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Phenology-Based Unsupervised Rapeseed Mapping
Using Multitemporal Data
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Abstract—With a large field of view, remote sensing is a useful
technique that can provide a new way to acquire crop acreage and
spatial distribution. As an important oil crop, rapeseed is widely
planted in many countries. Besides, rapeseed mapping is of great
significance for food security and policy regulation. The objective
of this work is to explore an automatic and effective framework
for rapeseed mapping using multitemporal multispectral images
(MSIs) captured by multiple sensors. The automatic rapeseed
mapping framework consists of two stages. Concretely, color trans-
fer is introduced and combined with vegetation indexes to detect
rapeseed for the first time. After that, the most general supervised
classification methods are applied to optimize the initial mapping
result. In the experiments, the performance of different methods
is evaluated on multisensor data within four years (2017–2020).
Moreover, to analyze the effect of temporal information, the map-
ping performance of using different MSIs as input is systematically
compared. Experimental results illustrate the effectiveness of the
proposed framework, in which color transfer makes an important
role. Some valuable findings are also obtained which can be further
used for global rapeseed mapping.

Index Terms—Multispectral image (MSI) classification,
multitemporal data, rapeseed mapping, unsupervised mapping.

I. INTRODUCTION

A S A nondestructive technique, remote sensing offers infor-
mation from the local to the global scale in a systematic

way. With wide coverage and regular acquisition, multitem-
poral remote sensing images are suitable for analyzing time
changes [1], [2], [3] and have been widely used in crop map-
ping [4], [5]. Crops have different phenological characteristics,
which will result in spectral reflectance change with crops
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grow [6]. In another word, the phenological information of crops
can be recorded by remote sensing techniques.

Rapeseed is one of the major oil crops and widely planted in
China, which can be used to produce edible oil and biofuels [7],
[8]. Monitoring the temporal and spatial dynamics of rapeseed is
meaningful for the rapeseed sector, national food security, and
other relevant stakeholders [9]. However, the annual rapeseed
production and yield data are acquired by artificial statistics (i.e.,
field surveys and producer reports) in many regions currently.
This method is time consuming and laborious, which also cannot
obtain the rapeseed distribution map with detailed spatial infor-
mation. It is necessary to realize automatic rapeseed mapping
using remote sensing images.

According to the previous studies, rapeseed mapping
methods can be roughly divided into three strategies: spe-
cial phenological-period-based methods; multitemporal-based
methods; and spectrum-based methods. These methods are in-
troduced as follows.

1) Special phenological-period-based methods: The special
phenological-period-based methods leverage the crop growth
stages that contain more discriminative information to identify
rapeseed. At the flowering stage, the prominent yellow flower
is an important feature of rapeseed, which can be used to
distinguish rapeseed from other crops and yield prediction. For
example, Li et al. [10] pointed out that the best period for
rapeseed detection based on Landsat TM images is the flowering
period in Shou County, Anhui Province, China. Wang et al. [11]
mapped rapeseed at the provincial scale by extracting HSV
(hue, saturation, and value) and spectral features from Chinese
Gaofen satellite no. 1 (GF-1) multispectral images acquired at
six continuous flowering stages. Moreover, Han et al. [12] first
detected the flowering and pod phases of different regions, then
utilized the spectrum at the flowering period and the scattering
signal at the pod period to identify rapeseed with multiple thresh-
olds. Meng et al. [13] attempted to select the optimal temporal
window for wheat and rapeseed mapping in Zhongxiang city,
Hubei Province, China. According to this research, Sentinel-2
(S2) images from the middle and later stages of the growth cycle
are conducive to crop mapping .

Considering the flowering period is significant, some studies
try to extract yellow flowers and monitor the flower data by
designing a rapeseed index. For example, Sulik et al. [14] pro-
posed the ratio yellowness index (RYI) to indicate the yellowness
in a canopy. Later, Sulik et al. [7] designed the normalized
difference yellowness index (NDYI), which is a better indicator
of yield potential and monitoring the peak flowering period than
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the normalized difference vegetation index (NDVI). To enhance
the weak flower signal, Zang et al. [15] proposed the enhanced
area yellowness index (EAYI) based on the peak of difference
yellowness index (DYI) and the valley of NDVI during the
estimated flowering period.

2) Multitemporal-based methods: Multitemporal-based
methods utilize time-series remote sensing corresponding to
the entire growth cycles of plants as input. Compared with the
aforementioned method, this kind of method makes full use
of phenological features and can extract more temporal spatial
information for crop detection. Since time sequence data of
Moderate Resolution Imaging Spectroradiometer (MODIS) is
stable, lots of studies utilized MODIS products to identify crops.
For example, Tao et al. [9] built a decision tree with MODIS
time-series data to extract the rapeseed distributed in the Middle
Reaches of the Yangtze River Valley in China. In addition,
Meng et al. [5] also proved that using time-series images can
obtain better rapeseed mapping results than only using images at
the flowering stage. Besides, Ashourloo et al. [16] analyzed the
spectral and temporal profile of various crops, then developed
a canola index (CI) to separate rapeseed from other crops in the
flowering stage.

3) Spectrum-based methods: It is acknowledged that hy-
perspectral image (HSI) is able to provide abundant spectral
and spatial structure information [17], [18], [19]. The multi-
range spectral feature also can be used to identify rapeseed.
For example, a spectral feature fitting method is performed
on Hyperion data to extract rapeseed planting areas in [20].
Meng et al. [5] compared the performance of different data
(HSI, monotemporal and multitemporal multispectral images)
with different mapping methods, such as convolutional neural
network (CNN), support vector machine (SVM), and random
forest (RF). Based on this research, using HSIs as input can get
a comparable result to using multitemporal and multispectral
images.

Although many vegetation index (VI)-based and special
phenological-period-based methods are developed, the perfor-
mance of these methods depends on the imaging time and
quality of flowering data to a certain extent. When the im-
ages are captured at the peak flowering stage, these methods
work well. Unfortunately, due to the weather, revisit period of
satellite and phenological differences, the image at the peak
flowering stage is not always available. Moreover, they can-
not be directly used for multiple years or over a large region
because the stage of flowering differs temporally and spatially.
In contrast, multitemporal-based methods focus on the temporal
variation of crop canopy reflectance rather than the character-
istics of the specific phenological stage. Since multitemporal-
based methods make full use of phenological information, the
crop mapping results are satisfactory when training samples are
adequate. The spectrum-based methods can achieve a compa-
rable result with abundant spectral information, but the imag-
ing area of HSIs is limited. It is not suitable for large-scale
crop identification. In summary, it is still a huge challenge to
automatically identify rapeseed with a finer resolution over a
large region where cloud-free high/medium-resolution data are
limited.

To solve the sample size problem, this article proposed an
unsupervised rapeseed mapping method that can detect rapeseed
in the region where the croplands are distributed unevenly with
small sizes and the cloud-free imagery data are restricted. In the
study region, images with a relatively higher spatial resolution
are appropriate for analyzing rapeseed. So, experimental data are
derived from multisensor with medium spatial resolution, such
as GF-1 wide-field view imager (WFV), Sentinel-2 Multi Spec-
tral Instrument, Landsat 7 Enhanced Thematic Mapper Plus(L7
ETM+), Landsat 8 Operational Land Imager (L8 OLI), and
Chinese Gaofen satellite no. 6 (GF-6) WFV. With the time-series
MSIs, color transfer (CT) and VIs were combined to identify
rapeseed roughly at first, which is an unsupervised process.
Then, different classifiers that have been demonstrated effective
in land-use and land-cover classification were introduced to
optimize the initial rapeseed detection result. More in detail, the
training and validation samples were randomly selected from
the initial result to train the aforementioned classifiers. These
classifiers were performed on the multitemporal MSIs subse-
quently. According to the experiment results, the unsupervised
rapeseed mapping framework was analyzed from three aspects,
including the effectiveness of the unsupervised rapeseed initial
detection method with CT, the systematic comparison of the
universal classifiers, and the influence of temporal information
on the rapeseed mapping result. The contributions of this work
are as follows.

1) A two-stage unsupervised rapeseed mapping framework
is proposed, which consists of an initial detection and an
optimization stage. The experiments are designed to vali-
date the feasibility of this framework with multitemporal
and multisensor MSIs from 2017 to 2020.

2) To the best of our knowledge, it is the first time to introduce
color transfer for rapeseed mapping. Experiments illus-
trate color transfer can further enrich the initial detection
result.

3) The influence of temporal information on rapeseed map-
ping is explored in this work. The amount of available
cloud-free multitemporal MSIs is limited, it is necessary
to find an appropriate combination of images as input.
Thus, the relationship between the image of phenological
periods and mapping results are studied.

The remainder of this article is organized as follows. Section II
introduces the proposed framework. Experimental settings and
details of the study area are reviewed in Section III. Section IV
reports the experimental results and analyses. Finally, Section V
concludes this article.

II. METHODS

The two-stage rapeseed mapping process of this work is
shown in Fig. 1. In the first stage, rapeseed is identified using
the data of the flowering period by CT and VIs constraints.
Especially, when the image of the flowering period is at the peak
flowering period, VIs are used to obtain the rapeseed distribution
directly. On the contrary, CT is performed on the image to be
classified and the image of the peak flowering period from 2020
at first. In the second stage, various classifiers are employed
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Fig. 1. Flow chart of this study.

to optimize the initial detection result, including three types of
deep learning methods, two machine learning classifiers, and
NDYI-based mapping methods. Based on the results of the
two-stage rapeseed mapping framework, the performance of the
aforementioned classifiers has been demonstrated by comparing
the mapping precision. Moreover, the effectiveness of CT is
researched and the influence of time-series information is also
analyzed in this work.

A. Color Transfer and VI-Based Rapeseed Detection

Acquiring substantial training samples is laborious and even
impractical in many applications. To overcome this difficulty,
CT- and VIs-based rapeseed unsupervised detection method is
proposed.

As mentioned before, NDYI expressed by (1) is effective for
representing the yellowness of rapeseed, it can be used to detect
the rapeseed distribution in the flowering period. Therefore, the
NDYI is calculated and combined with a hard threshold α to
detect the rapeseed pixels with high confidence. The value of α
is decided by experience. Besides, another VI, NDVI, expressed
by (2) is also utilized to enrich the initial detection result. In sum,
the specific rules for rapeseed detection are as follows.

1. Rapeseed: NDYI> α.
2. Nonrapeseed: NDVI<0 or NDYI < 0.

NDYI =
Green − Blue
Green + Blue

(1)

NDVI =
NIR − Red
NIR + Red

. (2)

In this stage, CT is an optional process due to the difference
in the images of the flowering period. The whole flowering stage
lasted about 30 days. During this time, the available images of
different years are not always at the peak flowering stage. In this
situation, the yellowness of the flower is not apparent and varies
obviously in different regions. The number of samples extracted

by VIs will be adversely affected. Actually, in the four-year
flowering data, only the image of 2020 is at the peak flowering
period. To enhance the yellowness of rapeseed that are not at the
peak flowering stage, the color transfer is utilized to alleviate
the reflectance differences of the images at the flowering stage.
Concretely, a more general color correction method named
CTBI [21] is selected to change the color of images, because
it is simple and effective. CTBI [21] borrows one image’s color
features from another image and mainly includes the following
steps.

Suppose that the image to be processed is the source image,
and the image with the color style we want to convert is the target
image. First, the RGB image is projected into color space lαβ
through (3) and (4), which is a reversible process. Althrough this
decorrelated color space projection, three color channels can be
processed separately.

⎡
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Second, the means and standard deviations of lαβ are com-
puted along each channel. Finally, lαβ derived from the source
image are transformed according to the standard deviations of
the target image. Specifically, pixels are subtracted by the mean
value of the corresponding channel and scaled with factors
determined by the standard deviations. Then, the average of the
target image is added to each pixel. Take l channel of the source
image as an example, the whole transformation can be expressed
as

l∗t =
σl
t

σl
s

(
lt − lt

)
+ ls (5)
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where ls, lt,σl
s, andσl

t represent the mean value and the standard
deviation of l derived from the source image and target image,
respectively. After processing lαβ channel separately, the result
is converted back to RGB space.

The motivation of using CTBI is that CTBI is a simple and
effective color changing method. The motivation for using CTBI
is that it is a simple and effective color changing method. More
importantly, it has no effect on the object’s properties other than
the color. Moreover, the study regions of different years are the
same, most land covers are consistent. Changing the color of the
images where the flowers are not fully bloomed can make them
look more consistent with the image of the peak flowering stage.

B. Result Optimization With Supervised Classifiers

To fully detect the distribution of rapeseed, five commonly
used classifiers are adopted to optimize the rapeseed initial
detection result. Concretely, the detection result can provide
training and validation samples, which means the initial result
can be further optimized by supervised classifiers. The studied
classification methods including three types of deep learning
methods, 1-D CNN (1DCNN), 2-D CNN (2DCNN), and 3-D
CNN (3DCNN) are considered in this work. SVM and RF,
two widely used machine learning classification methods are
also employed. Moreover, NDYI [calculated as (2)] with a hard
threshold is used to identify rapeseed for comparison, which is
denoted as NDYIthre.

SVM and RF are often employed as baseline machine learning
methods in classification tasks because of their robustness [22].
SVM is a supervised classifier that can distinguish different
objects through mapping the input vectors to a high-dimensional
feature space and constructing the optimal separating hyper-
planes [23], [24]. RF is a combination of the decision tree, and
the prediction result is obtained by the majority vote on the
output categories of each tree [25], [26]. These two methods
have been extensively employed in remote sensing applications
such as crop mapping [27], [28], [29].

The methods based on deep learning have strong feature
extraction ability, which leads to a series of deep neural networks
being proposed for classification, especially CNN [30], [31].
Generally, the CNN consists of multiple convolution filters with
learnable weights and biases, which can extract hierarchical
contextual features of an image. The major operations of the
CNN can be explained as

Xt = poolp
(
σ
(
W t ∗Xt−1 + bt

))
(6)

where W t is a convolution kernel with the learned weight of the
tth layer, and Xt−1 denotes the input feature map. This process
includes using convolution operation ∗ toW t andXt−1 with the
addition of the bias bt, then adopting an activation function σ
outside the convolutional layer. Finally, pooling operation poolp
with a p× p′ window size is performed to obtain the next feature
map Xt.

In this work, 1DCNN, 2DCNN, and 3DCNN classifiers with
similar multilayer network architectures are constructed to map
rapeseed. Three CNN-based networks are composed of three
convolutional layers, three batch normalization layers, three

Fig. 2. Location of the study area.

activation functions, one max-pooling layer, and one fully con-
nected layer. For 1DCNN, pixel-wise time sequence vectors
are extracted as the input. For 2DCNN and 3DCNN, image
patches with the target pixel as the center are extracted as the
input. Considering rapeseed detection is a binary classification
problem, the sigmoid function is selected as the activation
function of the output layer. Three types of CNN models are
trained with the Adam algorithm and executed in a PyTorch and
CUDA environment. The training process is conducted over 300
epochs. Besides, the initial learning rate is set to 0.0001 and the
batch size is set to 256. Binary cross-entropy loss with good
generality is adopted as the loss function, which is suitable for
binary classification problems.

The input time-series MSIs can be regarded as a tensor
I ∈ RM×N×B, M,N,B indicate the width, height, and band
number of the MSIs, respectively. Data Iwas clipped into vectors
of size 1× b and patches of size m×m× b for the training
and testing, where b represents the number of spectral channels
of the MSIs, equal to B here. m×m is the length and width
of image patch. In this work, m was set to 5. Moreover, the
three convolutional layers of the CNN-based models learn 64,
128, and 256 convolution kernels. The convolution kernel size
was consistent with the spatial and spectral axis. Especially,
kernel size of 1DCNN, 2DCNN, and 3DCNN was 1×3, 3×3,
and 3×3×3.

III. EXPERIMENTAL SETTINGS AND MATERIALS

A. Study Area

As shown in Fig. 2, the study area is located in the East
Dongting Lake, which is the northern region of Hunan Province,
China. The longitude range of this area is between 112 ◦10′ and
112◦60′E, latitude range is between 29◦0′ and 29◦30′N. The
study area mainly contains an alluvial plain with an elevation
lower than 50 m. The area covers a total area of 3210 km2 and
mainly includes the north part of Yiyang city and the west part
of Yueyang. Influenced by the subtropical monsoon climate, the
Dongting Lake area is prone to rainy and cloudy weather in
winter and spring. Thus, the available optical remote sensing
data are limited. As one of the commodity grain bases in China,
the mainly planted crops are paddy rice and rapeseed. Moreover,
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Fig. 3. Phenological periods of rapeseed in the study area. F, M, and L represent the first, middle, and last ten-day period of a month, respectively.

TABLE I
DETAILED INFORMATION OF MULTISPECTRAL IMAGES USED TO MAP RAPESEED

Fig. 3 presents the phenological periods of rapeseed in the study
area.

B. Datasets

As mentioned before, a considerable portion of remote sens-
ing images in the study area are disturbed by the cloudy and
rainy conditions. To get enough available images, MSIs captured
by multisensor with high quality are collected in this work to
explore the robustness of different methods. In particular, five
kinds of optical satellites (GF-1, S2, L7, L8, and GF-6) data
are utilized. Chinese satellite GF-1 and GF-6 WFV data are
downloaded from China Centre for Resources Satellite Data
and Application (CRESDA),1 which can provide red, green,
blue (RGB) and near-infrared (NIR) bands with a 16-m spatial
resolution and large swath width. Besides, the spatial resolution
of RGB and NIR images derived from S2, Landsat satellites
are 10 and 30 m, respectively. Table I also lists the detailed
information of experimental data. Although the image at the
flowering stage is seriously disturbed by clouds in 2019, it is
still retained since there is no alternative high-quality MSI can
be found.

It should be noted that to keep the temporal information
similar in different years, four images of different phenological
periods are collected for each year. Besides, there are some
differences in band numbers among WFV, Multi Spectral In-
strument, ETM+, and OLI sensors. To construct a comparable
time series of different years, only the same four bands (i.e., RGB
and NIR) of each image are employed in this work. Moreover,
Turkoglu et al. [32] also choose the four bands of S2 to realize
crop mapping. Because they found that adding more channels
increases computing costs, but does not significantly improve
performance.

1[Online]. Available: http://www.cresda.com/EN/

The preprocessing of original GF-1 and GF-6 WFV Level
1 A data includes radiometric calibration, atmospheric correc-
tion, and geometric correction. The three correction steps are
achieved by the Environment for Visualizing Images (ENVI)
5.3 software. S2 Level 1 C data are preprocessed by Sen2Cor2

to generate the Level 2 A product. Then, image with RGB and
NIR bands is resampled to a 16-m spatial resolution. L7 and L8
data are Collection 2 Level 2 data derived from the United States
Geological Survey (USGS),3 basic preprocessing has been fin-
ished in Collection 2. But due to scan-line corrector-off gaps,
gap filling is performed on L7 data with ENVI. The processed
Landsat data are also resampled to 16-m spatial resolution.
Furthermore, all images are registered based on the S2 image
obtained on April 12, 2018, because this image have higher
resolution and better quality. After registration, all processed
images are cropped with a spatial size of 3300×3800 for the
subsequent experiment.

C. Training and Testing Samples

In this study, rapeseed mapping is an unsupervised process.
In the second stage of our framework, the training samples
are automatically generated for supervised classifiers, which in-
cludes two categories: rapeseed and nonrapeseed. Moreover, test
samples are collected to evaluated the performance of different
methods. Since the yellow flower can highlight rapeseed, which
is helpful to distinguish rapeseed through human interpretation.
Test samples are mainly collected by visual interpretation, and
supplemented by ground surveys and Google Earth images.
The pixel number of rapeseed test samples from different years

2http://step.esa.int/main/snap-supported-plugins/sen2cor/
3https://earthexplorer.usgs.gov/
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Fig. 4. RGB image of the flowering period and sample distribution in 2017.

TABLE II
CONFUSION MATRIX IN THIS WORK

(2017–2020) are 32 371, 19 678, 25 125, and 25 040, respec-
tively. To intuitively understand the distribution of test samples,
Fig. 4 presents the global and local ground truth in 2017.

D. Validation of Rapeseed Mapping Accuracy

To verify the accuracy of different rapeseed mapping methods,
the overall accuracy (OA) and Kappa coefficient are calculated as
indicators in this study. OA is the ratio of correctly mapped pixels
to all verified pixels, which is suitable for evaluating the overall
performance. Kappa coefficient is computed to indicate the
consistency of mapping results. Additionally, Precision, Recall,
and F1-score based on the confusion matrix (as constructed in
Table II) are also used to represent mapping capability. Generally
speaking, Precision and Recall are contrary, when one of them
is higher, the other often has a lower value. F1-score is the
harmonic mean of Recall and Precision, values range from
0 to 1. Considering this article studies a binary classification
problem, the specific calculation formulas of the aforementioned
indicators are described as follows:

OA =
TP + TN

TP + TN + FP + FN
(7)

Kappa =
po − pe
1− pe

(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 score = 2× Recall × Precision
Recall + Precision

(11)

where TP,TN,FP, and FN represent the number of true pos-
itives, true negatives, false positives, and false negatives cases
in the result, respectively. po is the relative observed agreement
among raters (same as OA here), and pe is the hypothetical prob-
ability of chance agreement [5]. Besides, the aforementioned
evaluation indicators with larger values denote better results.

IV. RESULTS AND ANALYSIS

In this part, the performance of NDYIthre, RF, SVM, 1DCNN,
2DCNN, and 3DCNN are analyzed. The threshold of NDYIthre

in this work is decided based on the rule that extracts rapeseed
as much as possible without obvious visual misclassification
because there is no standard method to find an adaptive thresh-
old. Concretely, the threshold is 0.095, 0.09, 0.08, and 0.09 for
2017–2020 years. Besides, the tree number of RF is 500. The
parameters of the SVM are obtained by cross validation with
Libsvm. The structure and parameters of CNN models have
been introduced in Section II-B. Moreover, parameters without
description are set to the default values.

The influence of CTBI on the detection result is also investi-
gated in subsequent experiments. Actually, the rapeseed pixels
are determined by NDYI and NDVI at the flowering stage. If the
flowers are not in full bloom, CTBI will be performed on the
image at first. In addition, threshold α of NDYI is a relatively
high value to ensure the reliability of the extracted rapeseed.
More in detail, the value of α is 0.13, 0.13, 0.13, and 0.15 for
2017–2020 years, respectively.

Since the initial rapeseed detection result provides a lot of
samples, only 10 000 rapeseed samples and 10 000 negative
samples are randomly selected for training. The same number
of samples is also used for the CNN model validation. When
the model gets the best accuracy on validation data, the model
is successively adopted to identify rapeseed.

Moreover, to explore the most effective data configuration
for rapeseed mapping, the effects of temporal information are
analyzed. Multispectral images of different periods are arranged
and combined as the input.

A. Effectiveness of Color Transfer

As mentioned in Section II-A, the initial rapeseed detection
result of the 2017–2019 years are obtained by NDYI and NDVI
after CTBI [21]. In this experiment, multitemporal data from
2017 are utilized to verify the effectiveness of CTBI. Fig. 5
presents the original images and corresponding images after
CTBI. As depicted in Fig. 5, CTBI can make the color style of the
images consistent with the image from 2020. It should be noted
that Fig. 5 shows the normalized original images, which are the
processing objects. In other figures, RGB components of MSIs
are linearly stretched to make the ground visible. Besides, Fig. 6
displays the NDYI images and corresponding histograms of the
original MSIs and the MSIs after CTBI. It can be seen that the
distribution of histograms is consistent each year, which means
that CTBI does not change data distribution but highlight the
rapeseed. In other words, CTBI can help to distinguish rapeseed
from other objects.

To understand the effect of CTBI further, a machine learning
method (SVM) and a deep learning method (2DCNN) are uti-
lized to identify rapeseed. The number of positive and negative
training samples is the same, with a total of 20 000. In addition,
the thresholdα is 0.11 to get more samples when not performing
CTBI. Fig. 7 and Table III present the rapeseed mapping and
quantitative results with CTBI or not. According to Fig. 7, a
large area is mistakenly divided into rapeseed without CTBI.
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Fig. 5. Color transfer between the images of the flowering period in 2017–2019 and the image of the peak flowering period in 2020. The displayed image is not
stretched.

Fig. 6. NDYI of the flowering period images and histograms for 2017–2019 years.

Fig. 7. Rapeseed mapping results in 2017 with CTBI (a color transfer method) or not.
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TABLE III
MAPPING ACCURACIES OF SVM AND 2DCNN FOR 2017

Therefore, the value of Recall is higher. In other indicators, the
result with CTBI is much higher. For example, OA increased
from 0.4960 to 0.9657 and F1-score increased from 0.4212 to
0.8995 without CTBI in SVM results. In terms of the visual
performance or evaluation indexes, the results with CTBI are
significantly superior. Through this experiment, it can be con-
cluded that color transfer can improve the mapping performance
when flowers are not in full bloom.

B. Mapping Accuracy of Different Classifiers

Multitemporal MSIs (16 bands total per year) are used to
train and test six different mapping methods mentioned before
for the study area. The mapping accuracies that are calculated
as the average values of the ten results with random samples
(except NDYIthre) are presented in Table IV. The corresponding
rapeseed mapping results are shown in Fig. 8. In addition, four
different areas in the red boxes in the Fig. 8 are selected to display
the local results, as presented in Fig. 9.

From Table IV, it can be observed that NDYI with threshold
has obtained the highest Precision value for the four years, which
means the detected rapeseed pixels are more reliable. However,
NDYIthre cannot detect all rapeseed pixels with a hard threshold
due to phenological differences. The performance of machine
learning methods SVM is better than RF. The SVM also can
obtain higher evaluation indexes than the deep learning method
1DCNN, especially in 2018 and 2019. For CNN classifiers,
3DCNN gets the highest values of Recall, Kappa, OA, and
F1-score in 2017 and 2020. 2DCNN presents the highest values
of Kappa, OA, and F1-score in 2018 and 2019. The patch-based
2DCNN and 3DCNN achieve a better mapping accuracy than
pixel-based 1DCNN and other methods, since more spatial
information is considered.

According to Fig. 8, influenced by the cloud, some regions
with high radiation values are misclassified in 2019. Moreover,
the wrong classification areas on the rapeseed map are mainly
located in the wetlands near the Dongting Lake. One reason
is the characteristics of wetland plants are similar to that of
rapeseed. Wetland plants are green in spring and sometimes
submerged by rising water when rapeseed is harvested. Besides,
another difference between the results of different methods is
the integrity of the farmland with rapeseed. In order to see the
difference more clearly, local areas of the exhibition include
the wetland of Dongting Lake and the rapeseed concentrated
planting area.

From the first row of Fig. 9, it can be seen that the green
plants are prone to misclassification. Objects with high radiation
values are also easy to confuse, such as the road and land in

the second row of Fig. 9. In the rapeseed planting concen-
trated area (the third and fourth rows of Fig. 9), the results of
2DCNN have a good spatial agreement with the images from
a visual interpretation. Moreover, the interior of the fields is
more accurate. According to the aforementioned experiments,
2DCNN achieved better results since it can obtain relatively
higher accuracy and visual interpretation in terms of local and
global performance. Moreover, the gap filling of Landsat 7 has
effects on the result. The pixel value of the filled area is not
necessarily true, which also results in some misclassification.
When higher quality data are available, this phenomenon will
not exist.

C. Performance Analysis of Temporal Information

In order to compare the effects of time-series information
on the rapeseed mapping task, images in different periods are
combined and used as the input of two classifiers (SVM and
2DCNN). Concretely, four different time feature configurations
are designed as Table V shown. Fig. 10 gives the rapeseed
maps of all time sequences. Besides, 20 000 training samples
are randomly selected to evaluate the effects of different time
sequences in this experiment.

According to Table V and Fig. 10, the following conclusions
can be drawn. First, the image captured during the flowering
stage is crucial for identifying rapeseed. Based on the result of
Sequence 1 and Sequence 2 with the SVM classifier, using one
image as input can even obtain a better result than using all avail-
able MSIs without the flowering period, which illustrates the im-
portance of flowering data for identifying rapeseed. For 2DCNN,
Sequence 2 is able to obtain a relatively higher accuracy than
Sequence 1. However, when adding data of flowering period and
reducing data of repeated phenological periods, OA of rapeseed
can be improved from 0.9622 (Sequence 2) to 0.9684 (Sequence
3). Furthermore, as the blue boxes presented in Fig. 10, the result
map of Sequence 2 exists obvious misclassification regions.
Some vegetation is mistaken for rapeseed. According to the
map of Sequences 3 and 4, the results are more accurate when
utilizing the information from the flowering period.

Second, four MSIs of different periods are enough for rape-
seed mapping. Comparing the results of using four MSIs (Se-
quence 3) as input with all available MSIs (Sequence 4) as input,
the latter is slightly better. In particular, 2DCNN with four MSIs
can achieve the best Precision. OA and F1-score of Sequence 4
are only 0.0001 higher than Sequence 3 with the SVM classifier.
OA of Sequence 4 is 0.006 higher than Sequence 3 with the
2DCNN classifier. The value of other evaluation indicators and
visual performance is also similar, which represents that adding
more temporal information about the same phenological periods
does not improve the accuracy significantly, but increases the
computation cost.

D. Computing Cost

In this article, SVM and RF are realized on the 3.7-GHz
CPU and 32-GB memory computer with MATLAB 2018b. CNN
models are executed in a PyTorch with CUDA environment,
using a GTX 1080 Ti GPU. Table VI displays the training and
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Fig. 8. Mapping results of 2017–2020 in Dongting Lake area. The red box indicates the local area to be displayed.
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TABLE IV
MAPPING ACCURACIES OF THE STUDIED CLASSIFIERS FOR FOUR YEARS

Fig. 9. Mapping results of the local area, corresponding to the red boxes in Fig. 8.

Fig. 10. Mapping results of 2017 with different temporal information. The blue box indicates the misclassification area.
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TABLE V
MAPPING ACCURACIES FOR 2017 WITH DIFFERENT TEMPORAL INFORMATION

TABLE VI
COMPUTING TIME OF DIFFERENT APPROACHES FOR 2017

testing time of the aforementioned studied classifiers for 2017,
where the data preprocessing time is not considered. As Table VI
shown, NDYIthre takes the shortest processing time since it does
not need learning. Besides, 3DCNN with more parameters needs
the longest time for training and testing. Relatively speaking, the
time of all methods is acceptable except 3DCNN.

V. CONCLUSION

This work proposes a framework for rapeseed mapping, which
utilize the phenological characteristic of rapeseed to realize
unsupervised mapping. Specifically, NDYI and NDVI calculated
by the flowering period multispectral image are adopted to get
an initial rapeseed distribution map. If the flowers are not fully
bloomed, a color transformer method CTBI is performed at
first. Besides, several universally classifiers are utilized to enrich
rapeseed map and compared in this article. More importantly, we
analyze the rapeseed mapping task from three perspectives, in-
cluding the effectiveness of the rapeseed rough detection method
with the color transfer, the performance of different classifiers,
and the role of temporal information. Experiments conducted
on the multitemporal and multisensor MSIs in the Dongting
Lake area demonstrate that the framework can identify rapeseed
without human labeled samples. Besides, several conclusions
can be summarized.

1) Color transformer is able to improve the final mapping
accuracy by getting more samples when the rapeseed
flowers are not fully bloomed.

2) Considering the mapping accuracy, visual performance,
and processing time, 2DCNN is the most appropriate
method for rapeseed mapping.

3) Repeated phenological information cannot improve the
performance of rapeseed mapping significantly.

These findings are reliable since they are obtained based on
four years of experiments in the study region covering a total
area of more than 3000 km2. In other regions similar to the
study region, these findings are also reliable in theory.

Moreover, the rapeseed mapping performance can be further
improved by optimizing the initial training samples or devel-
oping a more effective classifier which can extract discriminant
features. This method also can be utilized in more regions with
enough available remote sensing data.
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