kappa) and the intuitive segmentation effect. The formula of
SA and Kappa are as follows:

SA =

P∑
i=1

Li ∩Gi

/ P∑
i=1

Gi (15)

Kappa =
SA−pe

1− pe
(16)

pe =

(
P∑
i=1

num(Li)× num(Gi)

)/
(R× C)2 (17)

where Li denotes ith label pixels in the segmentation result. Gi

represents ith label pixels in the ground truth. num(Li) is the
num of ith label pixels in the segmentation result.

D. Parameter Setting and Analysis

In this article, the initial setting range of the number of pixels
Sp contained in the superpixel is [10, 200]. Experimental results
suggest that the best pixel range contained in superpixel is [20,
90]. Gaussian smoothing σ is 3.1. The number of Gaussian
mixture function K is 7. Gaussian window Gw is 5. Set the θ to
15. The sliding fixed window Wg is set to 19. Tn is the quantity
threshold for finding the blocks to be processed in the sliding
fixed window Wg . Tm is the threshold for finding isolated pixel
blocks. R is the number of rows of the input image. To select the
effective values of Tn and Tm, the relevant experiments of SA
on Maricopa with Tn and Tm are performed in this algorithm.
Table VI shows the SA of Maricopa with the different values of
Tn and Tm.

As can be seen from Table VI, the value range of Tm is [R×
0.8, R× 1.3] and the interval is R× 0.1. The value of Tn starts
from 10 and increases to 170 in increments of 20. From the
Table VI, SA increases with the increase of Tn when the value
of Tm remains unchanged, and then gradually becomes stable.
With a fixed Tn, SA increases with increasing Tm and then
plateaus. The larger Tn and Tm are, the more pixel groups need
to be processed, and the more time is cost, so the proposed

Fig. 8. Impact of parameter Sp on SA and time. (a) SA of Noerdlinger. (b)
Time of Noerdlinger. (c) SA of Maricopa. (d) Time of Maricopa. (e) SA of Xian.
(f) Time of Xian.

FVSGLR algorithm takes the initial values of Tn and Tm when
SA tends to be stable in the Table VI. For the Maricopa image,
the proposed FVSGLR algorithm set Tn=130 and Tm=R. For
other images, when SA takes the best result, the sizes of Tn and
Tm are similar to the current values.

To test the effective range ofSp, the algorithm performs image
segmentation on the three real SAR images. The SA and running
time of different Sp are shown in Fig. 8.

The number of parameters Sp starts from 10 and increases
to 200 in increments of 10. As shown in Fig. 8(a)–(c) and (e),
whenSp is 10, the SA is relatively low. Because there are too few
pixels in each superpixel, the gray value of adjacent pixel groups
is significantly different, and the cluster will appear noise. The
optimal range forSp is [10, 90]. As the superpixel contains more
and more pixels, the superpixel will contain many misclassified
pixels, resulting in misclassification.

As shown in Fig. 8(b)–(d) and (f), the algorithm’s running time
decreases asSp increases. The reason is that when the initialSp is
small, the number of superpixels is large. The runtime is long due
to a large number of iterations while creating the superpixel. As
the number of superpixels decreases, the running time decreases.
When the number is reduced further, the detection range of
each superpixel center point becomes larger, causing the running
time to increase again. Combining SA and running time, when
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TABLE I
SA OF MARICOPA WITH THE DIFFERENT VALUES OF Tn AND Tm

Sp is in the range [20, 90], the algorithm works well on the
real datasets.

E. Experimental Results and Analysis

1) Results and Analysis of Synthetic Images: The SA and
kappa coefficient of each algorithm on the 2-, 4-, and 6-look SI1
synthetic SAR images are shown in Table I.

As shown in Table I, the accuracy of each comparison al-
gorithm is above 90%, among which the SpBED algorithm
and Gamma-FCM algorithm can achieve higher SA. With the
increase of noise, the accuracy of SFFCM and FWCRF gradually
decreases and fluctuates greatly, indicating that the two algo-
rithms are susceptible to noise and are less robust. ILKFCM,
NSFCM, SpBED, and the proposed FVSGLR algorithm have
little volatility and good stability. By the two evaluation indexes
of SA and Kappa, the proposed FVSGLR algorithm achieves a
better image segmentation.

The experimental results of each algorithm on 2-look SI1
synthetic image are shown in Fig. 9.

As shown in Fig. 9(d), FWCRF’s result has many pixel point
segmentation errors, resulting in poor image intuitive segmen-
tation. Fig. 9(e) shows that SFFCM cannot be utilized with
boundary information, resulting in regions with low grayscale
differences that cannot be segmented accurately. As shown in
Fig. 9(f) and (g), ILKFCM and NSFCM can perform accurate
segmentation in homogeneous regions but cannot effectively
classify the boundary information, resulting in classification
errors. The SpBED and the proposed FVSGLR algorithms can
segment the synthetic image accurately. Still, there are individual
small spots in the homogeneous region in Fig. 9(h), which leads
to slight inferiority of the result compared with the proposed
FVSGLR algorithm. The proposed FVSGLR algorithm uses the
boundary information to segment them and correct the pixel
groups classified in the homogeneous regions, and a better
segmentation effect can be seen in Fig. 9(c).

The synthetic image of each look of SI2 are used as the
segmentation images. The SA and Kappa are calculated for the
algorithm of this article, and the six comparison algorithms, as
shown in Table II.

It can be seen from Table II that for the synthetic images, the
accuracy of each comparison algorithm is above 90%. Among
them, ILKFCM and Gamma-FCM algorithms have lower seg-
mentation accuracy due to the inability to accurately classify

Fig. 9. Segmentation results on 2-look SI1 synthetic image. (a) 2-look SI1. (b)
Ground truth. (c) Proposed FVSGLR. (d) FWCRF. (e) SFFCM. (f) ILKFCM.
(g) NSFCM. (h) SpBED. (i) Gamma-FCM.

TABLE II
EXPERIMENTAL RESULTS ON SI1 SYNTHETIC SAR IMAGES

boundary pixels and the presence of speckle during segmen-
tation, respectively. Lower segmentation accuracy is obtained
when the FWCRF algorithm is executed for the 2-look of SI2.
NSFCM, SpBED, and the proposed FVSGLR algorithm have
good stability with slight fluctuation. In addition, Table II shows
that proposed FVSGLR’s segmentation accuracy and Kappa are
the highest.

The experimental results of each algorithm on the 2-look of
SI2 are shown in Fig. 10.

As shown in Fig. 10(d), FWCRF has a large number of noises,
so this algorithm has the lowest accuracy among the comparison
algorithms. As shown in Fig. 10(g), the NSFCM algorithm does
not retain edge information due to the smoothing operation,
which finally leads to the wrong classification of edge pixels. As
shown in Fig. 10(h), SpBED can segment the synthetic image
accurately. Still, due to the drawback of K-means’ tendency to
produce local optima, it leads to individual small patches of
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Fig. 10. Segmentation results on 2-look SI2 synthetic image. (a) 2-look SI2.
(b) Ground truth. (c) Proposed FVSGLR. (d) FWCRF. (e) SFFCM. (f) ILKFCM.
(g) NSFCM. (h) SpBED. (i) Gamma-FCM.

TABLE III
EXPERIMENTAL RESULTS ON SI2 SYNTHETIC SAR IMAGES

homogeneous regions in Fig. 10(h). Compared with NSFCM,
the proposed FVSGLR algorithm in Fig. 10(c) has no noise
in the homogeneous region, and the boundary segmentation is
accurate, indicating the effectiveness of this algorithm’s seg-
mentation.

The synthetic image of each SI3 look is used as the segmenta-
tion image. The SA and Kappa are calculated by the algorithm of
this article and six comparison algorithms, as shown in Table III.

From Table III, as the number of looks of SI3 decreases, some
comparison algorithms can no longer guarantee segmentation re-
sults above 90%, such as the ILKFCM and NSFCM algorithms.
The segmentation accuracy of ILKFCM and NSFCM algorithms
are low due to the inability to accurately classify the boundary
pixels, and the presence of speckle during segmentation. With
the increase of noise, FWCRF has many noises in the 2-look of
SI3, and the algorithm is not robust. SpBED and the proposed
FVSGLR algorithm are not volatile and have good stability.

Fig. 11. Segmentation results on 2-look SI3 synthetic image. (a) 2-look SI3.
(b) Ground truth. (c) Proposed FVSGLR. (d) FWCRF. (e) SFFCM. (f) ILKFCM.
(g) NSFCM. (h) SpBED. (i) Gamma-FCM.

Furthermore, the proposed FVSGLR algorithm can reduce the
problem of pixel group segmentation errors and obtains higher
segmentation accuracy.

The experimental results of each algorithm on the 2-look of
SI3 are shown in Fig. 11.

Five classes are represented in Fig. 11(b). The difference of
the adjacent pixels is minor, and the image’s size is 512× 512.
By observing Fig. 11(g) and (i), it is found that NSFCM and
Gamma-FCM have noises, resulting in poor visual segmentation
appearance of the image. Fig. 11(f) shows that ILKFCM cannot
segment the boundary accurately. As shown in Fig. 11(e), the
SFFCM lacks the use of boundary information, resulting in the
fusion of large areas with low difference values. As shown in
Fig. 11(h), SpBED can accurately classify boundary pixels, but
due to the use of the SLIC algorithm to generate superpixels,
there are some superpixel segmentation errors in segmentation
process, resulting in the final clustering error, such as the area
with a small block classification error at the boundary edge.
Compared to ILKFCM, the boundary segmentation of the pro-
posed FVSGLR algorithm is smooth, indicating the effective-
ness of the algorithm segmentation.

2) Results and Analysis of Real Images: Using three real
SAR images, the SA and Kappa are calculated by the proposed
FVSGLR and comparison algorithms, as shown in Table IV.

From Table IV, due to the two relatively noisy images of
Maricopa and Xian in the real SAR image, the difference of
segmentation accuracy of each comparison algorithm is huge.
In the Maricopa image, the Gamma-FCM algorithm is different
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TABLE IV
EXPERIMENTAL RESULTS ON SI3 SYNTHETIC SAR IMAGES

TABLE V
EXPERIMENTAL RESULTS ON REAL SAR IMAGES

from the proposed FVSGLR algorithm because the Gamma-
FCM algorithm only considers the affiliation of each point and
does not consider the local information of each pixel point.
After generating superpixels, the proposed FVSGLR uses local
information to revise the pixel labels, which can better suppress
the influence of speckle. Due to the irregular shape and high
noise of Xian SAR image, FWCRF, SFFCM, ILKFCM, and
NSFCM can not segment the image well, which indicates that
these algorithms have weak ability to segment the image with
high noise and irregular shape. For the Noerdlinger image, the
accuracy of all algorithms is higher except for the FWCRF
algorithm. Compared with the Maricopa and Xian SAR images,
the Noerdlinger image is easier to segment because of its more
regular shape. By observing the two evaluation indexes of SA
and Kappa, the proposed FVSGLR algorithm achieves a better
segmentation effect on the real SAR image segmentation.

The experimental results of each algorithm on the real SAR
image Noerdlinger are shown in Fig. 12.

As shown in Fig. 12(d), FWCRF can maintain the boundary
information, but there are spots in the figure, such as green spots
in the yellow area. Fig. 12(e) shows that SFFCM lacks bound-
ary information, and large tracts of farmland are segmented
incorrectly. The green farmland is wrongly segmented into dark
blue farmland. As shown in Fig. 12(g), the edge in the NSFCM
segmentation result is smooth. Still, when smoothing the image,
the edge information is not retained, and the outer layer of
the boundary is incorrectly classified. The outer edge of each
farmland is wrapped by a layer of blue pixels. Fig. 12(f) shows
that ILKFCM has pixel group classification errors in the ho-
mogeneous region. Fig. 12(h) shows that the SpBED algorithm
uses boundary information to segment the image and classify
the boundary pixels accurately. There are green roads in yellow
farmland. Compared with the SFFCM algorithm, the proposed
FVSGLR has a smooth boundary segmentation, indicating the
effectiveness of the algorithm.

Fig. 12. Segmentation results on the Noerdlinger image. (a) Noerdlinger
image. (b) Ground truth. (c) Proposed FVSGLR. (d) FWCRF. (e) SFFCM. (f)
ILKFCM. (g) NSFCM. (h) SpBED. (i) Gamma-FCM.

The experimental results of each algorithm on the real SAR
image Maricopa are shown in Fig. 13.

As shown in Fig. 13(g), the edges in the NSFCM map are
often covered with a layer of blue pixel clusters, mainly because
there is no edge information involved. Fig. 13(e) shows that
the SFFCM can segment accurately within the homogeneous
region without speckle effect. Fig. 13(f) shows that ILKFCM
can segment individual targets. Still, there are often pixel group
classification errors in homogeneous regions, such as dark blue
pixel blocks appearing in the lower light blue pixel groups.
As shown in Fig. 13(h), the SpBED boundary segmentation is
accurate, but there are often small blocks of misclassified areas in
the boundary edges and homogeneous regions. Compared with
the SFFCM and SpBED, the proposed FVSGLR in Fig. 13(c)
has no misclassified pixel groups in the homogeneous region and
keeps the boundary information, indicating the effectiveness of
the algorithm.

The experimental results of each algorithm on the real SAR
image Xian are shown in Fig. 14.

Fig. 14(f) shows that ILKFCM has pixel group classifica-
tion errors in homogeneous regions and more errors in target
boundary segmentation, indicating that the algorithm cannot
segment perfectly for smaller regions. As shown in Fig. 14(g)
and (i), NSFCM and Gamma-FCM can maintain the boundary
information but often misclassify in regions with low contrast
of gray values. As shown in Fig. 14(e), SFFCM cannot use
the boundary information to segment small areas of the whole
image. Although there is no noise in homogeneous areas, large



SHANG et al.: SAR IMAGE SEGMENTATION BASED ON FISHER VECTOR SUPERPIXEL GENERATION 9651

Fig. 13. Segmentation results on the Maricopa image. (a) Maricopa image. (b)
Ground truth. (c) Proposed FVSGLR. (d) FWCRF. (e) SFFCM. (f) ILKFCM.
(g) NSFCM. (h) SpBED. (i) Gamma-FCM.

Fig. 14. Segmentation results on the Xian image. (a) Xian image. (b) Ground
truth. (c) Proposed FVSGLR. (d) FWCRF. (e) SFFCM. (f) ILKFCM. (g)
NSFCM. (h) SpBED. (i) Gamma-FCM.

TABLE VI
RUNNING TIME ON REAL SAR IMAGES

areas are incorrectly segmented into green pixel blocks. As
shown in Fig. 14(d), after FWCRF uses the smoothing method,
it makes the values of adjacent regions smooth each other, and
regions with low values of gray value differences are incorrectly
confused for classification, leading to significant errors in the
results. Fig. 14(h) shows that SpBED has irregular pixel groups
included in the image, which decreases the accuracy, such as the
blue region containing green pixel groups. By comparing the
segmentation results of the proposed FVSGLR algorithm against
six state-of-the-art comparison algorithms, the proposed FVS-
GLR also has some erroneous pixel groups being segmented,
but there is no overall noise.

F. Comparison of Running Time

To verify the effectiveness of the proposed FVSGLR, running
times of six algorithms are compared. In this section, the real
SAR image is taken as the experimental object. The running
time of each algorithm for each real image is shown in Table V.

It can be seen from Table V that SFFCM has the minimum
running time. The superpixels are obtained through multiscale
morphological gradient reconstruction (MMGR) operation and
Watershed Transform. The SFFCM algorithm uses histogram
parameters to perform FCM clustering on superpixel images.
Since each pixel is not discriminatively classified, the running
time is significantly reduced. The reason for the long running
time of ILKFCM is that the fuzzy factor needs to be calculated
in each iteration, and the calculation of the kernel distance of the
wavelet features also increases the running time. In addition, the
proposed FVSGLR algorithm runs almost the same time as other
algorithms, which proves that the running time of the proposed
FVSGLR algorithm is within a reasonable range.

IV. CONCLUSION

To overcome the problem of low gray contrast regions in SAR
images, this article proposes a segmentation method based on
FVSGLR. In this article, the Fisher vector is obtained by deriving
the parameter set in a Gaussian mixture model, and then the
Fisher vector is introduced into the distance similarity formula
in SLIC. This similarity metric can effectively segment adjacent
regions with similar gray values by introducing third-order
information. Next, K-means is used to cluster the segmented
superpixels, and fixed window label revision is used to revise
the noise in the K-means cluster. Finally, to find isolated pixel
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blocks, a region growth algorithm is used. The isolated pixel
blocks that meet the fusion condition are incorporated into the
neighborhood pixel blocks, which improves the segmentation
accuracy of the proposed FVSGLR algorithm. For performance
evaluation, three sets of synthetic images of different sizes, and
three real SAR images are used, and six recent state-of-the-art
segmentation algorithms are compared against our proposed
FVSGLR algorithm. By comparing the segmentation accuracy,
Kappa coefficients, and visually intuitive comparison results,
the proposed FVSGLR demonstrates improved accuracy and
ability to preserve edge information. On the Maricopa dataset,
the accuracy of the proposed FVSGLR algorithm reaches over
91%, and the corresponding Kappa coefficients are significantly
higher than other comparison algorithms. The proposed FVS-
GLR algorithm can effectively segment adjacent pixel blocks
with similar gray values by using edge information. For the
noise points in the image, the label can be revised by using
the boundary information and gray value. However, the label
revision algorithm may ignore the details of the complex texture
image when correcting the label. In the future, we will study
how to improve the label revision algorithm to apply to complex
texture images.
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