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Mapping the Complex Crop Rotation Systems in
Southern China Considering Cropping Intensity,

Crop Diversity, and Their Seasonal Dynamics
Yuan Liu , Qiangyi Yu , Qingbo Zhou, Cong Wang, Sonoko Dorothea Bellingrath-Kimura, and Wenbin Wu

Abstract—Crop rotation increases crop yield, improves soil
health, and reduces plant disease. Mapping crop rotation is difficult
because crop data from a single time point do not sufficiently
represent the dynamics of a system. Studies have tried to map
crop rotation by sequentially combining crop maps. However, this
produced a large number of meaningless crop sequences, hindering
the assessment of rotational benefits at regional scales. Here, we
propose a crop rotation classification scheme that integrates tempo-
ral information into static crop maps and develop an innovative ap-
proach to map crop rotation. We chose a typical multiple cropping
region in southern China. Given that the landscape is characterized
by high crop diversity (e.g., food crops, cash crops, and permanent
crops) and variable cropping intensity, our classification scheme
first defines three main rotation systems, i.e., paddy, vegetable,
and orchard systems, and then further divides the systems into
nine subsystems according to their seasonal dynamics. Finally, we
apply time series of Sentinel-1 and Sentinel-2 images to identify
the systems by a hierarchical rule-based method. The map of crop
rotation systems in 2020 had producer, user, and overall accuracies
of 81%, 79%, and 81%, respectively. The results indicate that
integrating temporal information into the classification scheme is
vital to representing complex rotation systems and that remotely
sensed temporal dynamics of crops are useful to characterize these
systems. It also shows that crop rotation can be mapped directly
rather than aggregating multiple crop layers, thus providing a new
perspective for mapping and understanding crop rotation systems.

Index Terms—Crop diversity, crop rotation, cropping intensity,
google earth engine (GEE), land monitoring, sentinel-1/2.
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I. INTRODUCTION

CROP rotation is the practice of growing a series of crop
types on the same land across consecutive seasons or

years [1]. It has been found to increase crop yield, improve
soil health, and reduce plant disease [2], [3], [4], suggesting
that crop rotation could be considered an option for ensuring
food production without compromising the environment. Crop
rotation practices can be found all over the world. Amidst
concerns over the impacts of increased chemical inputs on soil
and water quality, the United States is encouraging more crop
rotation [5]. The Common Agricultural Policy in the European
Union also promotes legume-based rotations [6]. In China, crop
rotation has traditionally been adopted by smallholder farmers
to maintain soil fertility [7].

The adoption of crop rotation provides a variety of benefits,
which have been widely reported by field studies conducted in
the experimental plots and farms. For example, it was shown
that growing velvet bean in rotation with maize was effective in
increasing maize yield and improving soil quality [8]. Despite
such evidence, crop rotation benefits have not been systemat-
ically investigated at regional or larger scales due to the lack
of spatial crop rotation data. In developed countries, farm-level
cropping decisions might be well documented for subsidy or
insurance purposes (e.g., the land parcel identification system
[9]), and these data could be used for deriving crop rotation
maps [10]. However, farm-level data are scarcely available in
developing countries where smallholder farms are predominant.
For example, China has a long history of crop rotation practices,
and the agricultural landscapes in China are characterized by
small fields, high cropping intensity, and diverse crop types [11],
[12]. The fragmented agricultural landscapes and the lack of ad-
vanced data acquisition channels lead to limited documentation
on cropping decisions across Chinese farms.

To derive the geographical distribution of crop rotation pat-
terns, both modeling and remote sensing techniques have been
explored [13], [14]. For modeling studies, a two-phase proce-
dure is usually followed. The first step generates possible crop
sequences based on crop type information from statistics com-
bined with some auxiliary data (e.g., agronomic criteria, expert
knowledge) [15], [16]. And in the second step, the generated
crop sequences are spatially allocated according to specific rules
to obtain the spatial patterns [17], [18]. However, modeling
research articles often lack actual data on crop sequences and,
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thus, need to rely on the analyst defining realistic crop sequences,
which may not account for the large variations in farming
practices across a region [19].

With the development of remote sensing technology and data
availability, remote sensing emerges as a way to map the actually
practiced crop rotations [20], [21], [22], [23], [24], [25]. Because
crop rotation involves crops grown at different seasons or years,
crop rotation mapping is more challenging than crop mapping,
and multidate remote sensing images are required. There are
usually three steps in crop rotation mapping. First, crops are
separately mapped for different seasons or years. Then, crop
sequences are generated by sequentially combining multiple
crop maps. Finally, representative crop rotations are identified
from crop sequences based on the expert knowledge or specific
rules. For example, Martinez-Casasnovas and Martin-Montero
[21] characterized typical crop rotations bases on the temporal
series analysis of crop maps from 1993 to 2000 generated by
supervised classifications of Landsat TM images [21]. And
Waldhoff et al. [25] obtained diverse crop sequences based on
the combined annual crop maps for eight consecutive years and
identified dozens of representative crop rotations [25]. Several
studies have mapped crop rotation based on multiyear analysis
of existing earth observation data, e.g., cropland data layer [23].
Recently, Li et al. [26] reported a phenology-based method to
map crop species and rotation types using fused MODIS and
Landsat time-series data [26].

However, as most crop maps are not produced for tracking
temporal changes, combining these independently produced
maps may result in many meaningless sequences due to “salt
and pepper” pixels and other mapping errors [24], [27]. These
sequences can rarely represent farmers’ rotation decisions, lim-
iting their decision-supporting role in agricultural management.
In addition, most studies focus on single-cropping regions, while
the crop rotation patterns in multicropping areas (e.g., southern
China) remain unclear, which hinders the understanding and
planning of cropland use. To address the above limitations, we
present a case study in Zengcheng district, a typical multicrop-
ping region in southern China. And this article would contribute
to the pieces of literature in two major respects.

1) We propose a crop rotation classification scheme that
integrates temporal information into static crop maps to
represent the intra-annual variability of cropland use in
Zengcheng. The classification scheme accounts for infor-
mation on cropland intensity as well as crop diversity,
enabling us to understand the dynamics and complexity
of local cropping systems.

2) We develop a hierarchical rule-based method, offering
an automatic and efficient way to map the crop rotation
systems. It is designed to directly map all the systems to
reduce error propagation.

II. MATERIALS

A. Study Region

The case study region is Zengcheng district, Guangdong
Province, southern China (see Fig. 1). The topography is mainly
characterized by hills in the north and plains in the south, and

Fig. 1. Maps of the study area. (a) Location of Zengcheng in China. (b) Loca-
tion of Zengcheng in the Guangdong–Hong Kong–Macao GBA. (c) Distribution
of ground sample locations in Zengcheng in 2020.

Fig. 2. Example for the complex crop rotations in Zengcheng. (a) Field
photograph taken on September 24, 2020 indicates spatial heterogeneity as well
as the small sizes of the cropping systems. The foreground displays small plots
with diverse vegetables, while the distance shows large paddy fields with late
rice. Panels (c)–(f) show the high-resolution images of the same site captured
on different dates from google earth. (b) EVI curves of the two locations shown
in (c).

the agricultural landscapes are largely fragmented. The district
has a southern subtropical monsoon climate with abundant
sunshine and rainfall, which allows crops to be grown all year
round, resulting in multiple cropping seasons. Vegetables are
widely distributed and intensively managed, and Zengcheng is
an important production base in the Vegetable Basket Project in
the Guangdong–Hong Kong–Macao Greater Bay Area (GBA).
Fruits and rice are the other two major crops. There are also
many minor crops, e.g., peanut, corn, and sweet potato. Multiple
cropping seasons and diverse crops together lead to highly
complex crop rotation systems (see Fig. 2).

B. Remote Sensing Data

Sentinel-1 (S1) images with a 12-day interval from the Level-1
ground range detected product and Sentinel-2 (S2) images with
a 5-day interval from the Level-2A surface reflectance product
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archived in the google earth engine (GEE) platform were used
in our study [28]. All the available satellite images acquired
during the period from December 1st 2019 to November 30th
2020 were exploited for classification, which completely covers
the cropping cycles of typical rotations in Zengcheng.

Specifically, we obtained 289 S2A/B images and 30
S1A images. S1 carries a dual-polarization C-band syn-
thetic aperture radar (SAR) instrument, resulting in vertical
transmission/horizontal receiving (VH) and vertical transmis-
sion/vertical receiving (VV) bands. S2 carries a multispectral
imager sensor that provides high-resolution multispectral im-
ages. S1 images have been used to explore the spatiotemporal
patterns of paddy rice in cloudy regions due to the ability of
the sensor to penetrate clouds [29]. It was previously shown
that including S1 data in a study resulted in higher rice map-
ping accuracy than using data from only a single sensor (i.e.,
S1 or S2) [30]. Therefore, S1 images were included to im-
prove the accuracy of paddy rice extractions. S2 images have
shown promise in crop mapping over fragmented croplands
[31], [32], suggesting their potential for crop rotation mapping
in southern China. S2 images were gap filled and smoothed
to construct the seamless five-day time-series data. More in-
formation can be found in Supplementary text Fig. S1 and
Table S1.

C. Cropland Mask

The global land-cover product with a fine classification system
at 30 m for 2020 (GLC_FCS30-2020) produced by the Chinese
Academy of Sciences was applied to extract the cropland extent
[33]. It was produced based on GLC_FCS30-2015, Landsat data,
S1SAR data, and other auxiliary datasets. The classification
system inherited that of the European Space Agency Climate
Change Initiative Global Land Cover and cropland comprised
rainfed and irritated cropland in which rainfed cropland included
herbaceous cover and tree or shrub cover (orchard).

Kang et al. [34] indicated that GLC_FCS-2015 (especially
cropland) had higher accuracy than GlobeLand30-2010 and
the finer resolution observation and monitoring of global land-
cover product in 2015 over a complicated tropical region [34].
We further compared the cropland mapping accuracies among
GLC_FCS-2020, GlobeLand30-2020, and FROM_GLC-2017
based on 300 cropland samples (randomly selected from
ground reference data) and 300 noncropland samples (visu-
ally interpreted on google earth). The results revealed that
GLC_FCS-2020 and GlobeLand30-2020 had higher overall
accuracies. Given that GLC_FCS-2020 had a great advantage
in spatial details (see Fig. S2), it was finally used in our
study.

D. Ground Reference Data

In September 2020, we conducted a field survey in
Zengcheng, which involved collecting not only ground samples
by recording coordinates and taking pictures but also informa-
tion from farmers who are the managers of land parcels. In
addition to visible land management decisions that were recently
made in the field, we asked farmers who were working in the

TABLE I
DESCRIPTION OF THE COLLECTED SAMPLE POINTS

surveyed fields to retrospectively review their land management
decisions from the last winter to the current season (December
2019 to September 2020). We also asked them to share their
land management plans for the next few months (September
2020 to November 2020). This information about land man-
agement decisions and plans was combined to generate crop
sequences. Ultimately, we collected data from 738 field points.
In the following sections, these samples will be divided into
different groups for certain purposes (see Table I). To train the
random forest (RF) classifier, 80 samples were used (40 for
vegetables and 40 for orchard). We discarded 34 samples due
to poor quality, and the remaining 624 samples were exploited
for assessing the classification performance of the entire hybrid
system (80 + 34 + 624 = 738). The validation sample sizes
of rice, vegetables, and fruit trees are 223, 212, and 189, re-
spectively. In addition, we determined the important growing
stages of the major crops (see Fig. 3). More information about
the field survey can be found in Supplementary Text Figs. S3
and S4.

E. Agricultural Statistics

The Guangzhou Statistics Bureau publishes annual reports
on the harvested area of major crops in each district (https:
//lwzb.gzstats.gov.cn:20001/datav/admin/home/www_nj/). We
acquired the 2021 Guangzhou statistical yearbook that reported
the harvested area of crops in 2020.

III. METHODOLOGY

We first provide a crop rotation classification scheme (see
Fig. 4) based on the field survey, farmer interviews, expert
knowledge, and agricultural statistics to represent the complex
crop rotations. The cropping systems in the study region are
characterized by both inter- and intra-annual variabilities. Here,
we focus on the intra-annual variability rather than the inter-
annual variability because the intra-annual variability is needed
to understand the more complex inter-annual variability. Based
on the established classification scheme, we further propose
a hierarchical rule-based method to generate a 10-m map of
crop rotation systems for 2020 (see Fig. 5). Here, the year 2020
refers to the period from December 1st 2019 to November 30th
2020.

https://lwzb.gzstats.gov.cn:20001/datav/admin/home/www_nj/
https://lwzb.gzstats.gov.cn:20001/datav/admin/home/www_nj/
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Fig. 3. Important growing stages of major crops in Zengcheng acquired from the field survey.

Fig. 4. Description of the crop rotation systems and field photographs taken
on September 2020 in Zengcheng.

A. Crop Rotation Systems

1) Expert Knowledge on Crop Rotation: To improve our un-
derstanding of local crop rotation, we conducted a questionnaire-
based survey at the Guangdong Academy of Agricultural Sci-
ences. The purpose of the survey was to reveal the complexity

TABLE II
FREQUENCY OF OCCURRENCE OF CROP ROTATIONS IN THE

QUESTIONNAIRE-BASED SURVEY

of local crop rotations, as shown in Fig. 2. “Rice– vegetables”
was the rotation most frequently mentioned by the experts,
which shows that the rotations of vegetables with rice are
very common (see Table II). In addition, vegetables are inten-
sively managed, with “vegetables–vegetables–vegetables” and
“vegetables–vegetables” frequently mentioned.

2) Crop Rotation Classification Scheme: Based on the field
survey, farmer interviews, expert knowledge, and agricultural
statistics, we provide a classification scheme that divides crop
rotation into three main systems and nine subsystems (see
Fig. 4). Rice is the primary grain crop, while vegetables and
fruits are the primary cash crops. Three main systems were,
thus, identified: paddy, vegetable, and orchard systems. The
distinctive management style of fruits is one reason to include
orchards in our classification [35]. Other crops, such as maize
and peanuts, are not included due to their small planting area
(less than 5% total).

We separated subsystems from the three main systems to
highlight differences in each group. The paddy system was
divided into four subsystems. Single rice and double rice were
first defined and were further distinguished by the presence or
absence of vegetables, given that it is quite common to rotate
vegetables with rice. The vegetable system was classified into
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Fig. 5. Flowchart of the process for identifying crop rotation systems. Paddy, vegetable, and orchard systems are shown in shades of yellow, red, and green,
respectively. The numbers represent different crop rotation systems and are consistent with Fig. 4.

three subsystems in which high-intensity and low-intensity veg-
etables were first separated. Information on cropping intensity
can help us better understand cropland use intensity. During the
field survey, we found that some farmers tend to plant leafy
vegetables year around, while others grow different types of
vegetables, indicating that temporal crop diversity varies among
vegetable fields. Considering that crop rotational diversity has
large impacts on agricultural systems, integrating crop diversity
might be useful to understand the characteristics of crop rotation
systems. Therefore, high-diversity and low-diversity vegetables
were further specified among the high-intensity vegetables to
demonstrate differences in temporal crop diversity. For the or-
chard system, short-term and long-term orchards referring to
herbaceous (e.g., banana, papaya) and arbor (e.g., litchi, longan)
fruit trees were defined. Short-term orchard usually involves
variant management, while long-term orchard involves more
stable management. For example, the filed survey indicates
that litchi typically extends over several decades with stable
management, while banana would be replaced by other crops
after growing for three or four years.

B. Mapping Crop Rotation Systems

According to the presented classification scheme, we pro-
pose a hierarchical rule-based method (see Fig. 5) to map the
crop rotation systems. We initially obtained four key indicators:
flooding frequency, cropping intensity, cropping diversity, and
coefficient of variation. Then, we mapped the three main crop ro-
tation systems according to the S2 images and the RF algorithm.
Finally, the nine crop rotation subsystems were identified by
the four indicators. The cropland layer, as described in Section
II-B2, was used to mask the nonagricultural classes. All the
analyses were performed within the GEE cloud-based public
imagery repository and high-performance computing system.

1) Acquisition of the Four Indicators: We obtained the four
indicators by integrating the time series of S1 and S2 images.
The temporal frequency of S1 images is 12 days. Here, the S2
time series refer to the smoothed enhanced vegetation index
(EVI) and land surface water index (LSWI) with a five-day
interval, which were produced by gap filling and smoothing the
cloud-masked S2 images. The gaps caused by cloud cover were
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Fig. 6. Illustration of the process for identifying the crop-specific maximum
value (M), growth duration (GD), and seasonal amplitude (A) from the smoothed
EVI curve used to calculate cropping diversity.

Fig. 7. Temporal profiles of the smoothed spectral indices from S2, i.e., the
EVI and LSWI, for (a) double rice and single rice; (b) double rice rotated
with vegetables and single rice rotated with vegetables; (c) vegetable systems,
including high-diversity, low-diversity, and low-intensity vegetables; and (d)
orchard systems, including short- and long-term orchards.

filled by time-series linear interpolation based on good-quality
observations before and after the time step. Then, the Whittaker
algorithm was leveraged to smooth the time series [36]. Here, we
chose the Whittaker algorithm because it can effectively balance
the fidelity and roughness of curves [37] and is computationally
efficient and can be conveniently implemented on GEE [38].
Prior to the smoothing, the key parameter λ quantifying the
degree of smoothness is determined by the multiple linear re-
gression, as described in [38]. To this end, we randomly selected
50 sample points, and calculated the value of λ for each point
based on the cloud-masked EVI and LSWI time series. At last,
the mean values were used to determine the final λ for EVI and
LSWI. The smoothed time series was shown in Figs. 6 and 7.
See Supplementary text for more information.

a) Flooding frequency: This indicator represents the an-
nual frequency of the flooding and transplanting signals that
have been widely used to indicate the presence of rice [39].
The flooding and transplanting signals were detected separately
for early, middle, and late rice, and then the flooding frequency
was computed by overlaying the three layers. We applied data
from S1 and S2 images to detect the signals, and the S1- and
S2-based outputs were merged separately for early, middle, and
late rice. For the S1 images, we used the VH backscatter and
method described in [40], which is easy to implement on GEE.
For the S2 images, the relationship between the EVI and LSWI,
specifically that LSWI values are temporarily greater than EVI
values during the flooding and transplanting phases, was used
[41]. See Supplementary Text and Fig. S5 for more information.

b) Cropping intensity: This indicator is defined as the
number of cropping cycle(s) [42]. We computed cropping inten-
sity from the smoothed EVI time series by counting the number
of peaks (see Fig. 6) with a quadratic difference algorithm
[43]. To reduce pseudopeaks caused by abnormal EVI values,
some constraint conditions were used. Specifically, to filter false
cycles, the temporal interval of peaks was required to be greater
than 48 days [44]. In addition, the peak values were not allowed
to be less than 0.35 [45].

c) Cropping diversity: Here, we define cropping diver-
sity as crop diversity over time and measure it by quantifying
differences among crops. Phenological metrics can efficiently
capture the phenological characteristics of crops and have been
widely applied to distinguish crops [46]. Thus, we applied
phenological metrics to estimate cropping diversity. We selected
three commonly used phenological metrics: maximum value,
growth duration, and seasonal amplitude [47], [48], [49]. We
first retrieved the three crop-specific metrics from the smoothed
EVI time series (see Fig. 6). Then, we calculated the coefficient
of variation for each phenological metric, which was averaged
to represent cropping diversity. The coefficient of variation has
been proven to be an effective indicator for observing spectral
diversity over space to represent plant biodiversity [50], [51].

Specifically, we first obtained the maximum value to represent
the peak value of each crop’s growth cycle. Then, we estimated
the seasonal amplitude by referring to the difference between
the maximum value and base value

Ai = EVImax,i − EVIbase,i (1)

where Ai is the seasonal amplitude for crop i in a crop rotation
system; EVImax,i represents the maximum value for crop i; and
EVIbase,i represents the base value for crop i and is extracted as
the average of the left and right minimum values for each crop’s
growth cycle.

In the next step, growth duration was acquired by referring to
the interval between the start of seasons (SOS) and the end of
seasons (EOS). The SOS and EOS were identified as the day of
year when the EVI reached a value using the EVI ratio method

EVIratio = (EVI − EVImin) / (EVImax − EVImin) (2)

where EVIratio is the EVI ratio; EVImin represents the EVI value
of bare soil, which is calculated as the minimum EVI value over
one year; and EVImax represents the crop-specific maximum
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TABLE III
SUMMARY OF THE FEATURES USED FOR VEGETABLE AND ORCHARD SYSTEM MAPPING

value. We identified thresholds of 0.1 for SOS and 0.19 for EOS
[52].

Next, we calculated the coefficient of variation for each met-
ric. Finally, cropping diversity was calculated by referring to the
average of the coefficient of variation for the maximum value,
growth duration, and seasonal amplitude. Larger values reflect
higher crop diversity.

CD = (CVM + CVGD + CVA) /3 (3)

where CD is the cropping diversity; CVM is the coefficient of
variation for the crop-specific maximum value; CVGD is the
coefficient of variation for the crop-specific growth duration; and
CVA is the coefficient of variation for the seasonal amplitude.

d) Coefficient of variation: This indicator refers to the
coefficient of variation in the EVI and is calculated from the
smoothed EVI time series to quantify the annual variability in the
EVI or the extent of vegetation fluctuation relative to the mean.
It was previously applied to separate cropping systems with a
lower degree of seasonality (e.g., permanent crops) from other
cropping systems [44]. Long- and short-term orchards show
different degrees of seasonality [see Fig. 7(d)], and long-term
orchards have a lower degree of seasonality than short-term
orchards. Therefore, we introduced the coefficient of variation in
the EVI to exploit its potential for identifying orchard systems.

2) Identification of Crop Rotation Systems:
a) Identification of the main systems: The three main crop

rotation systems were mapped prior to the identification of the
subsystems. Compared with vegetables and fruits, rice has more
obvious features, and thus, we first distinguished between paddy
and nonpaddy systems. Pixels were identified as paddy systems
as long as one season of rice was observed, i.e., the flooding
frequency was nonzero.

Next, we removed paddy pixels from the cropland extent
and adopted RF to differentiate vegetable and orchard systems.
RF is more robust than a single decision tree and typically
achieves high accuracies in crop mapping [47]. As shown in
Table III, we mainly used three types of features for clas-
sification: temporal, phenological, and texture metrics. The
temporal metrics were composed of seasonal median compos-
ites of reflectance bands and spectral indices (see Table S2),
which capture seasonal variations in cropland surface spectra.

Pixel-based compositing allows the exploitation of all available
images and contributes to overcome the limitations of satellite
data quality [53]. Monthly compositing may better capture
the cropland dynamics, yet it would make the data volume
too large. And we found that monthly compositing might not
be appropriate for Zengcheng because incomplete composites
would be generated for many months because of severe cloud
contamination.

There are 11 spectral indices, including 5 red-edge spectral
indices. The red-edge spectral indices have shown great potential
to differentiate crops [53], and thus, several commonly used
metrics were selected and included in the feature candidates. The
phenological metrics were obtained from the smoothed EVI time
series to depict spectral means and variances. The texture metrics
were calculated from the annual median composite of EVI by a
gray-level cooccurrence matrix (GLCM) method in GEE. The
implementation of RF was run on GEE. We applied a backward
feature elimination method to select the best variable set for
RF by progressively eliminating the least important variables
and fine-tuned the main hyperparameters (i.e., number of trees,
number of variables per split, and minimum size of terminal
nodes). More information can be found in Supplementary text
and Figs. S6–S10.

b) Identification of the subsystems: As shown in Fig. 5,
we identified the nine crop rotation subsystems by introducing
different indicators. For the paddy subsystems, a two-phase
identification procedure was followed (4). The first step distin-
guished between single and double rice, which differed in rice
planting frequency [see Fig. 7(a)]. Pixels of paddy system with
a flooding frequency of one were identified as single rice, while
pixels with a flooding frequency of two were identified as double
rice. In the second step, the presence or absence of vegetables
was detected by the relationship between flooding frequency and
cropping intensity [see Fig. 7(b)]. Cropping intensity indicates
the number of crops harvested in a given period, including rice,
while flooding frequency refers to the number of rice harvested.
Therefore, when cropping intensity is greater than flooding
frequency, it could be inferred that at least there is another harvest
of crop besides rice. When the two values are equal, it means
that rice is the only crop harvested. Cropping intensity could
be underestimated due to cloud cover, so in the case where it is
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abnormally smaller than flooding frequency, we assume that the
two values are equal to reduce the effect of error propagation.

Based on the above logic, we classified pixels as single/double
rice rotated with vegetables when cropping intensity was greater
than flooding frequency; otherwise, the pixels remained sin-
gle/double rice. For example, when cropping intensity is 3 and
flooding frequency is 2, this pixel would be classified as double
rice rotated with vegetables.
⎧⎪⎪⎨
⎪⎪⎩

Single rice FF = 1 AND CI = 1
Single rice rotated with vegetables FF = 1 AND CI > 1
Double rice FF = 2 AND CI ≤ 2
Double rice rotated with vegetables FF = 2 AND CI > 2

(4)

where FF represents the flooding frequency, and CI represents
the cropping intensity.

For the vegetable subsystems, we first classified high- and
low-intensity vegetables and further identified high- and low-
diversity vegetables from high-intensity vegetables. The num-
ber of cropping cycles is different between high- and low-
intensity vegetables [see Fig. 7(c)], which can be distinguished
by cropping intensity. Empirically, we determined pixels of
vegetable systems with cropping intensity greater than one
as high-intensity vegetables and those with cropping intensity
equal to one as low-intensity vegetables. Cropping intensity
equal to one indicates that there is only one harvest of veg-
etables, which aligns well with the concept of “low intensity.”
Obviously, this threshold could be adjusted flexibly based on
regional conditions, and the adjustment would cause changes in
the planting area of high- and low-intensity vegetables. High-
and low-diversity vegetables exhibited different seasonal dy-
namics [see Fig. 7(c)], and we leveraged cropping diversity to
distinguish them.

Long- and short-term orchards show different degrees of sea-
sonality, allowing the differentiation of the orchard subsystems
[see Fig. 7(d)]. Long-term orchards have a lower degree of sea-
sonality than short-term orchards. Therefore, pixels identified
as orchard systems with a higher coefficient of variation were
identified as short-term orchards; otherwise, they were identified
as long-term orchards.

The thresholds of flooding frequency and cropping intensity
were set empirically based on the field survey, farmer interviews,
and expert knowledge. For cropping diversity and the coefficient
of variation, we use Otsu’s thresholding algorithm, which was
implemented on GEE, to determine the optimal thresholds.
This method processes image histograms, segmenting objects
by minimizing interclass variance [54]. It has been used in
many applications as a satellite image thresholding method
[55]. Otsu’s thresholding algorithm automatically derives the
optimal thresholds and, thus, can improve the universality of
the developed algorithm. Ultimately, the thresholds of cropping
diversity and coefficient of variation in the EVI were specified
as 0.18 and 0.26, respectively.

3) Accuracy Assessment: We collected 738 samples in total
from the field survey, 80 of which were used for training the RF
classifier (40 for vegetables and 40 for orchard). We discarded
34 samples due to poor quality, and the remaining 624 samples

were exploited for assessing the classification performance of
the entire hybrid system (80 + 34 + 624 = 738). Specifically,
we adopted the ground samples collected in the field survey
to assess the accuracies of the four indicators and the crop
rotation systems map, excluding the 80 training samples used
for mapping vegetable and orchard systems. We first labeled the
ground samples with crop rotation information as crop rotation
systems. For example, “spinach–romaine lettuce–eggplant” was
labeled as a high-diversity vegetable rotation because the pixel
was triple cropped, and both leafy and fruiting vegetables were
grown. Then, we labeled the ground samples without complete
crop rotation information by interpreting the temporal signatures
of the original and smoothed EVI and LSWI on GEE. The
paddy and orchard systems are easier to recognize, while it is
hard for vegetable systems, especially high- and low-diversity
vegetables, which may introduce uncertainty. In this case, we
have several remote sensing experts (listed as coauthors) who
have check all points, and only well-interpreted points with a
high level of confidence are kept, leading to 624 sample records.
Based on those sample points, we assessed the accuracy of
the identification based on four indicators: the overall accuracy
(OA), user’s accuracy (UA), producer’s accuracy (PA), and F1
score (F1).

In addition, we estimated the harvested area of rice, veg-
etables, and fruits from the map of crop rotation systems and
compared them with the statistically determined harvested area.
The harvested area refers to the area from which a crop is
gathered. If the crop under consideration is harvested more than
once during a year, the area was counted as many times as the
crop was harvested. It is worth noting that vegetables in paddy
systems were included in the harvested area of vegetables.

IV. RESULTS

A. Maps of the Four Key Indicators

We mapped the four indicators in Zengcheng for 2020. All
four indicators exhibit large spatial variations (see Fig. 8). The
pattern of flooding frequency shows that the northern part of
the study region has more paddy fields, especially those with
two rice harvests [see Fig. 8(a)]. Cropping intensity indicates
that most croplands are intensively managed [see Fig. 8(b)]. A
total of 40% of the pixels are identified as double cropping,
followed by triple cropping (31%) and single cropping (18%).
The pixels with a cropping intensity of four occupied nearly
10% of the total pixels. Fig. 8(c) suggests that the croplands
with lower cropping diversity are mainly concentrated in the
southern part of the study area, especially the southeastern part.
For the coefficient of variation, the croplands with higher values
are widely distributed in the study region, while the croplands
with lower values are mainly located in the southern part of the
study area [see Fig. 8(d)].

B. Map of the Crop Rotation Systems

Based on the crop rotation classification system and map-
ping methods, we mapped the crop rotation systems across
Zengcheng in 2020 at a 10 m spatial resolution [see Fig. 9(a)].
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Fig. 8. Spatial patterns of (a) flooding frequency (FF), (b) cropping intensity
(CI), (c) cropping diversity (CD), and (d) coefficient of variation (CV) across
Zengcheng in 2020. The inset histograms show the statistical distributions of
the indicators; the same colors are used as the map legend.

Overall, the northern part of the study area is predominantly
covered by paddy and orchard systems, with paddy systems
spreading in the plains of the valley, while the flat southern part
of the study area is primarily covered by orchard and vegetable
systems. This result is consistent with the findings of the field
survey, which show that the southern part of the study area is
closer to markets and is easier to travel to, and hence, farmers
there prefer vegetables and fruits with higher profits over rice,
despite government rice subsidies. For paddy subsystems, the
system consisting of single rice rotated with vegetables is widely
distributed throughout the paddy regions. Vegetable subsystems
are interspersed throughout the vegetable-growing regions. For
the orchard subsystems, short-term orchards are prevalent in
the northern part of the study area, where mainly bananas and
papayas are grown, while long-term orchards are clustered in
the central southern part of the study area, with guava and
citrus being the major fruits. The orchard system accounts for
approximately 64% of the total cropland area, followed by the
vegetable (21%) and paddy (15%) systems. The paddy system
is dominated by single rice rotated with vegetables, followed
by double rice and double rice rotated with vegetables. Among
the vegetable systems, high-intensity vegetable systems are pre-
dominant, with low-diversity vegetable systems having slightly
larger areas than high-diversity vegetable systems. Within the
orchard systems, short-term orchards are predominant over long-
term orchards. We further summed the harvested area of the
crop rotation systems [see Fig. 9(d) and (e)]. Compared with

the proportion of cropland area, the proportion of vegetable
systems was nearly double at 43%, confirming the extremely
high intensity of local vegetable production.

C. Accuracy Assessment

As the four indicators are essential for the research, we first
evaluated the accuracies of the four indicators. The valida-
tion results showed that flooding frequency and coefficient of
variation had higher overall accuracies than cropping intensity
and cropping diversity (see Table S7). Then, we evaluated the
accuracy of the map of crop rotation systems (see Table IV).
The producer, user, and overall accuracies are 81%, 79%, and
81%, respectively. The vegetable system has a lower accuracy
(75%) than the orchard (87%) and paddy (80%) systems. The
paddy system has more errors of commission than errors of
omission (PA > UA). The higher commission errors are partly
due to the misclassification of vegetables and fruits as paddy
systems. Moreover, there are misclassifications among the paddy
subsystems. The misclassification of single rice as double rice
subsystems is comparatively severe. Among the vegetable sys-
tems, high- and low-diversity vegetables are easily confused,
which is the main source of errors resulting in lower F1 scores.

The harvested areas of rice, vegetables, and fruits estimated
from the map were compared with the statistically determined
harvested areas in 2020 (see Fig. 10). The estimated harvested
area of rice is very close to the statistically determined area,
with a slight difference. However, the harvested area of fruits is
overestimated by 5%, while that of vegetables is underestimated
by 5%.

V. DISCUSSION

A. Uncertainties

Multisourced data were used in our study and may introduce
uncertainties. For example, the errors in the cropland layer
are likely to be propagated to the final map [44]. The area
overestimation of orchard systems (see Fig. 10) could be due
to the inclusion of forests as cropland in GLC_FCS30-2020.
The developed mapping method relies much on the time-series
satellite data, which can be a source of uncertainty [53]. It was
found that the accuracies of different rice types were related to
the satellite data availability, and higher accuracies came from
more valid observations [30]. The four key indicators estimated
with the time-series images are more likely to be affected, which
could cause direct impacts on the final mapping accuracy, e.g.,
an incomplete counting of cropping cycles could underestimate
the harvested crop area [42].

Specifically, the mapping accuracies of paddy subsystems
are jointly controlled by flooding frequency and cropping in-
tensity. Flooding frequency first determines whether paddy
cropland is precisely mapped and then determines whether
single and double rice are correctly distinguished from paddy
cropland. Afterward, flooding frequency and cropping intensity
together determine whether vegetables exist in single and dou-
ble rice. The mapping accuracies of vegetable subsystems are
jointly controlled by flooding frequency, cropping intensity, and
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Fig. 9. Spatial patterns and composition of crop rotation systems over the study region in 2020. (b) Spatial patterns of crop rotation systems in Zengcheng in
2020. The areas in the red boxes in Figure b are shown in Figures a1 and c1, and RGB images of the S2 annual composite are shown in Figures a2 and c2. The bars
below the maps show the composition of (d) crop rotation systems and (e) paddy systems in terms of cropland area (above) and harvested area (below).

Fig. 10. Comparison of the percentage of harvested areas for rice, vegetables, and fruits estimated from the map of crop rotation systems (below) and the
statistically determined harvested area (above) for 2020.
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TABLE IV
CONFUSION MATRIX OF THE CROP ROTATION SYSTEM MAP FOR 2020

Fig. 11. Coverage of good-quality observations for each acquisition day.

cropping diversity. Flooding frequency first determines whether
nonpaddy cropland is precisely mapped. Then, cropping in-
tensity determines whether high- and low-intensity vegetables
are correctly distinguished. Afterward, cropping diversity deter-
mines whether high- and low-diversity vegetables are correctly
distinguished. The mapping accuracies of orchard subsystems
are jointly controlled by flooding frequency and coefficient of
variation. Flooding frequency first determines whether non-
paddy cropland is precisely mapped, and then the coefficient
of variation determines whether long- and short-term orchards
are correctly distinguished.

Therefore, we measured the coverage of good-quality obser-
vations for each acquisition day (see Fig. 11) and counted the
numbers of good-quality observations for individual pixels (see
Fig. 12) to explore this potential impact of including S2 data on
the results. Temporally, the coverage of good-quality observa-
tions was lower during the period from May to September. This
would create additional uncertainties in the four indicators. The
use of sparser good-quality S2 images from February to April
and from July to September covering the transplanting phase

Fig. 12. Spatial distribution of the numbers of good-quality observations.
The inset histogram shows the distribution of the number of good-quality
observations with different intensities.

will involve risks of losing the flooding signals in paddy fields.
Spatially, the quality of the S2 data is better in the northern
part of the study area than in the southern part, and the average
good-quality observation frequency is 26.8 for the entire year,
which is sufficient to identify crop characteristics.

We also found that the higher commission errors for the paddy
system could arise from the S1-based ARM-SARFS algorithm
despite the reduction in omission errors. This could induce
false flooding and transplanting signals due to the presence of
diverse vegetables and fruits, suggesting that the application
of ARM-SARFS in complex agricultural landscapes is slightly
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TABLE V
CLASSIFICATION ACCURACIES OF THE BINARY RF CLASSIFIER WITH

DIFFERENT TRAINING SAMPLE SIZES

limited. Additionally, we learned from the field survey that rice
is planted very late (around September) in some regions. This
demonstrates the challenges posed by the complexity of agricul-
tural management for rice extraction based on the approaches
used in our study. There also exist uncertainties in the estimations
of cropping intensity and cropping diversity. Specifically, when
the growing cycle of a crop, especially vegetables with short
growing cycles, is not fully covered, it may be missed in the
harvest counting. The cropping diversity values derived from
the proposed algorithm may become insufficient to represent
crop diversity when different types of vegetables show similar
spectra.

In addition, the training sample size might influence the binary
RF classifier’s performance [56], thereby affecting the final
results. Therefore, here we carried an experiment to examine
how training sample size (20–160 per class) affects classification
performance of the binary RF classifier. To enable comparable
results, a fixed set of stratified random sampling points was
selected to validate the results. This validation set is about 30%
of the total sample size of the two categories, comprising 144
samples (76 for vegetables and 68 for orchard). We found that
the classification results were greatly affected by training sample
size, showing a trend of higher accuracies with more samples
(see Table V). But notably, when training sample size per class
exceeded 40, the increase rate of accuracy became smaller. It
indicated that satisfactory results could be obtained with an
appropriate sample size, and too many samples may lead to
overfitting of the results.

B. Improvements

The uncertainties identified in this study point to future re-
search directions for further improvements. To reduce the uncer-
tainties caused by earth observation data, images with high tem-
poral and spatial resolutions should be considered. For example,
PlanetScope will benefit crop rotation monitoring over rapidly
changing cropland surfaces [57]. To improve the accuracy of
flooding frequency, supervised classification methods that do
not rely on dense images could be considered. A comparison
between phenology-based approaches and supervised classifi-
cation methods could be conducted to determine which are more
reliable for mapping rice over complex agricultural landscapes.

In addition, better frameworks to retrieve cropping intensity
need to be adopted [44], [52]. The suitability and efficiency
of multiple phenological metrics for identifying temporal crop
diversity could be evaluated to improve the reliability of the
proposed cropping diversity estimation algorithm.

C. Implications

Earth observation provides an effective way to make crop
maps [14], [47]. And a few prior studies have managed to
map crop rotation by combining sequential crop maps produced
for specific seasons or years [20], [21], [22], [23], [24], [25].
This approach could be easily upscaled and extended to other
regions where continuous crop monitoring is possible. However,
it may not be suitable in regions with intensified agriculture and
diversified rotation because identifying crops for each season is
challenging. And combining multiple crop maps could produce
many sequential crop combinations, which are hard to interpret
[24].

Our study provides a timely solution to the issue of crop
rotation mapping over complex regions. Especially, the proposed
hierarchical rule-based pipeline is vital to the good classification
performance, which has reference value for mapping cropping
systems in other regions. It breaks the classification task into a
two-step process, simplifying the complex issues. In this case,
the RF classifier only needs to distinguish two categories, and
thus, its efficiency and accuracy can be better guaranteed. To
justify this perspective, we carried an experiment in which RF
was applied to classify all the nine subsystems directly, including
the four key indicators as features. To enable comparable results
from the two approaches, we generated a new validation dataset
containing 211 samples (about 30% of the total sample size)
by stratified random sampling. The old classification result was
validated again based on this new dataset. All the remaining
samples were used for training the pure classifier-based ap-
proach to ensure good performance. The results showed that
the overall accuracy reduced by 0.17 compared with the hi-
erarchical rule-based method. The two double rice systems
and orchard systems had acceptable results. However, the pure
classifier-based approach appeared hard to distinguish between
the three vegetable systems and the two single rice systems.
This might be because the crop rotation systems were defined
manually to represent farmers’ diverse decisions, and machine
learning methods, such as RF, have limitations when it comes
to the highly complex man-made systems. Based on our model,
the binary RF classifier (vegetables or orchard) in combination
with the manually assigned subcategorization rules could well
identify the complex crop rotation systems.

The proposed crop rotation classification system and mapping
framework could provide implications for mapping crop rotation
in other regions. First, crop types have been the basic units for
crop rotation mapping [20], [21], [22], [23], [24], [25], while we
update the classification scheme from crop types to crop rotation
systems. Thus, the crop rotations could be mapped directly
without identifying crops for each season, combining crop maps,
and interpreting the confusing sequential crop combinations
[24]. And because the systems are predefined based on the actual
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farming situations, the resultant map could have more important
practical benefits. Second, previous studies only focused on
the crop sequences themselves [58], while this study suggests
that temporal information (e.g., temporal crop diversity and
cropping intensity) could be integrated into crop rotation maps,
which can produce more informative crop rotation maps with
implications for multiple objectives, e.g., crop diversity analysis
[59], [60] and soil organic carbon mapping [61], [62]. This may
be more consistent with the concept of land system science
[63]. In addition, several novel ideas proposed in our study
might have some reference values. For example, the algorithm
for measuring temporal crop diversity by phenological metrics
may be leveraged to estimate spatial crop diversity efficiently
without detailed information on crop types and their distribution
[64], [65].

VI. CONCLUSION

We developed an innovative approach for mapping highly
diversified crop rotation systems based on earth observation data
and applied it to a case study in southern China. The resulting
map suggests that the local vegetable production is characterized
by high intensity and low diversity. The results of this study
indicate that an appropriate classification scheme that integrates
seasonal information is vital to understanding complex crop ro-
tation systems. They also show that crop rotation can be mapped
directly rather than aggregating multiple seasonal crop layers,
providing a new perspective for mapping and understanding crop
rotation.

REFERENCES

[1] F. Yates, “The analysis of experiments containing different crop rotations,”
Biometrics, vol. 10, no. 3, pp. 324–346, Sep. 1954, doi: 10.2307/3001589.

[2] D. Bullock, “Crop rotation,” Crit. Rev. Plant Sci., vol. 11, no. 4,
pp. 309–326, 1992, doi: 10.1080/07352689209382349.

[3] D. L. Karlen, G. E. Varvel, D. Bullock, and R. M. Cruse, “Crop ro-
tations for the 21st century,” Adv. Agronomy, vol. 53, pp. 1–45, 1994,
doi: 10.1016/S0065-2113(08)60611-2.

[4] U. M. Sainju, D. Liptzin, S. Dangi, and R. Ghimire, “Soil health indi-
cators and crop yield in response to long-term cropping sequence and
nitrogen fertilization,” Appl. Soil Ecol., vol. 168, 2021, Art. no. 104182,
doi: 10.1016/j.apsoil.2021.104182.

[5] Y. Socolar, B. R. Goldstein, P. de Valpine, and T. M. Bowles, “Bio-
physical and policy factors predict simplified crop rotations in the US
Midwest,” Environ. Res. Lett., vol. 16, no. 5, 2021, Art. no. 054045,
doi: 10.1088/1748-9326/abf9ca.

[6] R. Cortignani and G. Dono, “Greening and legume-supported crop rota-
tions: An impacts assessment on Italian arable farms,” Sci. Total Environ.,
vol. 734, 2020, Art. no. 139464, doi: 10.1016/j.scitotenv.2020.139464.

[7] J. Zhao, Y. Yang, K. Zhang, J. Jeong, Z. Zeng, and H. Zang, “Does crop
rotation yield more in China? A meta-analysis,” Field Crops Res., vol. 245,
2020, Art. no. 107659, doi: 10.1016/j.fcr.2019.107659.

[8] I. M. Uzoh, C. A. Igwe, C. B. Okebalama, and O. O. Babalola, “Legume-
maize rotation effect on maize productivity and soil fertility parameters
under selected agronomic practices in a sandy loam soil,” Sci. Rep., vol. 9,
no. 1, 2019, Art. no. 8539, doi: 10.1038/s41598-019-43679-5.

[9] A. Garcia-Pedrero, M. Lillo-Saavedra, D. Rodriguez-Esparragon, and
C. Gonzalo-Martin, “Deep learning for automatic outlining agricultural
parcels: Exploiting the land parcel identification system,” IEEE Access,
vol. 7, pp. 158223–158236, 2019, doi: 10.1109/ACCESS.2019.2950371.

[10] S. Stein and H.-H. Steinmann, “Identifying crop rotation practice by the
typification of crop sequence patterns for arable farming systems—A case
study from Central Europe,” Eur. J. Agronomy, vol. 92, pp. 30–40, 2018,
doi: 10.1016/j.eja.2017.09.010.

[11] F. Zhang, X. Chen, and P. Vitousek, “Chinese agriculture: An exper-
iment for the world,” Nature, vol. 497, no. 7447, pp. 33–35, 2013,
doi: 10.1038/497033a.

[12] M.-B. Lee and E. Goodale, “Crop heterogeneity and non-crop vegetation
can enhance avian diversity in a tropical agricultural landscape in south-
ern China,” Agriculture, Ecosyst. Environ., vol. 265, pp. 254–263, 2018,
doi: 10.1016/j.agee.2018.06.016.

[13] G. W. Mueller-Warrant, K. M. Trippe, G. W. Whittaker, N. P. Ander-
son, and C. S. Sullivan, “Spatial methods for deriving crop rotation
history,” Int. J. Appl. Earth Observ. Geoinf., vol. 60, pp. 22–37, 2017,
doi: 10.1016/j.jag.2017.03.010.

[14] A. Bégué et al., “Remote sensing and cropping practices: A re-
view,” Remote Sens., vol. 10, no. 1, 2018, Art. no. 99, doi: 10.3390/
rs10010099.

[15] S. Dogliotti, W. A. H. Rossing, and M. K. van Ittersum, “ROTAT, a tool
for systematically generating crop rotations,” Eur. J. Agronomy, vol. 19,
no. 2, pp. 239–250, 2003, doi: 10.1016/S1161-0301(02)00047-3.

[16] M. Schönhart, E. Schmid, and U. A. Schneider, “CropRota—A crop rota-
tion model to support integrated land use assessments,” Eur. J. Agronomy,
vol. 34, no. 4, pp. 263–277, 2011, doi: 10.1016/j.eja.2011.02.004.

[17] M. Lorenz, C. Fürst, and E. Thiel, “A methodological approach
for deriving regional crop rotations as basis for the assessment of
the impact of agricultural strategies using soil erosion as example,”
J. Environ. Manage., vol. 127, pp. S37–S47, 2013, doi: 10.1016/
j.jenvman.2013.04.050.

[18] Y. Xiao, C. Mignolet, J.-F. Mari, and M. Benoît, “Modeling the spatial
distribution of crop sequences at a large regional scale using land-cover
survey data: A case from France,” Comput. Electron. Agriculture, vol. 102,
pp. 51–63, 2014, doi: 10.1016/j.compag.2014.01.010.

[19] R. T. Sharp et al., “Simulating cropping sequences using earth observation
data,” Comput. Electron. Agriculture, vol. 188, 2021, Art. no. 106330,
doi: 10.1016/j.compag.2021.106330.

[20] S. Panigrahy and S. A. Sharma, “Mapping of crop rotation using
multidate Indian remote sensing satellite digital data,” ISPRS J. Pho-
togramm. Remote Sens., vol. 52, no. 2, pp. 85–91, 1997, doi: 10.1016/
S0924-2716(97)83003-1.

[21] J. A. Martinez-Casasnovas and A. Martin-Montero, “Characterization
of crop rotations in irrigation areas of the Ebro Valley from temporal
series of landsat TM images,” Proc. SPIE, vol. 5232, pp. 676–682, 2004,
doi: 10.1117/12.514008.

[22] K. R. Manjunath, N. Kundu, and S. Panigrahy, “Analysis of cropping
pattern and crop rotation using multidate, multisensor, and multiscale
remote sensing data: Case study for the state of West Bengal, India,”
Agriculture Hydrol. Appl. Remote Sens., vol. 6411, 2006, Art. no. 64110O,
doi: 10.1117/12.693921.

[23] R. Sahajpal, X. Zhang, R. C. Izaurralde, I. Gelfand, and G. C. Hurtt,
“Identifying representative crop rotation patterns and grassland loss in
the US Western Corn Belt,” Comput. Electron. Agriculture, vol. 108,
pp. 173–182, 2014, doi: 10.1016/j.compag.2014.08.005.

[24] G. W. Mueller-Warrant, C. Sullivan, N. Anderson, and G. W. Whittaker,
“Detecting and correcting logically inconsistent crop rotations and other
land-use sequences,” Int. J. Remote Sens., vol. 37, no. 1, pp. 29–59, 2016,
doi: 10.1080/01431161.2016.1184354.

[25] G. Waldhoff, U. Lussem, and G. Bareth, “Multi-data approach for re-
mote sensing-based regional crop rotation mapping: A case study for the
Rur catchment, Germany,” Int. J. Appl. Earth Observ. Geoinf., vol. 61,
pp. 55–69, 2017, doi: 10.1016/j.jag.2017.04.009.

[26] R. Li et al., “Phenology-based classification of crop species and ro-
tation types using fused MODIS and landsat data: The comparison
of a random-forest-based model and a decision-rule-based model,”
Soil Tillage Res., vol. 206, 2021, Art. no. 104838, doi: 10.1016/
j.still.2020.104838.

[27] T. J. Lark, R. M. Mueller, D. M. Johnson, and H. K. Gibbs,
“Measuring land-use and land-cover change using the U.S. depart-
ment of agriculture’s cropland data layer: Cautions and recommenda-
tions,” Int. J. Appl. Earth Observ. Geoinf., vol. 62, pp. 224–235, 2017,
doi: 10.1016/j.jag.2017.06.007.

[28] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google earth engine: Planetary-scale geospatial analy-
sis for everyone,” Remote Sens. Environ., vol. 202, pp. 18–27, 2017,
doi: 10.1016/j.rse.2017.06.031.

[29] M. Singha, J. Dong, G. Zhang, and X. Xiao, “High resolution paddy
rice maps in cloud-prone Bangladesh and Northeast India using sentinel-
1 data,” Sci. Data, vol. 6, no. 1, 2019, Art. no. 26, doi: 10.1038/
s41597-019-0036-3.

https://dx.doi.org/10.2307/3001589
https://dx.doi.org/10.1080/07352689209382349
https://dx.doi.org/10.1016/S0065-2113(08)60611-2
https://dx.doi.org/10.1016/j.apsoil.2021.104182
https://dx.doi.org/10.1088/1748-9326/abf9ca
https://dx.doi.org/10.1016/j.scitotenv.2020.139464
https://dx.doi.org/10.1016/j.fcr.2019.107659
https://dx.doi.org/10.1038/s41598-019-43679-5
https://dx.doi.org/10.1109/ACCESS.2019.2950371
https://dx.doi.org/10.1016/j.eja.2017.09.010
https://dx.doi.org/10.1038/497033a
https://dx.doi.org/10.1016/j.agee.2018.06.016
https://dx.doi.org/10.1016/j.jag.2017.03.010
https://dx.doi.org/10.3390/penalty -@M rs10010099
https://dx.doi.org/10.3390/penalty -@M rs10010099
https://dx.doi.org/10.1016/S1161-0301(02)00047-3
https://dx.doi.org/10.1016/j.eja.2011.02.004
https://dx.doi.org/10.1016/penalty -@M j.jenvman.2013.04.050
https://dx.doi.org/10.1016/penalty -@M j.jenvman.2013.04.050
https://dx.doi.org/10.1016/j.compag.2014.01.010
https://dx.doi.org/10.1016/j.compag.2021.106330
https://dx.doi.org/10.1016/penalty -@M S0924-2716(97)83003-1
https://dx.doi.org/10.1016/penalty -@M S0924-2716(97)83003-1
https://dx.doi.org/10.1117/12.514008
https://dx.doi.org/10.1117/12.693921
https://dx.doi.org/10.1016/j.compag.2014.08.005
https://dx.doi.org/10.1080/01431161.2016.1184354
https://dx.doi.org/10.1016/j.jag.2017.04.009
https://dx.doi.org/10.1016/penalty -@M j.still.2020.104838
https://dx.doi.org/10.1016/penalty -@M j.still.2020.104838
https://dx.doi.org/10.1016/j.jag.2017.06.007
https://dx.doi.org/10.1016/j.rse.2017.06.031
https://dx.doi.org/10.1038/penalty -@M s41597-019-0036-3
https://dx.doi.org/10.1038/penalty -@M s41597-019-0036-3


LIU et al.: MAPPING THE COMPLEX CROP ROTATION SYSTEMS IN SOUTHERN CHINA 9597

[30] Y. He et al., “Examining rice distribution and cropping intensity in a mixed
single- and double-cropping region in South China using all available
sentinel 1/2 images,” Int. J. Appl. Earth Observ. Geoinf., vol. 101, 2021,
Art. no. 102351, doi: 10.1016/j.jag.2021.102351.

[31] Z. Jin et al., “Smallholder maize area and yield mapping at national scales
with google earth engine,” Remote Sens. Environ., vol. 228, pp. 115–128,
2019, doi: 10.1016/j.rse.2019.04.016.

[32] J. Wang et al., “Mapping sugarcane plantation dynamics in Guangxi,
China, by time series sentinel-1, sentinel-2 and landsat images,” Re-
mote Sens. Environ., vol. 247, 2020, Art. no. 111951, doi: 10.1016/
j.rse.2020.111951.

[33] X. Zhang, L. Liu, X. Chen, Y. Gao, S. Xie, and J. Mi, “GLC_FCS30: Global
land-cover product with fine classification system at 30 m using time-series
landsat imagery,” Earth Syst. Sci. Data, vol. 13, pp. 2753–2776, 2021,
doi: 10.5194/essd-13-2753-2021.

[34] J. Kang, Z. Wang, L. Sui, X. Yang, Y. Ma, and J. Wang, “Consistency
analysis of remote sensing land cover products in the tropical rainforest
climate region: A case study of Indonesia,” Remote Sens., vol. 12, no. 9,
2020, Art. no. 1410, doi: 10.3390/RS12091410.

[35] S. Hazarika, D. Thakuria, A. N. Ganeshamurthy, and T. Sakthivel,
“Soil quality as influenced by land use history of orchards in hu-
mid subtropics,” Catena, vol. 123, pp. 37–44, 2014, doi: 10.1016/
j.catena.2014.07.006.

[36] M. Zhang et al., “GCI30: A global dataset of 30 m cropping intensity
using multisource remote sensing imagery,” Earth Syst. Sci. Data, vol. 13,
no. 10, pp. 4799–4817, 2021, doi: 10.5194/essd-13-4799-2021.

[37] P. H. C. Eilers, “A perfect smoother,” Anal. Chem., vol. 75, no. 14,
pp. 3631–3636, 2003, doi: 10.1021/ac034173t.

[38] D. Kong, Y. Zhang, X. Gu, and D. Wang, “A robust method for re-
constructing global MODIS EVI time series on the google earth en-
gine,” ISPRS J. Photogramm. Remote Sens., vol. 155, pp. 13–24, 2019,
doi: 10.1016/j.isprsjprs.2019.06.014.

[39] J. Dong and X. Xiao, “Evolution of regional to global paddy rice mapping
methods: A review,” ISPRS J. Photogramm. Remote Sens., vol. 119,
pp. 214–227, 2016, doi: 10.1016/j.isprsjprs.2016.05.010.

[40] P. Zhan, W. Zhu, and N. Li, “An automated rice mapping method
based on flooding signals in synthetic aperture radar time series,” Re-
mote Sens. Environ., vol. 252, Jan. 2021, Art. no. 112112, doi: 10.1016/
j.rse.2020.112112.

[41] X. Xiao et al., “Observation of flooding and rice transplanting of paddy
rice fields at the site to landscape scales in China using VEGETATION
sensor data,” Int. J. Remote Sens., vol. 23, no. 15, pp. 3009–3022, 2002,
doi: 10.1080/01431160110107734.

[42] W. Wu, Q. Yu, L. You, K. Chen, H. Tang, and J. Liu, “Global crop-
ping intensity gaps: Increasing food production without cropland ex-
pansion,” Land Use Policy, vol. 76, pp. 515–525, 2018, doi: 10.1016/
j.landusepol.2018.02.032.

[43] M. Xiang, Q. Yu, and W. Wu, “From multiple cropping index to mul-
tiple cropping frequency: Observing cropland use intensity at a finer
scale,” Ecol. Indicators, vol. 101, pp. 892–903, 2019, doi: 10.1016/
j.ecolind.2019.01.081.

[44] C. Liu et al., “A new framework to map fine resolution cropping intensity
across the globe: Algorithm, validation, and implication,” Remote Sens.
Environ., vol. 251, 2020, Art. no. 112095, doi: 10.1016/j.rse.2020.112095.

[45] X. Liu et al., “Annual dynamic dataset of global cropping intensity
from 2001 to 2019,” Sci. Data, vol. 8, no. 1, 2021, Art. no. 283,
doi: 10.1038/s41597-021-01065-9.

[46] Y. Luo et al., “Identifying the spatiotemporal changes of annual har-
vesting areas for three staple crops in China by integrating multi-data
sources,” Environ. Res. Lett., vol. 15, no. 7, 2020, Art. no. 074003,
doi: 10.1088/1748-9326/ab80f0.

[47] N. You et al., “The 10-m crop type maps in Northeast China during
2017–2019,” Sci. Data, vol. 8, no. 1, 2021, Art. no. 41, doi: 10.1038/
s41597-021-00827-9.

[48] Q. Yu, M. Xiang, Z. Sun, and W. Wu, “The complexity of measuring
cropland use intensity: An empirical study,” Agriculture Syst., vol. 192,
Aug. 2021, Art. no. 103180, doi: 10.1016/j.agsy.2021.103180.

[49] C. Sun, J. Li, Y. Liu, Yongchao Liu, and R. Liu, “Plant species classification
in salt marshes using phenological parameters derived from sentinel-2
pixel-differential time-series,” Remote Sens. Environ., vol. 256, Apr. 2021,
Art. no. 112320, doi: 10.1016/j.rse.2021.112320.

[50] R. Wang and J. A. Gamon, “Remote sensing of terrestrial plant bio-
diversity,” Remote Sens. Environ., vol. 231, 2019, Art. no. 111218,
doi: 10.1016/j.rse.2019.111218.

[51] A. K. Schweiger et al., “Plant spectral diversity integrates functional
and phylogenetic components of biodiversity and predicts ecosys-
tem function,” Nature Ecol. Evol., vol. 2, no. 6, pp. 976–982, 2018,
doi: 10.1038/s41559-018-0551-1.

[52] L. Liu et al., “Mapping cropping intensity in China using time series landsat
and sentinel-2 images and google earth engine,” Remote Sens. Environ.,
vol. 239, 2020, Art. no. 111624, doi: 10.1016/j.rse.2019.111624.

[53] P. Griffiths, C. Nendel, and P. Hostert, “Intra-annual reflectance com-
posites from sentinel-2 and landsat for national-scale crop and land
cover mapping,” Remote Sens. Environ., vol. 220, pp. 135–151, 2019,
doi: 10.1016/j.rse.2018.10.031.

[54] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979.

[55] B. Tellman et al., “Satellite imaging reveals increased proportion of pop-
ulation exposed to floods,” Nature, vol. 596, no. 7870, pp. 80–86, 2021,
doi: 10.1038/s41586-021-03695-w.

[56] L. P. Pott, T. J. C. Amado, R. A. Schwalbert, G. M. Corassa,
and I. A. Ciampitti, “Satellite-based data fusion crop type classifi-
cation and mapping in Rio Grande do Sul, Brazil,” ISPRS J. Pho-
togramm. Remote Sens., vol. 176, pp. 196–210, 2021, doi: 10.1016/
j.isprsjprs.2021.04.015.

[57] D. P. Roy, H. Huang, R. Houborg, and V. S. Martins, “A global analysis
of the temporal availability of PlanetScope high spatial resolution multi-
spectral imagery,” Remote Sens. Environ., vol. 264, 2021, Art. no. 112586,
doi: 10.1016/j.rse.2021.112586.

[58] L. Blickensdörfer, M. Schwieder, D. Pflugmacher, C. Nendel, S. Erasmi,
and P. Hostert, “Mapping of crop types and crop sequences with com-
bined time series of sentinel-1, sentinel-2 and landsat 8 data for Ger-
many,” Remote Sens. Environ., vol. 269, Feb. 2022, Art. no. 112831
doi: 10.1016/j.rse.2021.112831.

[59] L. K. Tiemann, A. S. Grandy, E. E. Atkinson, E. Marin-Spiotta, and M. D.
McDaniel, “Crop rotational diversity enhances belowground communities
and functions in an agroecosystem,” Ecol. Lett., vol. 18, no. 8, pp. 761–771,
2015, doi: 10.1111/ele.12453.

[60] E. Degani et al., “Crop rotations in a climate change scenario: Short-
term effects of crop diversity on resilience and ecosystem service pro-
vision under drought,” Agriculture, Ecosyst. Environ., vol. 285, 2019,
Art. no. 106625, doi: 10.1016/j.agee.2019.106625.

[61] Z. Wu, Y. Liu, Y. Han, J. Zhou, J. Liu, and J. Wu, “Mapping farmland
soil organic carbon density in plains with combined cropping system
extracted from NDVI time-series data,” Sci. Total Environ., vol. 754, 2021,
Art. no. 142120, doi: 10.1016/j.scitotenv.2020.142120.

[62] L. Yang et al., “Predicting soil organic carbon content in croplands using
crop rotation and Fourier transform decomposed variables,” Geoderma,
vol. 340, pp. 289–302, 2019, doi: 10.1016/j.geoderma.2019.01.015.

[63] B. L. Turner, E. F. Lambin, and P. H. Verburg, “From land-use/land-cover
to land system science,” Ambio, vol. 50, no. 7, pp. 1291–1294, 2021,
doi: 10.1007/s13280-021-01510-4.

[64] C. Conrad, F. Löw, and J. P. A. Lamers, “Mapping and assessing crop
diversity in the irrigated Fergana Valley, Uzbekistan,” Appl. Geogr., vol. 86,
pp. 102–117, 2017, doi: 10.1016/j.apgeog.2017.06.016.

[65] F. A. Merlos and R. J. Hijmans, “The scale dependency of spatial
crop species diversity and its relation to temporal diversity,” Proc. Nat.
Acad. Sci., vol. 117, no. 42, pp. 26176–26182, 2020, doi: 10.1073/
pnas.2011702117.

Yuan Liu received the bachelor’s degree in land
resources management from the China University of
Geosciences, Wuhan, China, in 2016, and the master’s
degree in land resources management from Central
China Normal University, Wuhan, China, in 2019. He
is currently working toward the Ph.D. degree in agri-
cultural remote sensing with the Chinese Academy
of Agricultural Sciences, Beijing, China, and the
Leibniz Centre for Agricultural Landscape Research
(ZALF), Müncheberg, Germany.

His research interests include remote sensing, and
machine learning, especially spaceborne remote sensing analysis for monitoring
and mapping cropland use.

https://dx.doi.org/10.1016/j.jag.2021.102351
https://dx.doi.org/10.1016/j.rse.2019.04.016
https://dx.doi.org/10.1016/penalty -@M j.rse.2020.111951
https://dx.doi.org/10.1016/penalty -@M j.rse.2020.111951
https://dx.doi.org/10.5194/essd-13-2753-2021
https://dx.doi.org/10.3390/RS12091410
https://dx.doi.org/10.1016/penalty -@M j.catena.2014.07.006
https://dx.doi.org/10.1016/penalty -@M j.catena.2014.07.006
https://dx.doi.org/10.5194/essd-13-4799-2021
https://dx.doi.org/10.1021/ac034173t
https://dx.doi.org/10.1016/j.isprsjprs.2019.06.014
https://dx.doi.org/10.1016/j.isprsjprs.2016.05.010
https://dx.doi.org/10.1016/penalty -@M j.rse.2020.112112
https://dx.doi.org/10.1016/penalty -@M j.rse.2020.112112
https://dx.doi.org/10.1080/01431160110107734
https://dx.doi.org/10.1016/penalty -@M j.landusepol.2018.02.032
https://dx.doi.org/10.1016/penalty -@M j.landusepol.2018.02.032
https://dx.doi.org/10.1016/penalty -@M j.ecolind.2019.01.081
https://dx.doi.org/10.1016/penalty -@M j.ecolind.2019.01.081
https://dx.doi.org/10.1016/j.rse.2020.112095
https://dx.doi.org/10.1038/s41597-021-01065-9
https://dx.doi.org/10.1088/1748-9326/ab80f0
https://dx.doi.org/10.1038/penalty -@M s41597-021-00827-9
https://dx.doi.org/10.1038/penalty -@M s41597-021-00827-9
https://dx.doi.org/10.1016/j.agsy.2021.103180
https://dx.doi.org/10.1016/j.rse.2021.112320
https://dx.doi.org/10.1016/j.rse.2019.111218
https://dx.doi.org/10.1038/s41559-018-0551-1
https://dx.doi.org/10.1016/j.rse.2019.111624
https://dx.doi.org/10.1016/j.rse.2018.10.031
https://dx.doi.org/10.1038/s41586-021-03695-w
https://dx.doi.org/10.1016/penalty -@M j.isprsjprs.2021.04.015
https://dx.doi.org/10.1016/penalty -@M j.isprsjprs.2021.04.015
https://dx.doi.org/10.1016/j.rse.2021.112586
https://dx.doi.org/10.1016/j.rse.2021.112831
https://dx.doi.org/10.1111/ele.12453
https://dx.doi.org/10.1016/j.agee.2019.106625
https://dx.doi.org/10.1016/j.scitotenv.2020.142120
https://dx.doi.org/10.1016/j.geoderma.2019.01.015
https://dx.doi.org/10.1007/s13280-021-01510-4
https://dx.doi.org/10.1016/j.apgeog.2017.06.016
https://dx.doi.org/10.1073/penalty -@M pnas.2011702117
https://dx.doi.org/10.1073/penalty -@M pnas.2011702117


9598 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Qiangyi Yu received the bachelor’s degree in land
resources management from Hunan Agricultural Uni-
versity, Changsha, China, in 2007, the master’s de-
gree in agricultural regional development from the
Chinese Academy of Agricultural Sciences, Beijing,
China, in 2010, and the Ph.D. degree in agricul-
tural resources and environment from the Chinese
Academy of Agricultural Sciences, Beijing, China,
in 2013.

He is an Associate Research Fellow with the In-
stitute of Agricultural Resources and Regional Plan-

ning, Chinese Academy of Agricultural Sciences, and the Leader Assistant of
Agricultural Land System Group. His research interests include advancing the
manifestations of agricultural land system by considering crop allocation, farm
management, and the all-inclusive human activities that are relevant to the state
of cropland.

Qingbo Zhou received the bachelor’s degree in ap-
plied meteorology from China Agricultural Univer-
sity, the master’s degree in geophysics from Peking
University, and the Ph.D. degree in atmospheric
physics from the Institute of Geographical Sciences
and Natural Resources Research, Chinese Academy
of Sciences, Beijing, China, in 1987, 1990 and 1993,
respectively.

He is the Director of Agricultural Information In-
stitute, Chinese Academy of Agricultural Sciences,
Beijing, China. He has been engaged in the field of

agricultural remote sensing, including crop identification and classification,
yield estimation modeling, agricultural spatial sampling methods, monitoring
and evaluation mechanism of agricultural disasters, etc.

Cong Wang received the bachelor’s degree in physics
and and the Ph.D. degree in geographical information
systems both from Beijing Normal University, Bei-
jing, China, in 2011 and 2016, respectively.

He was a Postdoctoral Research Fellow with the
University of California, Santa Cruz, CA, USA. He
is a Research Fellow with the Institute of Agricultural
Resources and Regional Planning, Chinese Academy
of Agricultural Sciences, Beijing, China. His research
interests include improving the accuracy of monitor-
ing vegetation phenology with remote sensing and

understanding the response of vegetation phenology to climate change.

Sonoko Dorothea Bellingrath-Kimura received the
bachelor’s and master’s degrees in crop science and
plant nutrition, and the Ph.D. degree in soil science
from Hokkaido University, Hokkaido, Japan, in 2000,
2002, and 2005, respectively.

She is the Head of Research Area 2, Land Use and
Governance, Leibniz Centre for Agricultural Land-
scape Research (ZALF), Müncheberg, Germany, and
the Professor for “Land Use Systems,” Humboldt
University, Berlin, Germany. Her expertise includes
crop and soil science and agronomy.

Wenbin Wu received the bachelor’s degree in geog-
raphy from Central China Normal University, Hubei,
China, in 1998, the master’s degree in environmental
engineering from Chinese Academy of Agricultural
Sciences, Beijing, China, in 2005, and the Ph.D.
degree in agricultural spatial informatics from the
University of Tokyo, Tokyo, Japan, in 2009.

He is a Research Fellow and an Associate Director
of the Institute of Agricultural Resources and Re-
gional Planning, Chinese Academy of Agricultural
Sciences, Beijing, China. He is mainly engaged in

the field of agricultural land systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


