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Terrain-Guided Flatten Memory Network for
Deep Spatial Wind Downscaling

Tingzhao Yu , Ruyi Yang, Yan Huang, Jinbing Gao, and Qiuming Kuang

Abstract—High-resolution wind analysis plays an essential role
in pollutant dispersion and renewable energy utilization. This
article focuses on spatial wind downscaling. Specifically, a novel
terrain-guided flatten memory network (abbreviated as TIGAM)
with axial similarity constraint is proposed. TIGAM consists of
three elaborately designed blocks, i.e., the similarity block, the
reconstruction block, and the denoise block. To achieve long-
spatial dependence, the similarity block interpolates low-resolution
data to high resolution in an axial attention manner. Meanwhile,
the reconstruction block aims to obtain a clearer high-resolution
representation in closed form. Taking both of the meteorological
prior and network design principle into consideration, this article
also proposes a flatten memory module with learnable input for
high-resolution denoising. Furthermore, for accurate detail recon-
struction, a terrain-guided enhanced loss is presented benefitting
from the high-resolution remote sensing data. This loss function
integrates wind spatial distribution and terrain elegantly. Extensive
quantitative and qualitative experiments demonstrate the superi-
ority of the proposed TIGAM.

Index Terms—Deep learning, flatten memory network,
image super-resolution, meteorological methods, spatial wind
downscaling.

I. INTRODUCTION

ACCURATE and fine meteorological forecasts have always
been urgent needs for both scientific research and intel-

ligent service. Thanks to the development of remote sensing
techniques, researchers are capable of obtaining high-resolution
observations. The high computation costs of numerical weather
simulations, however, limit the availability of fine-scale meteo-
rological predictions. As a consequence, spatial downscaling,
which is a hopeful technique of generating high-resolution
meteorological data from the low-resolution one, grows into
a hot research topic among atmospheric research. As an im-
portant component of meteorological analysis [1], [2], [3], [4],
[5], spatial wind downscaling [6], [7] plays a substantial role
among areas including oceanographic research [8], [9], climate
analysis [10], renewable energy generation [11], and accurate
meteorological forecasting [12].
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Spatial downscaling aims to provide meteorological reanal-
ysis/forecast as precise as possible for given areas, which has
been studied for decades. Various downscaling methods have
been proposed to improve spatial resolutions in meteorological
research, which can be categorized into dynamical downscaling
and statistical downscaling [13]. For dynamical downscaling,
high-resolution numerical models are employed to simulate
subgrid-scale physical processes based on the large-scale circu-
lation predicted from coarser-scale models [14], [15]. However,
dynamical downscaling is well known for its high requirements
on computing resources. In contrast, statistical methods can pro-
duce competitive results with a low-cost computational resource
compared to dynamical downscaling. There emerge a large
amount of statistical methods to enhance the spatial resolutions
of meteorological variables, such as bilinear interpolation, near-
est neighbor [16], support vector machines [17], and weather
generators [18]. For example, Jia et al. [19] develop a multiple
linear regression model for downscaling the spatial precipitation
fields by applying the relationships between precipitation and
other environmental factors such as topography and vegetation.
Lima et al. [20] propose a Bayesian Kriging model to down-
scale daily Global Climate Model rainfall into a fine-resolution
grid, which can successfully reproduce the spatial variability
in the observed rainfall. Moreover, based on a nonlinear rela-
tionship between precipitation at high-resolution and covariates
at coarse/fine resolution, adaptable random forests have been
utilized for spatial precipitation downscaling [21]. Empirical
analysis indicates that it can outperform bilinear interpolation
and replicate the spatial and temporal distribution of observed
precipitation fields. Recently, Jing et al. [22] propose an end-to-
end network, which consists of a global cross-attention module, a
multifactor cross-attention module, and a residual convolutional
module, for satellite precipitation downscaling. Wang et al. [23]
propose a new algorithm based on the Taylor expansion for
land surface temperature downscaling. Results show that this
method got the best downscaled results when the land surface
temperature acquired time is consistent with the time of empir-
ical concavity factor.

As for spatial wind downscaling, the diagnostic models,
such as California Meteorology (CALMET) [24], is com-
monly used to generate high-resolution wind fields with hor-
izontal resolution of several hundred meters [25], [26], [27].
Höhlein et al. [6] use a convolutional neural network (CNN)-
based model for downscaling low-resolution wind forecast sim-
ulations to a higher spatial resolution. Kirchmeier et al. [28]
propose a probabilistic-based statistically downscaling approach
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to predict a daily-varying probability distribution of local-scale
wind speed, conditioned on the large-scale wind speed. More-
over, wind downscaling is extremely complicated on complex
topography. Helbig et al. [29] apply local, fine-scale topographic
parameters to surface wind speed downscaling method for nu-
merical weather prediction (NWP) simulation. Based on coarse-
scale NWP wind speeds, the method can efficiently reproduce
distribution statistics in the near-surface wind speed measure-
ments. Winstral et al. [30] introduce a novel optimization scheme
that can capture the local terrain structure for gridded wind speed
downscaling. Given the wind-terrain interaction, the downscal-
ing method effectively improves the error metrics and spatial
distributions correlation between the downscaled wind field and
observation. Based on the CNN, Dujardin and Lehning [31]
propose a near-surface wind fields downscaling approach that
considers the state of the atmosphere on various scales and its
interaction with high-resolution topography. The downscaling
method perform well in generating 50-m resolution wind fields,
especially under the effects of complex topography like ridge
acceleration, sheltering, and deflection.

Recent advances in machine learning, especially deep learn-
ing, have witnessed great success for meteorological appli-
cations. Specifically, the widely investigated image super-
resolution in the field of computer vision shares a similar objec-
tive with meteorological spatial downscaling, i.e., minimizing
the reconstruction loss as far as possible. Recently, many super-
resolution methods based on deep learning have achieved state-
of-the-art performance. Superresolution convolutional neural
network (SRCNN) [32] is the first deep learning method for
single image super-resolution. It is a three-layer CNN for patch
extraction, nonlinear mapping, and high-resolution reconstruc-
tion. Basically, the SRCNN preprocesses the low-resolution
image with bicubic interpolation, while the fast super-resolution
CNN (FSRCNN) [33] applies deconvolution to reconstruct the
corresponding high-resolution image from the low-resolution
one directly. Recently, the efficient subpixel CNN (ESPN) [34]
has become the common upsampling strategy and it has been
widely used in state-of-the-art methods, e.g., enhanced deep
residual super-resolution (EDSR) [35], residual channel atten-
tion network (RCAN) [36], hybrid residual attention network
(HRAN) [37], and super-resolution recursive fractal network
(SRRFN) [38]. There are also methods trying to dig out the
deeper nonlinear information with more convolutional layers,
e.g., very deep super-resolution network (VDSR) [39]. Specifi-
cally, different convolutional layers extract distinct features, in
order to fully exploit these information, Liu et al. [40] raise a
residual feature aggregation framework for more efficient fea-
ture extraction. This framework groups several residual modules
together and directly forwards the features on each local residual
branch by adding skip connections. Therefore, it is capable of
aggregating these informative residual features to produce more
representative features. However, different from the model-
based methods that can handle image super-resolution with
different scale factors under a unified framework, the learning-
based methods generally lack such flexibility. To address this is-
sue, Zhang et al. [41] propose an end-to-end trainable unfolding

network that leverages both learning-based methods and model-
based methods. By unifying diverse scale factors into a joint
end-to-end framework, image super-resolution can be divided
into several subproblems, that can be solved iteratively. Recent
contributions [42], [43], [44], [45] also start to seeking a better
performance under the widely used transformer [46] mech-
anism. Apart from convolutional methods, there are brilliant
pioneer contributions focusing on recurrent super-resolution.
Most of them devote to video super-resolution [47], [48], [49],
because the convolutional recurrent networks are inherently
suitable for spatial-temporal data. There are also researches
concentrating on recurrent single-image super-resolution. For
example, Yang et al. [50] introduce a deep-edge-guided recurrent
residual network to progressively recover the high-frequency
details. Yang et al. [51] propose a deep recurrent fusion network.
Through which, multilevel features with large receptive-field
can be obtained. Han et al. [52] propose a dual-state recurrent
network for single-image super-resolution, and proved many
state-of-the-art super-resolution techniques can be reformulated
as a single-state recurrent network.

Regardless of the resemblance between meteorological down-
scaling and image super-resolution, we claim that utilizing the
method designed for super-resolution directly for downscaling
confronts with the following four ASCL challenges that must be
thoroughly considered.

1) Apriority: Atmospheric science has been investigated for
hundreds of years, and it has now established a per-
fect theory with multiple physical-constrained differen-
tial equations, including the motion equation, the conti-
nuity equation, the energy equation, the state equation,
and the potential temperature equation. Through solving
these equations, the current and future meteorological
state can be obtained. In other words, the casuality of
meteorological downscaling is embedded into prior expert
knowledge. However, it is not the case for image super-
resolution. From the perspective of optimization, image
super-resolution is an ill-posed problem with multiple fea-
sible solutions. It is also a challenging direction of impos-
ing prior knowledge into the data-driven model, i.e., the
image super-resolution methods. Consequently, in order
to take the benefits of the existing image super-resolution
techniques, the apriority must be taken into consideration.

2) Similarity: Spatially, the meteorological state at a partic-
ular location is highly correlated with its corresponding
neighbors. Temporally, driven by the earth rotation and
revolution, the same meteorological state can occur peri-
odically. More importantly, the meteorological state at the
same latitude or longitude often tends to be consistent. For
a natural image, taking a cat as example, it can appear at
anywhere and anytime of the image, without much aprior-
ity. Nevertheless, it is not the case for meteorological data.
For example, the typhoon can only occur at the ocean or
coastal areas during regular time. This means, for accurate
spatial downscaling, the high similarity correlation must
be handled elaborately. From the perspective of computer
vision, the axial attention mechanism [53], which explores
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Fig. 1. Study area (20.51◦N–24.50◦N, 111.50◦E–115.49◦E). The correspond-
ing high-resolution topography is also embedded to TIGAM for high-resolution
spatial wind reconstruction.

Fig. 2. Illustration of the proposed TIGAM. Intuitively, TIGAM is comprised
of three basic blocks, i.e., the similarity block for coarse reconstruction, the
reconstruction block for clear reconstruction, and the denoise block for clean
reconstruction.

long-range spatial dependencies can provide an insightful
solution to this problem.

3) Coupling: Even though the relationship among different
meteorological elements is extremely complex, they have
great impact to each other. Taking the wind as a simple
example, the pressure difference p between two locations
caused wind w. Both of the temperature T and the air
mass are key impact factors of p. In addition, the humidity
h influences air mass a lot. The wind w in turn, can
also change h and T . In order to tackle this challenge, a
common practice is to impose additional weather variables
as input. However, treating weather factors as input data
directly has several imperfections. On one hand, due to
the fact that weather factors are typically obtained via
professional meteorological sensors or observation sta-
tions, it is impractical and costly to record extra weather
data. On the other hand, it is somewhat unreasonable to
integrate weather factors together directly. In other words,
different weather factors vary in data distribution, and how
to integrate these factors together remains a worthwhile
research. For generality, a substitutable latent learnable
input with spatial memory should make sense.

4) Locality: Distinct from most of the computer vision re-
lated tasks, the meteorological problem is typically scale
susceptible. Typically, a reasonable RGB image might be
colorful and uniform with feasible saturation and contrast
on a large scale for human perception. However, being
affected by the terrain, the extreme weather, e.g., tornado,

Fig. 3. Illustration about the concepts “cleaner” and “clearer.”

thunder, hail, etc., often occurs locally on a relatively
small scale. For better performance, the high-resolution
terrain should be a key indicator of local meteorological
variation.

To address the former illustrated issues, this article proposes
terrain-guided flatten memory network (TIGAM), an elaborately
designed deep convolutional network with meteorological prior
guidance for spatial wind downscaling. Specifically, taking the
atmospheric apriority into consideration, this article proposes a
novel flatten memory module with learnable position-sensitive
input. Benefitting from this mechanism, TIGAM is capable of
simulating the prior meteorological motion equations and de-
picting the multielement coupling implicitly. Spatially, the axial
attention policy is embedded into TIGAM for better describing
the long-range spatial similarity. Moreover, through a compre-
hensive statistical analysis, we find that the winds are highly
correlated to terrain. Consequently, this article further presents
a new enhanced loss. This auxiliary guidance, which calculates
the standard deviation among local areas and treats the standard
deviation of terrain as targets, restricts its spatial distribution
analogous to the corresponding terrain. Experiments compared
with three basic interpolation techniques and 20 state-of-the-art
deep learning methods demonstrate the effectiveness of the
proposed TIGAM.

The remainder of this article is structured as follows. Section II
presents the study area and the used data. The proposed method,
i.e., TIGAM, is illustrated in detail in Section III. Section IV for-
mulates the experimental configuration and the results. Details
are discussed in Section V, while conclusions are finally drawn
in Section VI.

II. MATERIALS

A. Study Areas

The study region is constituted of the central and southern
Guangdong Province of China and part of South China Sea, with
a good coverage of 20.51◦N–24.50◦N, 111.50◦E–115.49◦E (see
Fig. 1). The topography of this area exhibits spatial variability,
with an arc-shaped mountain ranges (e.g., Jiulian Mountain) in
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Fig. 4. Employed meteorological prior guided denoise block. This block consists of four types of modules, i.e., the basic conv module, the downconv module,
the flatten memory module, and the upconv module. Given a reconstructed wind image XR, the denoise block works in a cascaded ResUNet manner. Specifically,
a flatten memory module is designed to fit the atmospheric differential equation, i.e., (8), in an implicit way.

Fig. 5. Flatten memory module. To imitate the multifactor atmospheric theory,
an extra learnable input XL is adopted. Intuitively, the flatten memory module
can be regarded as a spatial GRU network, and that is the reason why we called
this module a flatten memory module.

the north, a plain area in the middle, and the ocean area in the
south. The wind field in this area is extremely affected by the
interaction of complex topography, land–sea distribution, and
weather systems (such as typhoons, low-level jets, cold fronts,
etc.), making spatial wind downscaling in this region a worth
studying problem.

B. Data Description

This article evaluates the proposed method on hourly China
Atmospheric Real-time Analysis System—surface analysis at
1-km spatial resolution (CARAS-SUR1km) reanalysis data .
CARAS-SUR1km) is a refined real-time professional meteo-
rological product generation system developed by the Public
Meteorological Service Center, China Meteorological Admin-
istration. It provides surface real-time professional service prod-
ucts (temperature, relatively humidity, u-wind, v-wind, etc.)
per hour with 1 km × 1 km spatial resolution. This system
integrates more than 60 000 ground stations observation data,
CMA-GRAPES regional typhoon prediction model (GRAPES-
TYM) data, high-precision terrain and underlying surface data,
and other multisources observation data, by using the upgraded
multigrid variational method. Therefore, the CARAS-SUR1km
products have good temporal and spatial continuity, and can
reflect the local refined topographic features well. Following the
typical strategy for single image super-resolution in computer
vision, the high-resolution CARAS-SUR1km data are treated

as ground truth and it is sampled to 2 km as low-resolution
model input. The high-resolution (1 km) orography data are also
employed as auxiliary guidance information. Specifically, the
CARAS-SUR1km data from 2016 to 2018 are used for training,
while the year 2019 is employed for validation and the year 2020
for testing.

C. Data Preprocessing

For better convergence, the wind components are prepro-
cessed utilizing standard normalization as

X =
Xorg − mean(Xorg)

std(Xorg)
(1)

while for terrain, it is first divided by 1500, and then, normal-
ized as (1). Following the typical normalization trick in deep
convolutional networks, the global mean and standard deviation
are computed.

III. METHODS

A. Problem Formulation

This article focuses on spatial wind downscaling. Different
from precipitation or temperature, winds are vectors with both
magnitude v and direction ω. For better understanding, winds
are typically decomposed into two orthogonal components, i.e.,
the U-wind v cosω and the V-wind v sinω. Analogous to color
images, this article regards these two elements as two relevant
channels. Without specific illustration, this two-channel data are
referred to wind image.

Accordingly, given a low-resolution wind image Xt ∈
Rw×h×c of a specific area at time t, where w and h rep-
resent the spatial width and height, c = 2 denotes the two
orthogonal components, spatial wind downscaling aims at re-
covering a relatively high-resolution and accurate wind image
f(θ;Xt, s) = Ŷt ∈ Rsw×sh×c, which is as similar as possible to
the ground-truth wind image Yt ∈ Rsw×sh×c. Here, s represents
the dowscaling ratio and f denotes the downscaling function
defined by parameter θ, which can be mathematically obtained
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Fig. 6. Wind standard deviation versus terrain standard deviation. To be
specific, the high-resolution terrain and the corresponding wind image are first
split into small nonoverlap patches. Then, the standard deviations are calculated
within each patch. Furthermore, a linear regression model is raised to fit the
two standard deviations. Even though this relationship cannot be described
in a fixed-parameter model, these two figures indicate that the wind standard
deviation is highly correlated to terrain standard deviation.

Fig. 7. Mechanism of the terrain-guided enhanced loss. Except the recon-
struction loss, an auxiliary terrain-guided loss, which restricts the relationship
between terrain and wind spatial distribution, is employed.

via

θ = argmin
θ

∑
t

L(f(θ;Xt, s), Yt) (2)

where L is a specified loss function, such as L1 loss, L2 loss, or
others.

B. TIGAM Architecture

To achieve spatial wind downscaling, this article proposes
TIGAM network. An intuitive illustration can be found in Fig. 2.
Basically, TIGAM consists of three types of blocks, i.e., the
similarity block, the reconstruction block, and the denoise block.

Given a low-resolution wind image, the similarity block
first interpolates it to the desired size, and then, employs
axial attention to discover the long-range spatial dependence.

After that, the reconstruction block aims to find a clearer
high-resolution wind image and the denoise block devotes
to obtain a cleaner high-resolution one. We should also
note that, inspired by deep unfold super-resolution network
(USRNET) [41], the reconstruction block, and the denoise
block are executed iteratively in an RNN manner for better
performance. We then present details of each block.

Analysis: Taking an RGB image as example, a “clearer”
image emphasizes more on clarity with details, while a “cleaner”
image highlights on purity without noise. Fig. 3 presents an
intuitive expression. In Fig. 3, the subfigure (a) is noisy and
blurred, the subfigure (b) is clear but noisy, the subfigure (c)
is clean but blurred, and the subfigure (d) is clear and clean.
These two processes are typically necessary. To be specific,
given a low-resolution input, the reconstruction block aims to
reconstruct a relatively high-resolution one. Nevertheless, this
process introduces noise inevitably due to the inner property
of solving an ill-posed super-resolution (downscaling) problem.
These two types of block are then required.

C. Similarity Block—Exploring Long-Range Spatial Similarity

As illustrated in Section III-B, the similarity block interpo-
lates a low-resolution wind image Xt to high resolution roughly
by taking long-range spatial dependence into consideration,
through the axial attention mechanism as [53]. Without loss
of generality, we omit the subscript t for simplicity (i.e., X is
equivalent to Xt without specific illustration). Consequently,
this block can be formulated mathematically as

X ′ = super samples(X)

⇓⎧⎪⎨
⎪⎩
q, k, v, r = WhX

′

zhi,j = softmaxa∈N (i)

(
qTi,jka,j+qTi,jr

q
a−i + kTa,jr

k
a−i

)
X ′′ =

∑
a∈N (i) z

h
i,j(va,j+rva−i)

⇓⎧⎪⎪⎨
⎪⎪⎩
q, k, v, r = WwX

′′

zwi,j = softmaxb∈N (j)

(
qTi,jki,b+qTi,jr

q
b−j + kTi,br

k
b−j

)
XS =

∑
b∈N (j) z

w
i,j(vi,b+rvb−j)

(3)

where q, k, v, and r are the corresponding query, key, value,
and relative position encoding, respectively. supersamples(· · · )
represents interpolating with scale factor s, and N denotes the
corresponding neighbors. XS ∈ Rsw×sh×c is the output of the
similarity block.

Analysis: Let us denote w′ = sw, h′ = sh, and C = c for
simplicity, i.e., X ′ ∈ Rw′×h′×C . When conducting width-axis
attention, i.e., calculating q, k, and v using X ′, the size of
learnable weight matrixes are typically set as Whq ∈ RC×d,
Whk ∈ RC×d, and Whv ∈ RC×2d, where d is the hidden di-
mension. Taking q as example, the width-axis multiplication
operation is then executed on two matrixes X ′

i ∈ Rh′×C and
Whq ∈ RC×d for each i = 1, . . . , w′. And the resulting matrix
is qi = X ′

iWhq ∈ Rh′×d. The same operation is implemented
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TABLE I
OVERALL PERFORMANCE OF THE PROPOSED TIGAM AND OTHER STATE-OF-THE-ART METHODS

on k and v. In practice, we often employ an integrated learnable
weight matrix

Wh = cat([Whq,Whk,Whv]) ∈ RC×4 (4)

for efficiency. In other words

[qi, ki, vi] = X ′
i[Whq,Whk,Whv] = X ′

iWh. (5)

At last, for all i = 1, . . . , w′, we denote

q, k, v = WhX
′. (6)

As for the relative position encoding r, it is a learnable input
vector predefined in the axial attention layer that can be treated
as relevant to the input data, i.e.,X ′. Through former illustration,
the proposed similarity block can exploit long-range spatial
dependence, i.e., the similarity challenge, via the axial attention
mechanism.

D. Reconstruction Block—Recovering a Clearer Wind Image

Intuitively, even though the similarity block takes both of
latitude and longitude relevance into consideration through axial
attention, the reconstructed wind image XS is relatively coarse.
Following the strategy implemented in USRNet [41], this article
also decouples the reconstruction process [i.e., (2)] into two cas-
caded half-quadratic subproblems. The first subproblem, which
attempts to recover a clearer wind image XR in a closed-form
solution, can be solved utilizing fast Fourier transform without
optimizing any trainable parameters. The second subproblem,
i.e., the denoising problem, which focuses on achieving a cleaner
wind image Ŷ , can be settled via the following proposed denoise
block with a flatten memory strategy.

E. Denoise Block—Reconstructing a Cleaner Wind Image

The denoise block is designed in a ResUNet framework.
A detailed description can be found in Fig. 4. Specifically,
the denoise block contains a Basic Conv Module for feature
transformation, three DownConv modules for high-level feature
extraction, a flatten memory module for fitting atmospheric
prior, three UpConv modules for feature reconstruction, and a
basic Conv module for wind image reconstruction.

For efficiency, the basic Conv module contains only a single
convolutional layer without any normalization or activation, i.e.,
XB = Conv(XR). The DownConv module consists of three
convolutional layers with a ReLU activation and a residual
connection. Note that the last convolutional layer is set to be
with stride for down sampling. The DownConv module can be
formulated as ⎧⎪⎨

⎪⎩
X0 = ReLU(W0 ∗XB)

X1 = W1 ∗X0 +XS

X2 = W2 ∗S X1

(7)

where ∗ represents convolution with parameter W and ∗S
denotes convolution with stride. We omit the bias term for
simplicity.

Atmospherically, the wind is highly correlated with many
essential factors as

d
−→
V

dt
= −1

ρ
∇p+−→g +

−→
N − 2

−→
Ω

︸ ︷︷ ︸
learnable term

∧−→V (8)
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Fig. 8. Visualization of the differences between the downscaling results and the ground truth. Except wind speed differences (color areas), the wind direction
discrepancies are also shown in the figure using directed arrow. Better zoomed in and viewed in color.

where
−→
V , p, ρ,

−→
Ω , −→g , and

−→
N indicate wind, air pressure,

air density, Coriolis force, gravitational acceleration, and air
friction, respectively. Therefore, according to (8), the interactive
influence among different meteorological elements must be
thoroughly considered for accurate spatial wind downscaling.

Specifically, a novel flatten memory module is proposed to
deal with this issue. Suppose the output of last DownConv
module is XD, the flatten memory module fit (8) and takes an
extra learnable inputXL to imitate other meteorological factors.

Generally, XD and XL are first concatenated and processed via
a single convolutional layer with sigmoid activation, i.e.,

(
XZ

XR

)
= sigmoid

(
WZR ∗ [XL; XD

])
. (9)

After that, we obtain a hidden memory representation XH via

XH = tanh
(
WH ∗ [XRXL; XD

])
. (10)
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TABLE II
ABLATION STUDIES OF DIFFERENT BLOCKS INCLUDING THE AXIAL SIMILARITY BLOCK (AXIAL), THE FLATTEN MEMORY BLOCK (FM), AND THE

TERRAIN-GUIDED ENHANCED LOSS (TL)

TABLE III
SENSITIVE ANALYSIS CONSIDERING THE TRADEOFF PARAMETER USING SWINIR AS BASELINE

TABLE IV
NUMBER OF PARAMETERS AND RUNNING TIME FOR ALL COMPARED METHODS (THE BLUE VALUES DENOTE TOP-3 PARAMETER / TIME CONSUMPTION)

The final output of the flatten memory module is defined as

XM = (1−XZ)XL +XZXH . (11)

More details can also be found in Fig. 5.
The UpConv module recovers high-level feature representa-

tion in a cascaded mechanism. Mathematically, it can be written
as ⎧⎪⎨

⎪⎩
X0 = W0 ∗T (XM +XD)

X1 = ReLU(W1 ∗X0)

X2 = W2 ∗X1 +X0

(12)

where ∗T denotes transpose convolution.
Denote the output of last UpConv Block as XU , another

basic convolutional layer is implemented to reconstruct the
high-resolution wind image as Ŷ = Conv(XU ).

Here, XL represents the learnable input, XD denotes the
output of last DownConv module, and XM stands for the output
of flatten memory module. As for XZ , XR, and XH , we follow
their initial declarations in GRU [54] or ConvGRU [55] as update
gate, reset gate, and hidden state.

Analysis: On one hand, atmospheric science has been in-
vestigated for hundreds of years, and it has now established
a perfect theory. On the other hand, the emergency of deep
learning has facilitated many related areas, such as meteorology.
We believe that the brilliant meteorological theory is a construc-
tive guidance for deep-learning-based meteorological methods .
Then, we attempt to explore an elaborate network combing with
the established meteorological theory. Consequently, the flatten
memory module is proposed.

Specifically, the flatten memory module is designed to deal
with the apriority and coupling challenges. In the case of apri-
ority, it is hard to design a deep network under the physical
constraint [see (8)] directly. However, (8) can be roughly divided
into two parts, i.e., wind and other variables. To imitate (8),
two input branches corresponding to wind and other variables
are essential. For simplicity and generality, we defined other
variables a learnable term. Putting this term aside, (8) contains
only basic operations such as addition and multiplication. A
single convolutional layer is then capable of imitating this rela-
tionship. Nevertheless, instead of using a single layer network,
we employ a memory unit to fit this function. Meanwhile, the
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Fig. 9. Sensitivity analysis about the number of denoise blocks.

coupling challenge is considered through the former illustrated
learnable input.

The reason why we define it a flatten memory module is
twofold. First, this module is mainly inspired by the gated recur-
rent unit (GRU), which consists of multiple temporal memory
units for sequential learning. The basic structure illustrated in
Fig. 5 is similar to this memory unit. That is the reason why
we still say it a memory module. Second, instead of exploit-
ing temporal dependence, the newly proposed module trying
to explore spatial relevance. This equals to flatten a recurrent
module spatially while still preserves the property of memory,
even though this memory stores spatial relevance rather than
temporal dependence. That is the reason why we say it a flatten
module. Consequently, we say this a flatten memory module.

In spite of the fact that ConvGRU and the proposed flatten
memory module share same basic architecture, these two com-
ponents are distinct at cell level. ConvGRU cell takes the original
stable sequential snapshots as input while the flatten memory
module cell operates on learnable spatial dimension. More
specifically, the only input for ConvGRU is indeed the given
sequence X . While for the flatten memory module, apart from
the given input XD, there is an additional learnable position-
sensitive part XL. This learnable part is independent from XD.
We say it learnable owing to the fact that XL is obtained via
backward optimization instead of forward computation. We say
it position sensitive because the size of XL is similar as XD.
From this point of view, the ConvGRU cell is a special case of
the flatten memory module cell. In other words, when XL is set
to be frozen during backward optimization and be relative toXD

in the forward process, the flatten memory module degrades to
ConvGRU.

F. Terrain-Guided Enhanced Loss

Through the former illustrated strategy, it is capable of dealing
with first three ASCL challenges (Apriority, Similarity, and Cou-
pling) and obtaining a relatively high-resolution wind image. As
for the Locality, we observe that the standard deviation of wind
within local areas is highly relevant to local terrain. Fig. 6 reveals
this discovery.

Specifically, after an investigation of early contributions and
a statical analysis, we found that the standard deviation of
local terrain is an important indicator for the clear wind image
reconstruction. Therefore, a terrain-guided enhanced loss is
elaborately designed (see Fig. 7).

To be specific, the reconstructed wind image Ŷ is first split
into nonoverlap windows of size k × k, the standard deviation
is then calculated within each window. The same operations are
also conducted on terrain T . The enhanced loss is then define as

Len = ‖
∑

std(Ŷk×k)− ξ
∑

std(T )k×k‖p (13)

ξ is a hyperparameter and the final loss L is a combination of
both the reconstruction loss Lre = ‖Ŷ − Y ‖q and the enhanced
loss Len, i.e.,

L = Lre + δLen (14)

where δ is a hyperparameter for tradeoff. The involved parame-
ters can be optimized via back-propagation.

Analysis: According to early works [29], [30], [31] and after
a statical analysis, we say there is high correlation between
terrain and wind, especially between terrain std and wind std.
Unfortunately, how this relevance is mathematically formulated
is unknown and has not been revealed. To find out this cor-
relation, we denote x = std(Ŷk×k) and y = std(Tk×k), where
Ŷ , T , and k represent the reconstructed high-resolution wind
image, the terrain and the nonoverlap window size, respectively.
We can define this correlation abstractly via a nonlinear map as
y = f(x). According to the theory of Taylor expansion, we can
reformulate this as

y = f(x)

= f(x0) + f ′(x0)(x− x0) +Rn

= f ′(x0)x+ f(x0)− f ′(x0)x0 +Rn

= f ′(x0)x+ C. (15)

Alternatively, we rewrite (15) as x− 1
f ′(x0)

y = C
f ′(x0)

. This
meets with the proposed terrain-guided enhanced loss (13). We
must note that this enhanced loss is quite coarse and limited.
However, this is supposed to be a reasonable approximation of
f(x) and the experimental results also demonstrate its validity.

IV. RESULTS

A. Experiment Setting

TIGAM is implemented on Pytorch. Codes and sample data
are available at https://github.com/Tsingzao/TIGAM. Gener-
ally, the downscale factor is set to be 2. The numbers of re-
construction and denoise block are all set to be 8. Without
specific illustration, the hidden channel is set to be 64 and the
convolutional kernel size is 3× 3. There are three DownConv
and three UpConv modules in the denoise block, the nonoverlap
window size k = 8 and the hyperparameter δ = 0.05.

For model training, Adam with learning rate 1e−4 is employed
and training stops after 20 epochs or the validation loss does not
decrease after five epochs. The batchsize is set to be 8.

https://github.com/Tsingzao/TIGAM
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Fig. 10. Daily maximum wind at the central study area during January, April, July, and October. Large discrepancies can be found during January, while the
difference during October is the smallest.

Fig. 11. Illustration of the bias between TIGAM and ground truth.

Fig. 12. Illustration about the temporal deviation.

To verify the superiority of the proposed TIGAM, 20 kinds
of methods including both of traditional interpolation meth-
ods such as bilinear, bicubic, and nearest interpolation, and
advanced deep learning methods such as SRCNN [32], Sub-
Pixel [34], VDSR [39], fast super-resolution CNN (FSR-
CNN) [33], EDSR [35], SRDenseNet [56], LAPSRN [57],
residual dense network (RDN) [58], RCAN [36], DBPN (Deep
Back-Projection Network) [59], RNAN (Residual Non-local
Attention Network) [60], SRFBN (Super Resolution FeedBack
Network) [61], SAN (Second-order Attention Network) [62],
USRNET (Unfold Super Resolution Network) [41], RFANet
(Residual Feature Aggregation Network) [40], CSNLA (Cross-
Scale Non-Local Attention network) [63], NLSN (Non-Local
Sparse Attention network) [64] SwinIR [44], Restormer [45],
WindTopo [31], etc., are discussed in detail. Specifically, the
following two categories of experiments are conducted.

1) Quantitative comparison: To demonstrate the superiority
of TIGAM, quantitative comparisons are first provided in
Section IV-C.

2) Qualitative comparison: Intuitive comparisons among
the proposed TIGAM and other state-of-the-art super-
resolution algorithms are then presented in Section IV-D.

B. Evaluation Metrics

For fair comparison, this article employs standard metrics
mean absolute error, for quantitative evaluation. Suppose Yt

and Ŷt denote the tth ground-truth high-resolution wind image
and the down-scaled one, then the corresponding mathematical
formulation are defined as follows:

MAE =
1

T

T∑
t=1

‖Yt − Ŷt‖. (16)

Apart from that, the widely used structure similarity (SSIM)
and peak signal noise ratio (PSNR) are also evaluated. Specifi-
cally, SSIM and PSNR are formulated as

SSIMt =
(2μYt

μŶt
+ c1)(2σYtŶt

+ c2)

(μ2
Yt

+ μ2
Ŷt

+ c1)(σ2
Yt

+ σ2
Ŷt

+ c2)

PSNRt = 10× log10
I2max

RMSE2
t

(17)

where Imax denotes the maximum value of wind, c1 and c2 are
constants, and μ and σ represents the corresponding mean and
variance, respectively. For PSNR, the related RMSE is defined

as RMSE =
√

1
T

∑T
t=1 ‖Yt − Ŷt‖2.

For MAE, the smaller the better, while for SSIM and PSNR,
the larger the better.

C. Quantitative Comparison

This subsection shows quantitative comparisons considering
MAE, SSIM, and PSNR. Results can be found in Table I.



9478 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 13. Illustration about the spatial deviation.

Specifically, SRCNN [32] is the first proposed deep super-
resolution method with only three convolutional layers. Then,
VDSR [39] and FSRCNN [33] improve the SRCNN with more
convolutional layers. SubPixel [34] reconstructs high-resolution
image without any interpolation or transpose convolution. To
get more specific feature representations, SRDenseNet [56],
RDN [58], and RFANet [40] employ residual connection as
basic block. The widely used attention mechanism is also ex-
ploited in EDSR [35], RCAN [36], RNAN [60], SAN [62],
CSNLA [63], NLSN [64] etc. Other representational methods
include LAPSRN [57], DBPN [59], SRFBN [61], and USR-
NET [41]. SwinIR [44] is a recently proposed dedicated image
super-resolution structure based upon Swin Transformer [65].
WindTopo [31] is a recently proposed deep-learning-based wind
downscaling method using high-resolution topograph. Apart
from that, Restormer [45] is a recently proposed transformer ar-
chitecture especially designed for high-resolution image restora-
tion, such as denoising, deblurring, and deraining. Image super-
resolution can be also treated as a specific task of restoration.
Consequently, implementing restormer for wind downscaling is
reasonable.

More concretely, early contributions such as SRCNN [32],
SubPixel [34], VDSR [39], FSRCNN [33], and EDSR [35]
perform slightly worse than the other methods, and this is
mainly due to the fact that these models are comprised of simple
stacked convolutional layers without much specific design for
downscaling. Obviously, the recent methods SAN [62], US-
RNET [41], and the newly proposed TIGAM are superior to
the remaining methods. WindTopo [31] outperforms most of
the single image super-resolution methods and the performance
of Restormer [45] is quite competitive to TIGAM. From this
table, it should be noted that the proposed TIGAM outperforms
other methods consistently on all of the evaluated metrics (i.e.,
MAE, SSIM, and PSNR) in terms of both U and V components,
demonstrating the effectiveness of the proposed method. We
should note that WindTopo is an elaborately designed downscal-
ing network for particular data format. We cannot employ this
for our data directly. Therefore, we modify the original released

codes on five aspects. First, we change the station-based data
format to grid based. Second, the reimplemented WindTopo
employs nonlocal convolution instead of multiple zoom patch-
based convolution for efficiency. Third, the network is altered
to totally pixel-in pixel-out. Fourth, for grid-based downscaling,
we conduct the most widely used pixelshuffle operation. Fifth,
limited by the available data, we only take the u-wind, v-wind,
DEM, slope, and aspect as model input.

D. Qualitative Results

In order to give a more intuitive comparison, this subsection
presents qualitative comparisons among TIGAM and other
state-of-the-art methods. Specifically, the results at time stamp
2020-8-19 08:00 (BJT) are showed, during which, the seventh
typhoon Higos in 2020 attacked the study area. The maximum
wind speed reaches up to 126 km/h, and caused huge damages
to the passed areas.

Fig. 8 exhibits the differences between downscaling results
and the ground truth. Since the proposed terrain-guided en-
hanced loss has taken the terrain effect into consideration, it
enables our model to achieve a better spatial wind downscaling
performance in the terrain area. It is worth noting that other
meteorological variables beyond wind are also highly correlated
with the terrain, e.g., temperature and precipitation. Therefore,
our proposed model can be extended to these meteorological
variables. This is a challenging topic and would be explored in
our future research.

V. DISCUSSION

A. Ablation Study

Ablation studies are first conducted to systemically and com-
prehensively analyze TIGAM. Table II demonstrates the per-
formance of the newly proposed blocks, including the axial
similarity block (Axial), the flatten memory strategy (FM),
and the terrain-guided enhanced loss (TL). For efficiency, both
of SRCNN and SwinIR are employed as the baselines. SR-
CNN/SwinIR + ∗ denotes adding the corresponding ∗ block to
SRCNN.
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According to Table II, the proposed three blocks have positive
effects, illustrating that the newly proposed strategies reasonable
for spatial wind downscaling. On one hand, the axial similarity
block promotes the downscaling results due to the fact that
meteorological elements are highly correlated spatially. On the
other hand, the local spatial distribution constraint, which is
embedded into the terrain-guided enhanced loss, also facilitates
spatial downscaling. Finally, benefitting from the flatten memory
strategy, a position-sensitive learnable input is taken into account
and it can fit the motion (8) indirectly.

In addition, implementing SwinIR as the baseline outperforms
that of SRCNN. The reasons are straightforward for that SwinIR
consists of more elaborately designed modules for feature ex-
traction, feature transformation, and details reconstruction. The
proposed three new blocks promote model performance when
they are embedded to SwinIR, illustrating these blocks feasible
for wind downscaling. However, we should also note that the
performance improvement of employing SwinIR as baseline is
smaller than using the SRCNN.

B. Sensitive Analysis

As illustrated in Section III-B, the denoise block is executed
iteratively in an RNN manner. Therefore, there is indeed only one
denoise block. However, the memory units such as LSTM often
runs in a recursive manner and the flatten memory module can
be regarded as a special case of memory units. Consequently, the
denoise block working in an iterative manner is reasonable. We
then do sensitive analysis about the number of recurrent blocks.
The results are presented in Fig. 9. From this figure, with the
growth of iterative denoise block, the model performance first
increases, and then, drops. Obviously, the model efficiency also
decreases with the growth of iterative denoise block. Taking both
of the model performance and efficiency into consideration, we
select eight blocks eventually.

We also do sensitive analysis considering the tradeoff pa-
rameter δ using SwinIR as the baseline model. The results are
presented in Table III. Specifically, the model achieves relatively
best performance when the tradeoff parameter is set to be 0.05.

C. Maximum Wind

Furthermore, Fig. 10 presents daily maximum wind during
January, April, July, and October, which can represent the winter,
spring, summer, and autumn, respectively. The results indicates
that the TIGAM can successfully reproduce the temporal vari-
ability in the observed daily maximum field. The daily maximum
wind speed obtained by TIGAM is basically consistent with the
observation. Compared to other methods, TIGAM has a better or
competitive performance in terms of the bias of daily maximum
wind in spatial wind downscaling.

D. Bias Analysis

We present an intuitive expression about the wind speed bias
in Fig. 11. From this figure, the results of TIGAM exhibit high
correlation with the ground truth, especially in extreme winds.
The mean bias error (MBE) between TIGAM and observed

winds is −0.0032, which indicates that TIGAM slightly under-
estimated the wind speed compared to the ground truth.

E. Deviation Analysis

Regression-based downscaling approaches have a tendency to
underestimate extremes limited by the frequently used L1 or L2
loss. To avoid these underestimations and for better describing
extreme details, we proposed the terrain-guided enhanced loss.
Figs. 12 and 13 present the local deviations. Specifically, we
display these deviations in two manners, i.e., temporally and
spatially.

For temporal deviation, we select the central point of the study
area as example and calculate its standard deviation temporally
(from 2020-01-01 00:00 clock to 2020-12-31 23:00 clock). Sim-
ilarly, there is no significant difference between the ground-truth
observation and the TIGAM prediction, indicating that TIGAM
performs consistently with time.

For spatial deviation, we calculate the standard deviation
among the study area hourly. In order to illustrate TIGAM’s per-
formance clearly, Fig. 13 shows the deviation difference between
ground-truth observation and TIGAM prediction. From Fig. 13,
there is no remarkable difference between them, illustrating
TIGAM is a feasible method for extreme spatial downscaling.

F. Complexity Analysis

Table IV shows the reimplemented model complexity and
running time of all compared methods. Specifically, the running
time is calculated on a single 24 G TITAN Xp GPU. We should
note that the running time and model complexity are not linearly
correlated. Compared with the simple architectures such as
SRCNN, FSRCNN, SUBPIXEL, and VDSR, both of the model
complexity and running time of TIGAM is large. Compared with
the relatively complex methods such as RCAN, RDN, SAN,
and USRNET, both of the model complexity and running time
of TIGAM is comparable. Taking the model complexity, the
running time and the model performance all into consideration,
TIGAM is superior to other methods.

VI. CONCLUSION

This article proposed a novel TIGAM network for spatial wind
downscaling. Specifically, a similarity block with an axial atten-
tion mechanism is proposed for exploiting long-range spatial
dependence. To investigate the advanced meteorological prior,
this article also presents a denoise block with a flatten memory
module. Benefitting from this module, a position-sensitive input
can be learned to fit the complex influence among different me-
teorological elements. Furthermore, a terrain-guided enhanced
loss is proposed to depict the details of downscaling results.
Qualitative and quantitative results demonstrate the superiority
of the proposed TIGAM.

Generally, spatial downscaling equals to generate unknown
values conditioned on limited information, and the widely
explored generative adversarial networks provides a possible
solution. Consequently, the future work will focus on learn-
ing a deep generative model for meteorological donwscaling.



9480 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Besides, in view of the strong temporal dependence among
different meteorological elements, such as temperature, relative
humidity, air pressure, and winds, a multimodal spatial-temporal
downscaling algorithm with strict atmospheric restriction is also
under construction. Apart from that, this article tries to solve the
deep-learning-based atmospheric problem indirectly. We leave
the direct method our future research topic.
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