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Pol-NAS: A Neural Architecture Search Method With
Feature Selection for POISAR Image Classification

Guangyuan Liu"’, Yangyang Li

Abstract—With the development of deep learning, more and
more neural networks have been used in polarimetric synthetic
aperture radar (PolSAR) image classification and obtain good
results. As we all know, the performances of neural networks
highly depend on well-designed neural architectures. Besides, the
features input to neural networks also have a huge impact on the
classification results. Both architecture design and feature selection
are time consuming and require human expertise. Therefore, in
this article, we propose a neural architecture search method with
feature selection (Pol-NAS) for PolSAR image classification. It can
automatically search and obtain a good architecture, including
intracell and intercell structure and the number of layers in the
search stage. Meanwhile, all the features commonly used in POISAR
data interpretation, rather than part of them, are input to the model
in order to avoid selecting the size of an optimal feature subset,
which is a hyperparameter and usually different for different mod-
els. Then, we propose the feature attention block (FA block) and
redesign the stem layers by combining the FA block and the original
stem layers. Thus, Pol-NAS can adaptively find the importance of
each feature in the training stage by using the redesigned stem
layers. With the help of Pol-NAS, we only need to prepare the
data and wait for the classification results. Experimental results on
three real PoISAR datasets show that the performance of Pol-NAS
is better than that of state-of-the-art PolSAR image classification
models.

Index Terms—Feature selection, image classification, neural
architecture search (NAS), polarimetric synthetic aperture radar
(PoISAR).

1. INTRODUCTION

OLARIMETRIC synthetic aperture radar (PolSAR) ob-
I tains information by actively transmitting and receiving
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electromagnetic waves. Therefore, compared with optical radar,
it can work all day and in all weather conditions [1]. Owing
to its advantages, more and more attention has been paid to
PolSAR and the interpretation of PolSAR images. PolSAR
image classification, as the basic task of PoISAR interpretation,
has become a hot research field in recent years [2], [3]. POISAR
image classification models in the early days can be divided
into three categories: 1) methods based on physical scattering
mechanisms, such as target scattering vector model (TSVM)
[4] and multiple-component scattering model (MCSM) [5];
2) methods based on statistical distribution, such as complex
Wishart distribution [6] and Wishart classification method; and
3) methods based on machine learning, such as k-nearest neigh-
bor [7] and support vector machine (SVM) [8]. These methods
play an important role in the early days.

With the development of deep learning, more and more deep
learning models have been employed to do PolSAR image
classification and other remote sensing tasks due to their good
performances. For example, stacked autoencoders (SAEs) [9],
convolutional neural networks (CNNs) [10], [11], [12], [13],
[14], [15], graph convolutional networks [16], [17], fully con-
volutional networks (FCNs) [18], [19], [20], and mixed archi-
tecture [21] have been proposed and greatly improve the clas-
sification accuracy. However, these models have two problems.
First, their performances highly depend on proper architecture
designs, which are not theoretically guaranteed and usually
designed by human experts. This process is time consuming
and disgusting. Second, their performances are also affected by
the input features, and optimal features of different models are
also different. That is to say, if we use a deep learning model to
classify a PoOISAR image, we have to solve the two problems, as
shown in Fig. 1.

In the beginning, given a new dataset, we need to determine
the network architecture. We have three kinds of methods to
solve this problem, but they all have many disadvantages because
architecture designs are not theoretically guaranteed and usually
determined by trial and error. First, solution 1 requires human
expertise, and this process is time consuming. For example,
assume that we need to design a network with five layers (not
including softmax layer), and each layer has four candidate
operations such as 3 x 3, 5 x 5 convolution, and so on. There
willbe 45 = 1024 candidate architectures. Ifit takes 1 h to train a
model and test its performance, we will need 1024 h to determine
the architecture without human expertise. Besides, we still need
to determine the input features after determining the architecture.
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Fig. 1. Comparison between using and not using Pol-NAS for PoISAR image classification. NAS: Neural architecture search. OA: Overall accuracy. Kappa:
Kappa coefficient.
TABLE I
ALL THE FEATURES IN POLSAR DATA
Feature Feature details Di i
N e Target Scattering Vector Model (alpha-s, phi-s, phi, tau-m) 4
Coherent decomposition Pauli (Odd, 0° Dbl, 45° Dbl) 3
Huynen (T11, T22, T33) 3
H/A/o (entropy, anisotropy, alpha, lambdal, lambda2, lambda3) 6
Holm Holml: (T11, T22, T33), Holm2: (T11, T22, T33) 6
Freeman Freeman2: (Vol, Ground), Freeman3: (Odd, Dbl, Vol) 5
L Cloude (T11, T22, T33) 3
Non-Coherent decomposition Barnes Barmesl: (T11, T22, T33), Bames2: (T11, T22, T33) 6
AnYang AnYang3: (Odd, Dbl, Vol), AnYang4: (Odd, Dbl, Vol, Hix) 7
Yamaguchi Yamaguchi3: (Odd, Dbl, Vol), Yamaguchi4: (Odd, Dbl, Vol, Hlx) 7
VanZyl (Odd, Dbl, Vol) 3
Multiple-Component Scattering Model (Odd, Dbl, Vol, Hlx, Dbl-Hlx, Wire) 6
Span, Oy,01 _Re[T12], Oy IM[T12] 3
Others 101g(Span), T22/Span, T33/Span, [T12|/v/TT1¥T22, |T13|/v/TT1#T33, |T23|/v/T33%T22 6
T matrix: (T11, T22, T33, real(T12), img(T12), real(T13), img(T13), real(T23), img(T23)) 9
Sum 77

Second, if we choose solution 2, we do not know which model
has a good performance on the new dataset. Also, we still
need to determine the input features. Third, although neural
architecture search (NAS) [22], which aims to automatically
search and design architectures, has been proposed recently
and has good performances on many tasks, only a few NAS
methods [23], [24] in PolSAR image classification are proposed.
Furthermore, the improvements brought by these NAS meth-
ods in PoISAR image classification are limited. The accuracy
of them is lower than that of some handcrafted models like
in [19] and [20]. Also, they cannot automatically select the input
features.

Similarly, all these methods (i.e., solutions 4-6) cannot solve
problem 2 perfectly because they all have disadvantages. First,
we usually do not use solution 4 because designing new features
with good performances requires human expertise and is really
difficult. Considering that many features have already been
designed, we can select some features directly from Table I. But
manually selecting features requires human expertise and is only
suitable for selecting a few features because we do not know the
complex coupling relationships among a large number of fea-
tures. Besides, this approach is time consuming. For example, if
we select five out of 77 features, there will be 19 million possibil-

ities. It will take a long time to evaluate their performances. That
is why feature selection by algorithms (i.e., solution 6) becomes
popular. According to whether the label information is used or
not, feature selection algorithms can be roughly divided into two
categories: unsupervised and supervised methods. Unsupervised
methods [25], [26] select a subset of features by exploiting the
intrinsic information of them and do not need to train the network
to test the performances of selected features many times. That
is to say, unsupervised methods do not consider the relationship
between input features and the network, and cannot guarantee
to find the optimal features for a specific model. Oppositely,
supervised methods [27], [28], [29] select the optimal subset
of features by training the network to test the performances of
different features many times. Obviously, unsupervised methods
usually have lower algorithm complexity than supervised ones,
but the performances of the former ones are usually worse than
those of the latter ones. Besides, whichever method we use to
do feature selection, we still need to determine the number of
input features. Because the optimal feature subset is only true
for a specific classification model in most cases, the optimal
subsets of different models vary in size. For example, in [29],
experimental results show that the optimal subsets for 2-D CNN
and SVM contain 7 and 22 features, respectively.
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Therefore, in order to simplify the above process and make
NAS and feature selection for PolSAR image classification
become easier, we propose a NAS method with feature selec-
tion called Pol-NAS, which can solve the two problems simul-
taneously. First, a NAS method for determining the optimal
architecture in the search stage is proposed. Second, we use
all the features rather than part of them as the input of the
searched architecture, in order to avoid setting the number
of input features. Third, considering that feature selection is
essentially looking for the importance of each feature, which is
similar to the attention mechanism [30], we propose the feature
attention block (FA block). Then, we redesign the stem layers
(the first three layers) of the searched architecture via combining
the FA block and the original stem layers. Thus, the redesigned
stem layers can find the importance of each input feature in the
training stage. Finally, by means of the proposed NAS method
and redesigned stem layers, we propose the NAS method with
feature selection called Pol-NAS.

In summary, the greatest strength of Pol-NAS is that it can
automatically find a good network structure and determine the
importance of each input feature with acceptable time and mem-
ory cost. Given a PoISAR image, we only need to prepare the
data and wait for the result. The contributions of this article are
as follows.

1) A NAS method for PolISAR image classification is pro-
posed. We redesign the search space and adopt the search-
ing method based on the differentiable method for POISAR
image classification.

2) Considering that the number of network layers also affects
the performance due to the existence of an overfitting
phenomenon, we propose a greedy strategy to determine
it automatically. We use several auxiliary cells in interme-
diate layers to predict the classification results and assign
them “learnable weights,” which can be updated in the
architecture searching process. In the end, we determine
the number of layers via selecting the layer with the
strongest “learnable weight.”

3) We use all the features as the input to avoid setting the
number of input features. Then, we propose the FA block
and redesign the stem layers of the searched architecture
by combining the FA block and the original stem layers.
Therefore, Pol-NAS can find the importance of each input
feature in the training stage via the redesigned stem lay-
ers. The optimal architecture and the importance of each
feature can be determined in one run.

4) Experiments on three real POISAR images demonstrate
that our method obtains better results than state-of-the-art
methods for POISAR image classification.

The rest of this article is organized as follows. The background
knowledge is described in Section II. Section III introduces the
proposed method Pol-NAS in detail. Section IV presents the
experimental results. Finally, Section V concludes this article.

II. BACKGROUND

Pol-NAS is a differentiable NAS method with feature selection
for POISAR image classification. Therefore, we briefly introduce
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the background knowledge about PolSAR data and commonly
used features and differentiable NAS.

A. PolSAR Data and Commonly Used Features

A single pixel in the PoISAR image can be described by the
scattering matrix, which can be formulated as

g Sur Suv
Sve Svv

ey

where S, represents the backscattering component of trans-
mitting in p polarization and receiving in ¢ polarization. p,q €
{horizontal,vertical}.

For the reciprocal backscattering case Syy = Svy, a complex
vector representing the polarimetric scattering information can
be obtained and represented as

kp = (Suw + Svv Sum —Svv 2Sav)’ )

1
V2
where superscript T denotes the matrix transpose. A coherent
matrix T can be formulated as

1 la|?> ab* ac*
T=kp -kp==| ab [b]* b 3)
2| a¢ be |e|?
wherea = Syyg + Svv,b=Syy — Syv,c = 2Syy, and su-
perscript * is a conjugate operator.

The vector consisting of the elements of coherent matrix T
can be regarded as a kind of input features and adopted by a lot of
methods. Besides, in order to better investigate the information
contained in the scattering matrix S and the coherent matrix T, a
great number of features have been designed and can be mainly
divided into coherent decomposition features, noncoherent de-
composition features, and other features. Coherent decomposi-
tion features are obtained by decomposing the scattering matrix
S, which requires the scattering characteristics of the target to
be steady and determinate, while noncoherent decomposition
features are obtained by decomposing the coherent matrix T,
covariance matrix C, Stokes matrix K, or Muller matrix M.
Taking Pauli decomposition as an example, it decomposes the
scattering matrix S into odd, 0° double, 45° double, and asym-
metric reflection components, which are represented as follows:

S _ Sun Suv
Sve Svv

e [ "]
walerEls e

al

where
_ Shu + Svv b — Shu — Svv
v2 oo V2
_ Suv + Svu de jSHV — Svh )

v2 o V2
j=+—-1

For the reciprocal backscattering case Syy = Svyy, it decom-
poses the scattering matrix S into three components (d = 0).
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Also, there are other handcrafted features carefully designed
by human experts. We list all these commonly used features in
Table I.

B. Differentiable Neural Architecture Search

Owing to the fact that there is no theoretical guarantee for
designing the network structure and the manual designing pro-
cess is time consuming and disgusting, NAS is developed to
automatically design the network architectures. In the begin-
ning, reinforcement learning [22], [31] and evolutionary algo-
rithms [32], [33], [34] are employed to search good network
architectures, but they require massive computation (i.e., thou-
sands of GPU days) during the search process. Then, several
approaches for reducing the cost while maintaining the quality
of searched architectures have been developed. For example,
NASNet [22] reduces the search cost by shrinking the size
of search space. Specifically, it only searches two particular
structures, called “normal cell” and “reduction cell,” as shown
in Fig. 2, of the network rather than the entire network. Normal
cell and reduction cell can be regarded as the basic module,
and we can combine them in a predefined way to build the
entire network. Different normal cells have the same structure
but different weights, so do reduction cells. Besides, ENAS [35]
uses the weight sharing strategy to avoid training each candidate
architecture from scratch to reduce the search cost.

However, they still need a large number of architecture eval-
uations for the search space is discrete. Luckily, Liu et al. [36]
proposed to relax the discrete searching space to a continuous
one, which is called continuous relaxation, as shown in Fig. 3.
Then, we only need to train one supernet regardless of the
number of candidate architectures, each of which is associated
with a scalar called the architecture parameter. Besides, they
proposed to model NAS as a bilevel optimization, which makes
the supernet weights and architecture parameters can be alter-
natively optimized by the gradient descent algorithm. All these
solutions proposed in [36] reduce the search cost from hundreds
or thousands of GPU days to only a few GPU days. After
the optimization process, we can decode and get the searched
architecture by keeping the “arrow” with a maximal architecture
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parameter value. Finally, we train the searched architecture until
convergence and obtain the model we want.

Owing to the good performance of differentiable NAS, nu-
merous methods are developed based on it [36] and applied
to many tasks, such as image classification [37], [38], semantic
segmentation [39], [40], etc. The proposed Pol-NAS also belongs
to the differentiable NAS method.

III. PROPOSED METHOD

In this section, our proposed Pol-NAS is presented in detail.

A. Search Space of Pol-NAS

Inspired by the state-of-the-art architectures [19], [20] in
PolSAR image classification and some NAS methods [39],
we propose a four-level hierarchical architecture search space,
including intracell-, intercell-, layer-num-, and feature-level
search, as shown in Fig. 4. Our goal is to find the intracell
structure, intercell structure, the number of layers, and the im-
portance of each input feature. Following the common practices,
three “stem” layers are added in the beginning of the network.
Their architectures are designed by human, as shown in Fig. 5.
Intracell- and intercell-level search spaces are the same as those
in [39]. We should note that we search the intracell structure, the
intercell structure, and the number of layers in the search stage
of Pol-NAS and search the importance of each input feature in
the training stage.

1) Intracell-Level Search Space: We define cell to be a mod-
ule, which is consistent with most NAS methods. A cell in layer [
is a directed acyclic graph, which contains B blocks. The output
tensor of cell in layer [ is the concatenation of the blocks’ output
tensors Hi, H}, ..., HY. Bach block has two branches, mapping
two input tensors I; and I5 to one output tensor H!. Each branch
chooses one operator O from the candidate operator set O and
transforms its input tensor. The input tensor of each branch can
be selected from the input tensor set Z! containing the outputs of
the cell in previous layer H'~!, the cell in previous layer H'~2
and all the previous blocks in the same cell. Candidate operator
set O contains eight operators, which are widely used in CNNs
and FCNs:

1) 3 x 3 atrous separable conv with rate 2;

2) 5 x 5 atrous separable conv with rate 2;

3) 3 x 3 depthwise-separable conv;
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4) 5 x 5 depthwise-separable conv;

5) 3 x 3 max pooling;

6) 3 x 3 average pooling;

7) skip connection;

8) no connection (zero).

In order to search the intracell structure via the differentiable
method, we also use the continuous relaxation in [36]. The output
of each block H! is transformed from all the input tensors in Z},
ie.,

(6)

> 0. (H

1 1
HleT!

Meanwhile, each O,_,; is approximated by its continuous relax-
ation O,_,; denoted as

Oji (HY) = )

Z aJ%lOk

OkeO

)

0 090

where
0|
dab=1 Vij (8a)
k=1
J—n >0 Vijk. (8b)

We should note that the definition of o i 1s the same as
that in [36] and [39]. They are scalars normalized by softmax
and associated with each operator O% € O. Then, the intercell
update can be formulated as

H'=Cell (H'"',H'?:a). 9)

2) Intercell-Level Search Space: Many NAS methods con-
struct the entire network with the cell using a predefined pattern,
which is designed by human experts. Considering the fact that
the success of AutoDeepLab [39] and DCNAS [40], which both
search how to stack the cell, and the intercell level variations of
state-of-the-art models [19], [20] in PolSAR image classifica-
tion, we can conclude that the stacking pattern of searched cell is
also crucial to the performance of the entire network. Therefore,
this pattern is searched in Pol-NAS.

The intercell-level search space is the same as that in [39],
which designed the intercell-level continuous relaxation. All the
tensors within a cell have the same spatial size. In other words,
the height and width of output tensors of all the blocks within a
cell are the same. The spatial sizes of output tensors of different
cells in the same downsample rate are the same; otherwise, they
are different. A scalar is also associated with each gray arrow in
Fig. 4. Then, the intercell level update can be represented as

= ﬁlﬁﬁs Cell (2H'",*H"%a)
+ 8L, Cell (CH"Y *H % q)

+ 8L L Cell C5H"! SH'"2a) (10)

where s denotes the downsample rate and s = 2,4, 8, 16. [ repre-
sents the layernumberand! = 1,2, ..., L. Because scalars (3 are
normalized by softmax, so they meet the following conditions:
Vs, 1

5%5 +IBS~>5 +65HZS: (11&)

iﬁ— > 0 Bs%s > 0 65%25 = 0 vsal (11b)
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3) Layer-num-Level Search Space: The overfitting phe-
nomenon is a common problem, which means that the model
performs well on training data but poorly on test data. It often
occurs when the model is “big” (having a large number of
parameters) with limited training data, which is very common in
PolSAR image classification. Because the imaging mechanism
of PolSAR data is different from that of optical images, so
labeling PolSAR data accurately is difficult and usually needs
field investigation. Actually, a model performing well on test
data is the one we want. Therefore, some mechanisms should
be employed to handle this problem. Usually, a model with a
smaller Vapnik—Chervonenkis dimension [41], which is positive
to the number of parameters, has a better generalization ability.
The layer-num of a model is a critical factor in determining
the number of parameters, and it is often set by trial and error
or by human experience. Therefore, we choose to search the
layer-num during the architecture search and propose a greedy
strategy to decide how many layers should be used.

Inspired by Liu et al. [36] and Szegedy et al. [42], they
add auxiliary classifiers in intermediate layers to increase the
gradient signal (i.e., provide the gradient directly from the last
layer rather than the one propagated back layer by layer, which
can avoid gradient vanish to some extent that may affect the
update of parameters in shallow layers) and provide additional
regularization during training. And their losses are added to the
total loss of the network with a discount weight (0.3 in [42] and
0.4 in [36]), which is formulated as follows:

Liotal = Leinal (y, P""edﬁna]) + A Laux1 (y, P'redauxl)

+ )"QLBUXQ (ya Predaux?) (12)

where Ly is the loss of the whole network. Lgna, Laux1, and
Lux2 are the cross-entropy loss of the final, the first auxiliary, and
the second auxiliary classifier, respectively. y is the ground truth.
Predgna, Predaxi, and Pred,ys are the result of last layer,
the first auxiliary classifier, and the second auxiliary classifier,
respectively. A; and Ag are discount weights. With the help of
auxiliary classifiers, a natural idea is to set the layer-num greedily
with the best result given by the corresponding one. However,
A1 and A are hyperparameters and have a huge impact on the
performance of the trained model. If they are not properly set,
the trained model will not perform well. In order to solve this
problem, we choose to use auxiliary classifiers in another way.
We define a scalar 1) associated with each classification result of
them, which can be formulated as follows:

Pred = n Predgn + naPredayxi + nsPredyxe (13)

where Pred is the classification result of the network. Then,
only one cross-entropy loss is enough for training the network,
which can be written as

Liotal = — Z ylog(Pred).

11, N2, and 3 can be regarded as the architecture parameters and
updated during the architecture search. 1) values are normalized
by softmax. Therefore, they also meet the following conditions:

(14)

m+mn+n=1 (15a)
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N, 12,13 > 0. (le)

In Pol-NAS, we set the maximal layer-num L = 10. 1y, 12,
and ng3 are associated with the classification result of layer 10,
layer 6, and layer 8, respectively. After the search process, we set
the layer-num with the biggest n value and drop the subsequent
layers. The maximal layer-num is set to 10 for two reasons.
One the one hand, we set it according to some related work
in NAS like AutoDeepLab [39] and DCNAS [40]. They set the
layer-num in the range from 8 to 14, and these models are trained
on datasets with plenty of labeled data. But we only have limited
labeled training data in PolISAR image classification, as shown
in Table III. If we set the layer-num larger, it may result in
overfitting. This is also the reason why we set auxiliary classifiers
to search the layer-num. On the other hand, it is set to 10 due to
the GPU memory constraint. Therefore, the maximal layer-num
is very unlikely to be larger than 10 for Pol-NAS. As for the
positions of auxiliary classifiers, they are set by experience. In
fact, we can also set them in layer 4 and layer 7. However, we
believe a model with only four layers is too shallow.

4) Feature-Level Search Space: Input feature is another im-
portant factor that can influence the performance of the classi-
fication model. Most feature selection algorithms usually select
an optimal feature subset, but the size of it for different clas-
sification models is different. On the one hand, the size is a
hyperparameter that needs to be carefully configured. On the
other hand, only when the classification model is determined
can feature selection algorithms find the optimal subset for a
specific classification model. Besides, the above process is time
consuming and not friendly enough to the users.

In order to simplify the above process, we first choose to use
all the features as the input of the classification model in both the
search stage and the training stage, so we do not need to decide
how many features should be selected. In the search stage, the
goal is to find the optimal architecture including intracell and
intercell architecture and layer-num. Then, in the training stage,
we redesign the stem layers of our searched architecture with
the help of the FA block proposed by us. Thus, the redesigned
stem layers can automatically find and adaptively update the
importance of each input feature during training. The redesigned
stem layers and the FA block are shown in Fig. 5(c) and (d),
respectively.

The FA block contains three branches. The upper two
branches learn the importance of each channel (each input fea-
ture) and reweight the input features. Then, in order to improve
the representation ability of input features, we concatenate the
original and the reweighted features in channel dimension and
utilize the 1 x 1 convolution to adjust the dimension of output
features denoted as C”, which is the same as the input dimension
of the following layer. In a word, the FA block can be seen as
an improved version of the SE block [30]. First, we remove the
reduction ratio of the SE block to avoid tuning the hyperparame-
ter. The dimension of output features of the first fully connected
layer (FC) and ReLU are set to C', which is marked in blue.
Second, we combine the original and the reweighted features to
improve the representation ability of input features and give the
model more autonomy.
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B. Optimization

1) Architecture Search Stage: After introducing the continu-
ous relaxation, these scalars associated with the four-level hier-
archical architecture search space can be optimized by gradient
descent. The bilevel optimization problem can be formulated as

(inﬂlriy ﬁtrainB (w* (aa Ba 77)7 Q, ﬂv 77) (163)
S.t. U}* (av ﬂv 77) = argminw ['trainA (wa «, Ba n) (16b)

where L is the cross-entropy loss. We evenly split the training
data into trainA and trainB as previous methods [36], [39]
in order to avoid overfitting. Therefore, Liqina and Lirqing
are the loss calculated on trainA and trainB, respectively. w
is the learnable weight of the network. «, /3, and 7 are scalars
associated with intracell-level, intercell-level, and layer-num-
level search spaces. Then, the optimization alternates between
(17a) and (17b) until the stopping criterion

VwﬁtrainA (’LU, «, ﬂ7 77)
Va,ﬁ,nlctrainB (w7 , Bv 77)

(17a)
(17b)

2) Feature Importance Search in the Training Stage: After
the search stage, we decode and train the searched architecture.
Feature importance is searched and updated in the training
process of decoded architecture with the help of our redesigned
stem layers. The importance is saved in the FA block of each stem
layer, which becomes a part of the trained model. Therefore, we
do not need to do anything after the training process. The trained
model is the one we want eventually.

C. Decoding the Searched Architecture

1) Intracell Architecture: The intracell structure consists of
two parts: the two input tensors of each block and the operator
of each branch. Following [36] and [39], the top-two strongest
predecessors for each block are selected as the input tensors
without considering “zero” connection, and the operator on each
branch is decoded by retaining the strongest one.

2) Intercell Architecture: The intercell architecture indicates
how to stack the searched cell, and (3 values contain all the
information of our searched results. Actually, 3 values can
be regarded as the “transition probability” between different
“downsample rates” (spatial resolutions) across different layers.
Our goal aims to find a path with maximal “transition prob-
ability” across the whole network. Therefore, following [39],
the intercell architecture can be decoded by the Viterbi algo-
rithm [43].

3) Layer-num: Considering the fact that the predicted result
of the whole network in the search stage is made of the result
of intermediate and last layers, we select the layer-num with
biggest contribution (with maximal 7 value).

4) Feature Importance: Feature importance is updated in the
training process of decoded architecture and saved in the FA
block of each stem layer, which becomes a part of the trained
model. Therefore, we do not need to decode it.
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Input the PoISAR data
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Divide all the labeled data into trainA/trainB/test set
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Search the architecture by
alternatively using (17a), (17b)
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(Feature importance is searched and updated)

Output the trained model

!

Classify the test set

!

Output the classification result

Fig. 6. Overall framework of Pol-NAS.
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Fig. 7. (a) PauliRGB image of Oberpfaffenhofen. (b) Ground truth of Oberp-
faffenhofen.

D. Overall Framework of Pol-NAS

The details of our proposed Pol-NAS have been introduced,
and the overall framework is shown in Fig. 6.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset Description

In order to test the effectiveness of Pol-NAS, three real PoOISAR
datasets are used, and detailed information about them is listed
in Table II.

Three PolSAR datasets are produced in Oberpfaffenhofen,
Flevoland, and San Francisco, respectively. The PauliRGB im-
ages and the ground truths of them are shown in Figs. 7-9.
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TABLE II
DETAILED INFORMATION ABOUT THREE POLSAR DATASETS

Oberpfaffenhofen Flevoland San Francisco
Radar E-SAR Radarsat-2 Radarsat-2
Band L C C
Year 1991 2008 2008
Resolution 3x2.2m 8x8m 10x5m
Polarimetric Information Full polarimetric, multilook Full polarimetric, multilook Full polarimetric, multilook
Size 1300% 1200 1000x 1300 1800 1380
Classes 3 4 5
TABLE III

- Forest - Farmland - Urban area -Ocenn
(b)

Fig. 8. (a) PauliRGB image of Flevoland. (b) Ground truth of Flevoland.

. Ocean . Vegetation . Developed

. Low density

urban

(a) (b)

. High density
urban

Fig. 9. (a) PauliRGB image of San Francisco. (b) Ground truth of San
Francisco.

We should note that these datasets are widely used in POISAR im-
age classification, and these classes are defined by experts [15],
[20], [29] not us. As for the differences between the woodland,
forest, and vegetation that are very similar, we want to explain
them here. The woodland and forest are areas covered with trees,
but the forest is thickly covered. The vegetation is an area covered
with trees and other plants.

B. Experimental Settings and Evaluation Criteria

1) Implementation Details of Pol-NAS:

1) Data preprocess: Patch size is 128 x 128. The refined
Lee filter is adopted to reduce the speckle noise and z-score
normalization is performed only when all the features are input
to Pol-NAS. The divisions of trainA, trainB, and test set of
three PolSAR datasets in Pol-NAS are listed in Table III, which
is set according to related work in POISAR image classification
like [14], [15], etc. And samples are randomly selected. The test
set in the search stage is the same as that in the training stage.
Pol-NAS only uses trainA and trainB set in the search stage

DIVISIONS OF THREE POLSAR DATASETS IN POL-NAS

Search Stage Training Stage
trainA trainB test set | trainA trainB  test set
Oberpfaffenhofen | 0.5% 0.5% 99% 09% 0.1%  99%
Flevoland 0.5% 05% 99% 09%  0.1%  99%
San Francisco 0.1% 01% 99.8% | 0.18% 0.02% 99.8%

and the training stage. In other words, the test set is only used
for testing the classification performances of Pol-NAS and other
comparison models in Table V.

2) Inthe search stage: The maximal layer-num L is set to
10, and a cell contains B = 3 blocks. Each cell with downsample
rate s has B x F' x 5 output filters. Model capacity can be
controlled by F', which is set to 6 in the search stage of Pol-NAS.
We use a convolution with stride 2 to reduce the spatial size and
double the number of filters for § — s connections. Bilinear up-
sampling and 1 x 1 convolution are used to increase the spatial
size and halve the number of filters for s — 5 connections. The
Atrous Spatial Pyramid Pooling (ASPP) module used in Pol-NAS
is the same as that in [39], which contains only three branches
including one 1 x 1 convolution, one 3 x 3 convolution with
atrous rate 48/s and one image pooling [44]. Each branch in
ASPPhas B x F' x s/2 output filters. T'rainA and trainB sets
have the same size.

The architecture search optimization is performed for 80
epochs (the stopping criterion). Following [39], within the first
20 epochs, we only train the weights of the model because
they found that the architecture may fall into the bad local
optima when the weights are not well trained. In the remaining
60 epochs, weights are updated per epoch. But architecture
parameters, «, 3, and 7 are optimized only one epoch every
ten epochs from epoch 20 to 79. In epochs that both weights and
architecture parameters are optimized in, weights are optimized
for one epoch first; then, architecture parameters are optimized
for one epoch, i.e., not one iteration for weights and one for
architecture parameters. Stochastic gradient descent (SGD) with
cosine learning rate from 0.025 to 0.001, momentum 0.9, and
weight decay 0.0003 is utilized to optimize weights. The Adam
optimizer [45] with learning rate 0.001, p = (0.9, 0.99), and
weight decay 0.001 is employed to optimize architecture pa-
rameters. Batch size is set to 16 because of the GPU memory
constraint. Horizontal and vertical flips are used to augment
trainA and trainB.

3) In the training stage: F is set to 8, which is different
from that in the search stage. The ratio of trainA and trainB
size is changed from 1:1 to 9:1. Because we have obtained
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TABLE IV
DETAILED INFORMATION ABOUT THE BASELINE AND THREE EDITIONS OF POL-NAS

Search Stage Training Stage
Input Features Laver-num Search Input Features Stem Layers
T matrix [ All Features y T matrix [ Al Features Original | Redesigned
Baseline v v v
Pol-NAS-1 v v v v
Pol-NAS-2 v v v v
Pol-NAS-3 v v v v

the searched architecture, we need to train the model until
convergence. Therefore, trainA is used to update the weights
and trainB is to select the best model in the training stage.
Epoch is 100 and batch size is 16. The SGD optimizer with
learning rate 0.001, momentum 0.9, and weight decay 0.0001
is adopted. Horizontal and vertical flips are only employed to
augment trainA. Following [39], we adopt the encoder—decoder
structure. The searched architecture is utilized as the encoder and
the decoder is the same as the one in [39] and [46]. The low-level
feature input to the decoder is from layer 3.

2) Evaluation Criterion: The overall accuracy (OA) and the
Kappa coefficient [47] are used to evaluate the performances
of different methods. The OA and the Kappa coefficient can be
represented as follows:

T

Dim1 Tid
OA = N
where N denotes the number of samples, 7 is the number of
classes, and x;; represents the number of samples belonging to
the 7th class in both the predicted result and the ground truth

N iy Tii — Y i Tit T
N2 — Z::l Tit * LTyg
where ;4 denotes the number of samples belonging to the ¢th
class in the ground truth. z_ ; is the number of samples belonging

to the ¢th class in the predicted result.

Besides, we also provide the search cost, training time, predict
time, the memory cost for search [Mem. for Search (GB)], the
memory cost for train [Mem. for Train (GB)], the number of
parameters (Params), and the floating point operations (FLOPs)
of each model. “h” represents hour and “s” denotes second.
“GB” means gigabyte and “M” denotes million. “G” represents
giga. We should note that the predict time is the time cost for
predicting the whole image of each model. FLOPs is also the
one for predicting the whole image.

(18)

Kappa = (19)

C. Comparison Experiments and Results

In order to facilitate the description, we define four kinds of
models including the baseline and three editions of Pol-NAS
denoted as Pol-NAS-1, Pol-NAS-2, and Pol-NAS-3, respectively.
Baseline is Pol-NAS without using layer-num search and re-
designed stem layers (i.e., FA block). The differences between
three editions of Pol-NAS are the input feature and stem layers
adopted in the training stage. Detailed information about them
is listed in Table IV.

In this subsection, the results of comparison experiments with
handcrafted and autodesign models are presented first to prove

the effectiveness of the searched architecture of Pol-NAS-1. The
inputs of Pol-NAS-1 and other methods are T matrix. Second,
the complexity and the feature visualization results of different
methods are provided. Third, ablation studies among the base-
line, Pol-NAS-1, Pol-NAS-2, and Pol-NAS-3 are performed to
test the effectiveness of layer-num search and redesigned stem
layers (i.e., FA block). Fourth, the searched architectures of
Pol-NAS on three datasets are presented. Fifth, the generalization
ability of searched architectures of Pol-NAS-1 and Pol-NAS-3 is
investigated. Finally, we provide the results of different methods
on data with various degradation variabilities.

All the comparison methods are implemented using Python
3.8 and PyTorch 1.7.0. All the experiments are run on a 3.30-GHz
machine with 80.00-GB RAM and one Nvidia RTX 3090 GPU.
All the results are the average ones of five independent runs. In
Table V, a £ b denotes that the mean value is a and the standard
deviation (std) is b. The best result is in bold and the second
best one is underlined. “(-)” means the result of corresponding
method is better than that of Pol-NAS-1, while “(+)” means it
is worse. “(¢ — d+)” denotes that the results of ¢ methods are
better than that of Pol-NAS-1, while the results of d methods are
WOrSse.

1) Comparison Experiments With Handcrafted and Autode-
sign Models: Because Pol-NAS-1 only uses T matrix as its
input features and does not use the redesigned stem layers
with the FA block in the training stage, Pol-NAS-1 is selected
and compared with several state-of-the-art methods in PoOISAR
image classification to test the effectiveness of searched ar-
chitectures. These models include handcrafted and autodesign
models, whose input features are also T matrix. SSAE-LSI [9],
CV-CNN [12], PFDCN [13], DSNet [14], PoIMPCNN [15],
FCN [19], and CV-FCN [20] belong to handcrafted models.
SAE-MOEA/D [23], PDAS [24], and CV-PDAS [24] are au-
todesign models. Considering that the input features of some
models like PFDCN [13] and FCN [19] are not T matrix in
the original papers, we provide additional results of them when
they use T matrix as input features. The results of three POISAR
datasets with different methods are presented in Table V and
Figs. 10-12. We can find that Pol-NAS-1I has the best OA and
Kappa, and the visualization results are almost the same as the
ground truths.

Specifically, for Oberpfaftenhofen, Pol-NAS-1 has the best
mean values of OA and Kappa and obtains best mean results in
most classes. FCN [19] obtains the second best mean values
of OA and Kappa. The mean values of OA and Kappa of
Pol-NAS-1 are 0.49% and 0.82% higher than those of FCN [19],
respectively. As for build-up area, the mean result of Pol-NAS-1
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TABLE V
RESULTS OF THREE POLSAR DATASETS WITH DIFFERENT METHODS
Models Aufo-design Models
SSAE-LST CV-CNN PFDCN® PFDCN DSNet POIMPCNN FCN® FCN CV-FCN | SAE-MOEA/D PDAS CV-PDAS POI-NAS-T
Build-up areas 7339 £ 152 8193 £ 247 9250 £ 050 8897 £ 1.16 92.08 + 146 86.17 = 2.05  97.87 £ 0.62 98.46 £ 0.15 05.75 £ 0.72 | 7552 = 3.5 9372 £ 1.00 9347 £ 093 _ 98.04 £ 0.50
Wood land 8369+ 171 87.80 = 1.81 97.09 + 0.63 9336 £ 0.80 96.52+ 098 9650 = 1.36 9827 + 046 9829 = 0.18 9655 +0.24 | 87.02 =083 9647 =051 97.08 £ 061 9973 + 0.10
Open areas 9482 £ 070 97.47 £ 075 9828 £ 025 97.87 £022 97.74 £ 045 97.99 £ 032  98.95 £ 0.14 15 98194038 | 9622+£032 9827 4030 9827 £ 027  99.56 £ 0.20
OA 87.40 + 043 91.80 £ 0.40 96.62 + 0.09 9481 £ 0.18 96.11 +0.18 9477 £ 029 9855+ 026 9873 + 0.11 9727 £ 0.35 | 89.34 =048  96.80 = 0.02  96.85 + 022 9922 + 0.16
Kappa 78.39 + 0.80 8582 £ 0.69 9424+ 0.5 9112+ 031 9336+ 030 9099 =049  97.54 + 045 97.84 £ 0.18 9535+ 0.60 | 81.70 = 0.85 9455 = 0.04  94.63 + 038 98.66 = 0.27
Oberpfaffenhofen | Seeh Cost 1) - 0.05 () 600 O 6596 () T7.04 (3-04)
Training Time (h) 0.01 () 0.09 () 204 () 2.06 (-) 02 () 0.63 () 073 (-) 0.77 () 4.03 (+) 0.01 () 0.72() 1.86 (-) 264 (11-14)
Predict Time (s) 529 () 6.12() 55.00 (+) 4042 (+) 62.62 (+) 2162 (+) 2217 () 22.63 (-) 17232 (+) 473 () 54.53 (+) 67.53 (+) 33.6 (5-74)
Mem. for Search (GB) - 262 () 1077 () 20.14 (+) 19.9 (2-14)
Mem. for Train (GB) 129 () 135 () 135 () 141 () 203 () 335() 337() 579 (+) 262 (-) o 1.79 () 5.64 (11-14)
Params (M) 0.13 () 0.15 (-) 0.15 (-) 0.06 (-) 0.19 () 43.23 (4) 4323 (+) 1.48 () 0.04 () ) 3.62 (+) 2.14 (8-4+)
FLOPs (G) 39227 () 2064.58 (-) 1859.55 (-) 62097 (-) 38084 (+) 9128.34 (+) 919409 (+)  1678.89 (-) 118.26 () 39087.55 (+)  167378.77 (+)  5105.99 (7-5+)
Forest 6728 £3.77 8143 £ 1.99 8323 £ 256 7943 £ 3.38 85.10 £ 0.97 90.69 £ 1.I6 9501 £ 1.46 9309 £ 1.02 9091 £ 056 | 6959 = 1.09 8581 £ 067 8580 &£ I.17 _ 98.50 £ 0.31
Farmland 74.88 + 459 89.80 £ 0.67 9110 + 0.83 8727 £ 3.13 9148 + 045 9234 £ 144 9797 +£ 029  96.62 + 059 93.69 + 0.56 | 76.09 =047 9158 £ 0.78 9126 + 0.58 9874 = 0.11
Urban area 7233 +£231 8444 £ 138 90.55+ 132 89.59 £2.86 89.67 078 9174 =174 9732 +£033 9631 £0.69 96.11 038 | 74.36 = 1.06 8920 =031 8831+ 127  98.65 = 0.18
Ocean 99.51 +0.07 9982 £ 003 99.66 + 0.14  99.68 £ 0.10  99.6 £ 0.06 9953 £ 0.18 9938 £ 0.06 99.45 £ 0.11 9943 £ 0.10 | 99.65 =009 9976 £ 005 9970 £ 0.09  99.62 £ 0.02
OA 80.81 + 045  90.19 £ 0.19 9230 + 0.19 9055 £ 0.23 9244 + 0.15 9418 £0.20 9771 + 025 96.82 + 042 9575+ 0.09 | 8211 + 043 9250 £ 0.19 9218 + 041  98.96 + 0.03
Kappa 73.94 + 0.66  86.64 £ 025  89.52 + 026  87.13 £ 0.33  89.73+020  92.09 £ 027  96.89 + 034  95.68 + 0.57 9422 + 012 | 75.69 =057  89.82 £ 025  89.38 + 055  98.59 + 0.04
Flevoland Search Cost () - 0.05 () 648 () 13.92 (3-04)
Training Time (h) 0.01 () 0.07 (-) 1.63 (-) 1.62 () 0.16 () 0.61 () 0.6 () 0.64 (-) 281 (+) 001 (-) 1.63 () 1.89 (11-14)
Predict Time (s) 434 () 5.4 () 4341 (4) 33.22 () 52.03 (+) 2109 (+) 183 () 18.73 () 190.14 (+) 234 () 80.18 (+) 29.04 (5-74)
Mem. for Search (GB) - 27 () 16.12 (-) 19.9 (3-0+)
Mem. for Train (GB) 127 () 128 () 133 () 133 () 137 () 1.96 (-) 34.0) 342 () 593 (+) 27() 225 () 449 (11-14)
Params (M) 0.13 () 0.02 () 0.15 (-) 5() 0.06 (-) 0.25 () 43.23 (+) 4323 (+) 148 () 0.04 () 538 (+ 284 (+) 315 (8-44)
FLOPs (G) 326.89 () 67.09 (-) 1721.06 (-) 1550.21 (-) S17.51 () 4231555 (+) 757259 (+)  7627.08 (+)  1396.63 (-) 10721 () 7321431 (+) 44761453 (+)  3003.81 (7-5+)
Ocean 9993 £ 005 9999 £ 0.01 9999 £ 001 9998 £ 001 99.97 £ 001 99.69 =029 9996 £ 0.03 99.96 £ 002 99.93 £ 0.05 | 100.0 = 0.00 9998 £ 0.01 9998 £ 0.02 9908 £ 0.02
Vegetation 8425+ 391 9280 £ 022 93.03 + 0.60 9185 £ 11§ 9126 + 0.62 9157 £ 1.40 9537 + 142 9421 & 110 9527 £+ 0.52 | 88.63 = 0.64  93.15 £ 0.57 9423+ 043 9694 + 1.10
Low density urban 7238 +£257  90.10 £221 9520+ 093  87.04 £ 198 9584 + 042  98.13 £ 092 9864 + 045 97.49 £ 057 9935+ 014 | 7979 = 165 9618 £ 1.27  94.52 + 131 99.67 £ 0.19
High density urban 7143 £555 9314 £093 9584+ 116 8406 £273 96.68 +£025 9573 £272 9950 +£0.08 97.90 + 1.06 99.69 £ 0.05 | 79.17 = 136 9581 £ 110 9691 £0.75  99.65 + 0.12
Developed 6425+ 773 8584+ 133 9192272 8947 £5.15 94.66 £ 129 93.52 £ 548 9943 £ 035 97.66 +2.53 99724032 | 7023 +290 9438+ 080 9319+ 168  99.99 = 0.01
OA 86.38 + 055 9546 £ 039  97.09 + 0.12 9331 +£0.26 9722+ 006 9733 £ 0.71  99.01 + 025 9830 + 0.35 6+ 008 | 8992+ 0.3  97.40 + 008 9733 £ 022  99.47 + 0.09
SanFrancisco  |_KaPP2 80.40 = 077 9345 £ 0.56  95.84 + 0.17 9046 £ 0.38  96.04 = 0.09 9623 £ 1.00  98.57 + 036 97.55 + 0.51 9+ 011 | 8550 £0.09 9628 £ 0.11 9620 £ 031  99.24 = 0.14
* Search Cost (h) - 0.05 () 12 192 () 27.12 3-01)
Training Time (h) 0.01 () 0.79 () 0.79 () 051 () 0.26 () 126 (-) 127 () 930 (+) 0.01 () 0.28 () 061 (-) 439 (11-14)
Predict Time (s) 741 () 83.03 (+) 65.46 (+) 98.83 (+) 5329 (+) 36.77 () 37.23 () 427.92 (+) 10.84 (-) 86.01 (+) 105.67 (+) 56.97 (5-7+)
Mem. for Search (GB) - 286 () 424 () 699 (-) 19.9 (3-0+)
Menm. for Train (GB) 125 () 1.28 () 128 () 131 () 1.67 () 34 () 342 () 6.11 (+) 286 (-) 134 () 202 () 458 (11-14)
Params (M) 0.13 () .02 (-) 0.15 () 0.15 () 0.06 (-) 031 () 43.23 (+) 4323 (+) 1.48 () 0.04 () 05 (-) 28.24 (+) 238 (8-3+)
FLOPs (G) 624.62 (-) 128.20 (-) 3289.66 () 2963.19 (-) 98891 () 101069.07 (+) 1523222 (+)  15341.67 (+)  2904.97 (-) 180.17 (1) 65195.00 (+) 496992 (+)  10783.07 (7-5+)

* means the input features of the corresponding model are not T matrix in the original paper. We change its features to T matrix.
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Fig. 10. Predicted results of (a) SSAE-LSI, (b) CV-CNN, (c) PFDCN*, (d) PFDCN, (e) DSNet, (f) POIMPCNN, (g) FCN*, (h) FCN, (i) CV-FCN, (j) SAE-
MOEA/D, (k) PDAS, (1) CV-PDAS, (m) Pol-NAS-1, (n) Pol-NAS-2, and (0) Pol-NAS-3 on Oberpfaffenhofen dataset.
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Fig. 11. Predicted results of (a) SSAE-LSI, (b) CV-CNN, (c) PFDCN*, (d) PFDCN, (e) DSNet, (f) POIMPCNN, (g) FCN*, (h) FCN, (i) CV-FCN, (j) SAE-
MOEA/D, (k) PDAS, (1) CV-PDAS, (m) Pol-NAS-1, (n) Pol-NAS-2, and (0) Pol-NAS-3 on the Flevoland dataset.
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Predicted results of (a) SSAE-LSI, (b) CV-CNN, (c) PEDCN*, (d) PFDCN, (e) DSNet, (f) PoOIMPCNN, (g) FCN*, (h) FCN, (i) CV-FCN, (j) SAE-

Fig. 12.
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MOEA/D, (k) PDAS, (1) CV-PDAS, (m) Pol-NAS-1, (n) Pol-NAS-2, and (o) Pol-NAS-3 on the San Francisco dataset.

is only 0.42% lower than that of FCN and much higher than that
of others. Besides, compared with other methods, Pol-NAS-1
has low standard deviations, which indicates that it has good
classification stability. As for the time and memory cost, al-
though the search cost of Pol-NAS-1 is much higher than that
of other autodesign models, the mean values of OA and Kappa
of Pol-NAS-1 are 9.88% and 16.96% higher at most and 2.37%
and 4.03% higher at least. The training time, predict time, Mem.
for Search, Mem. for Train, Params, and FLOPs of Pol-NAS-1
are all between the best and the worst one, respectively, but
Pol-NAS-1 has the best mean value of OA and Kappa with a low
standard deviation, which is also between the best and the worst
one.

For Flevoland, Pol-NAS-1 has the best mean values of OA
and Kappa and obtains best mean results in most classes. FCN*
[19] obtains the second best mean values of OA and Kappa.
The mean values of OA and Kappa of Pol-NAS-1 are 1.25%
and 1.70% higher than those of FCN* [19], respectively. As
for ocean, the mean result of Pol-NAS-1 is only 0.20% lower
than that of CV-CNN. Besides, compared with other methods,
Pol-NAS-1 has the lowest standard deviations, which indicates
that it has good classification stability. As for the time and
memory cost, although the search cost of Pol-NAS-1 is much
higher than that of other autodesign models, the mean values
of OA and Kappa of Pol-NAS-1 are 16.85% and 23.90% higher
at most and 6.46% and 8.77% higher at least. The Mem. for
Search of Pol-NAS-1 is 3.78 GB higher than that of CV-PDAS,
but the mean values of OA and Kappa are 6.78% and 9.21%
higher than those of CV-PDAS. The training time, predict time,
Mem. for Train, Params, and FLOPs of Pol-NAS-1 are all be-
tween the best and the worst one, respectively, but Pol-NAS-1
has the best mean value of OA and Kappa with a low stan-
dard deviation, which is also between the best and the worst
one.

For San Francisco, Pol-NAS-1 has the best mean values of OA
and Kappa and obtains best mean results in most classes. CV-
FCN [20] obtains the second best mean values of OA and Kappa.
The mean values of OA and Kappa of Pol-NAS-1 are 0.31%
and 0.45% higher than those of CV-FCN [20], respectively. For
ocean, the mean result of Pol-NAS-1 is only 0.02% lower than
that of SAE-MOEA/D. For high density urban, the mean result
of Pol-NAS-1 is only 0.04% lower than that of CV-FCN. As
for the time and memory cost, although the search cost and
Mem. for Search of Pol-NAS-1 are much higher than those of
other autodesign models, the mean values of OA and Kappa of
Pol-NAS-1 are 9.55% and 13.74% higher at most and 2.07% and
2.96% higher at least. The training time, predict time, Mem. for
Train, Params, and FLOPs of Pol-NAS-1 are all between the best
and the worst one, respectively, but Pol-NAS-1 has the best mean
value of OA and Kappa with a low standard deviation, which is
also between the best and the worst one.

In summary, we can draw the conclusions as follows.

1) The architectures searched by Pol-NAS-1 are always the
best on all datasets. But the second best ones on these
datasets are not the same (i.e., FCN on Oberpfaffenhofen,
FCN* on Flevoland, and CV-FCN on San Francisco),
which means we still need to select a model by ourselves
when we need to cope with a new dataset if we do not use
Pol-NAS-1.

2) The search costs of Pol-NAS-1 on these datasets are much
higher than those of other autodesign models, but the mean
values of OA and Kappa of Pol-NAS-1 are 16.85% and
23.90% higher at most and 2.07% and 2.96% higher at
least on these datasets. (In fact, when we need to cope
with a new dataset, we can use the searched architecture of
Pol-NAS-1 on Oberpfaffenhofen directly to avoid the high
search cost, because the searched architecture of Pol-NAS-
1 has a good generalization ability, which can be seen from
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TABLE VI
TIME AND SPACE COMPLEXITY OF DIFFERENT METHODS

Handcrafted Models Auto-design Models
SSAE-LLST _CV-CNN__PFDCN¥ _PFDCN__ DSNet  PoIMPCNN | FCN¥ __FCN__ CV-FCN | SAEEMOEA/D _ PDAS  CV-PDAS | Pol-NAS-T _ Pol-NAS-2 Pol-NAS3
Search - - O(HW TV _ratio) O(THW/(ST)*])
Time Complexity | Train O(HW % TV _ratio) O([HW/(ST)?)) O(HW TV _ratio) O([HW/(ST)?*))
Predict O(HW) O([HW/(ST)?]) O(HW) O([HW/(ST)?])
Search - O(BS = (PS)?)
Space Complexity | Train O(BS * (PS)?) O(BS * (PS)?)
Predict O(BS % (PS)?) O(BS % (PS)?)

* means the input features of the corresponding model are not T matrix in the original paper. We change its features to T matrix.
H: The height of a whole image. W: The width of a whole image. 7'V _ratio: The ratio of training set and validation set. ST': The stride between adjacent patches. PS: The patch size of an input patch. BS: The batch size.

Table VIII. If you want to find the optimal architecture,
you can use Pol-NAS-1 to search it on the new dataset.)

3) The Training time, predict time, Mem. for Train, Params,

and FLOPs of Pol-NAS-1 on all the datasets are neither the
best nor the worst one, which means the time and memory
costs of Pol-NAS-1 are on par with existing classification
models.

2) Time and Space Complexity of Different Methods: We
provide the time and space complexity of different methods in
Table VI. We first introduce how to obtain the time and space
complexity of Pol-NAS and then compare the complexity of
Pol-NAS with that of other methods.

In all the stages, Pol-NAS crops the whole image into many
patches. Therefore, the number of patches Pol-NAS needs to
handle can be calculated as follows:

([ H—PS+pad
patch_num = ({T-‘ + 1)

([t
([ (9
(][54 5]

H and W are the height and width of a whole image, respectively.
PSS denotes the patch size of an input patch. pad represents the
number of pixels with zero padding. ST is the stride between
adjacent patches. Therefore, the time complexity of Pol-NAS-
1 in all stages can be denoted as O([HW/(ST)?]. Equation
(20) also applies to Pol-NAS-2 and Pol-NAS-3. As for the space
complexity of Pol-NAS-1, in all stages, only B.S patches with the
size of P.S * P.S are input to the model. (B.S denotes batch size.)
Therefore, the space complexity of Pol-NAS-1 in all the stages
can be denoted as O(BS * (PS)?). Pol-NAS-2 and Pol-NAS-3
have the same space complexity.

As for the comparison of complexity of Pol-NAS and other
methods, we can conclude that Pol-NAS and other methods
have the same time and space complexity. TV _ratio, ST, BS,
and PS are predefined hyperparameters and can be regarded as
constants. (T'V _ratio is the ratio of training set and validation
set. ST denotes the stride between adjacent patches. P.S is the
patch size.) Therefore, with regard to different datasets, the time
and space complexity of Pol-NAS and other methods can be
approximately represented as O(HW) and O(1), respectively.

-

(@) (b)

Fig. 13. (a) PauliRGB of input patch for the feature visualization of each
model. (b) Ground truth of input patch for the feature visualization of each
model.

3) Visualization of Feature Maps: To give a more intuitive
comparison between Pol-NAS-1 and other state-of-the-art meth-
ods, we provide the results of feature visualization of these
methods. A patch from the Oberpfaffenhofen dataset is selected
as the input patch of each model. The PauliRGB and ground
truth of the input patch are shown in Fig. 13.

We only visualize the feature maps of PFDCN*, DSNet,
PoIMPCNN, FCN*, CV-FCN, PDAS, CV-PDAS, and Pol-NAS-
1 for two reasons. First, the input features of these meth-
ods are all T matrix. Second, consider the fact that the first
three layers in Pol-NAS-1 are stem layers (manually designed),
and the results of these layers cannot prove the effective-
ness of Pol-NAS-1. Therefore, we choose to visualize the fea-
tures of searched cell in layer 1 of Pol-NAS-1, i.e., the fourth
layer of Pol-NAS-1 (including the three stem layers) and other
methods. Therefore, comparison methods with less than four
layersin Table V (i.e., SSAE-LSI, CV-FCN and SAE-MOEA/D)
are not selected for feature visualization for the sake of fairness.
The activations of the fourth layer of each model are not only
shown separately by channel, but also shown after elementwise
addition (i.e., sum feature). The number below each visualized
feature denotes the channel index of the activations.

We only provide the results of FCN*, CV-FCN, and Pol-
NAS-1, as shown in Figs. 14—16, in the main body of this
article due to space limitation. (Complete results can be found
at https://github.com/guangyuanliu/Pol-NAS.) From the visu-
alization results, we can find that the features of Pol-NAS-1 have
a clearer outline of the input patch than those of other methods.
Besides, Pol-NAS-1 does not have dead activations (i.e., a whole
activation having a value of 0, as shown in Fig. 14). Therefore,
we can draw the conclusion that Pol-NAS-1 has a better abil-
ity of feature extraction, which proves that the architecture of
Pol-NAS-1 is better than that of other methods.


https://github.com/guangyuanLiu/Pol-NAS
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Fig. 14.

sum feature

Features for the input patch of FCN*.

the amplitude
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the phase of
sum feature

Fig. 15.
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Fig. 16.

Features for the input patch of CV-FCN.

22 23

Features for the input patch of Pol-NAS-1.

4) Ablation Studies: Here, we conduct ablation experiments
to prove the effectiveness of layer-num search and feature se-
lection (the effectiveness of FA block/redesigned stem layers
of searching the importance of input features) in Pol-NAS.
We provide the results of the baseline and three editions of our
proposed method denoted as Pol-NAS-1, Pol-NAS-2, and Pol-
NAS-3 on three datasets in Table VII. Comparing the results of
the baseline and Pol-NAS-1, we can conclude that the layer-num
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TABLE VII
RESULTS OF THE BASELINE AND THREE EDITIONS OF POL-NAS
Baseline Pol-NAS-1 Pol-NAS-2 Pol-NAS-3
OA 98.61 - 0.38 9922 £ 0.16 99.54 £ 0.06  99.56 + 0.03
Kappa 97.62 4 0.66  98.66 + 0.27 99.22 + 0.1 99.26 + 0.05
Search Cost (h) 17.04 17.04 17.04 17.04
Training Time (h) 2.98 2.64 2.92 2.86
Oberpfaffenhofen | Predict Time (s) 41.46 33.6 35.40 35.70
Mem. for Search (GB) 19.71 19.89 19.90 19.90
Mem. for Train (GB) 4.71 5.64 9.50 10.73
Params (M) 242 2.14 1.93 195
FLOPs (G) 4063.45 5105.99 12636.08 13218.17
OA 98.94 + 0.1 98.96 £ 0.03  99.09 £ 0.02 99.11 £+ 0.02
Kappa 98.56 4+ 0.13  98.59 £+ 0.04  98.77 + 0.03 98.8 + 0.03
Search Cost (h) 13.92 13.92 13.92 13.92
Training Time (h) 2.28 1.89 219 2.28
Flevoland Predict Time (s) 29.69 29.04 29.58 30.35
Mem. for Search (GB) 19.71 19.89 19.90 19.90
Mem. for Train (GB) 4.30 449 7.12 8.16
Params (M) 247 315 243 245
FLOPs (G) 5455.21 3003.81 6700.09 7182.40
OA 99.4 £+ 0.08 99.47 £ 0.09 9948 £ 0.11  99.52 £ 0.03
Kappa 99.13 £ 0.11  99.24 £ 0.14  99.25 £ 0.16  99.31 £ 0.04
Search Cost (h) 27.12 27.12 27.12 27.12
Training Time (h) 4.53 4.39 4.58 4.63
San Francisco Predict Time (s) 57.74 56.97 58.22 57.88
Mem. for Search (GB) 19.71 19.90 19.91 19.91
Mem. for Train (GB) 4.53 4.58 7.08 8.11
Params (M) 2.07 238 2.07 2.09
FLOPs (G) 12610.97 10783.07 15189.23 16158.22

search is effective because the mean values of OA and Kappa of
Pol-NAS-1 are higher than those of the baseline on all datasets.
Besides, the search costs of them are exactly the same. The
training time, predict time, Mem. for Search, Mem. for Train,
Params, and FLOPs of Pol-NAS-1 and Pol-NAS-2 are almost the
same. As for the fact that the gaps of OA and Kappa between
them are not big, it is because the space for improvement is
limited. We want to emphasize that improving the classification
results is one of our goals. The most important thing is that
layer-num search can help us automatically find the optimal
number of layers rather than set it manually by trial and error.

From the results of Pol-NAS-2 and Pol-NAS-3, we can con-
clude that the proposed redesigned stem layers (i.e., FA block)
are effective and can improve the performance of Pol-NAS.
Besides, the search costs of Pol-NAS-2 and Pol-NAS-3 on each
dataset are exactly the same. The training time, predict time,
Mem. for Search, Mem. for Train, Params, and FLOPs of Pol-
NAS-2 and Pol-NAS-3 are almost the same. As for the fact that
the gaps of OA and Kappa between them are not big, it is because
the space for improvement is limited. We want to emphasize that
improving the classification results is one of our goals. The most
important thing is that the FA block can help us automatically
find the optimal input features (the importance of each feature)
rather than set them manually by trial and error.

We do not compare Pol-NAS with other feature selection algo-
rithms in PoISAR image classification, because feature selection
algorithms select a feature subset as the input of a classification
model. But Pol-NAS with feature selection (i.e., Pol-NAS-3)
takes all features as the input. Experimental results under the
condition of different input features and different architectures
cannot prove anything.

In summary, we can draw the conclusions as follows.

1) Thelayer-num search and feature selection (i.e., FA block)
are effective and can further improve the classification
results. But the most important thing is that we can avoid
setting the layer-num and finding the optimal input fea-
tures by trial and error with the help of them.

2) The baseline, Pol-NAS-1, Pol-NAS-2, and Pol-NAS-3 have
almost the same costs of search cost, training time, predict
time, Mem. for Search, and Params. Only Pol-NAS-2 and
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Pol-NAS-3 have extra but acceptable costs of Mem. for
Train and FLOPs.

5) Searched Architectures of Pol-NAS on Three Datasets:
The searched architectures of Pol-NAS on three datasets are
presented in Figs. 17-19. (We only provide the architectures
of Pol-NAS-3 here.) We find that the best layer-num for three
datasets is 10, 6, and 8, respectively. It proves that the layer-num
level search is necessary.

6) Generalization Ability of Searched Architectures of Pol-
NAS: In order to test the generalization ability of searched
architectures of Pol-NAS, we use the architectures searched on
the Oberpfaffenhofen dataset by Pol-NAS-1 and Pol-NAS-3 and
train the model using the trainA set of Flevoland and San
Francisco datasets, respectively. (Pol-NAS-2 is only used for
ablation studies. The only difference between Pol-NAS-2 and
Pol-NAS-3 is the type of stem layers adopted in the training
stage.) The results are presented in Table VIII. We can conclude

Pred
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Pred

Searched architecture of Pol-NAS on the Oberpfaffenhofen dataset. “atr” means atrous separable convolution. “sep” is the depthwise-separable

skip connection

Searched architecture of Pol-NAS on the Flevoland dataset. “atr” means atrous separable convolution. “sep” is the depthwise-separable convolution.

Searched architecture of Pol-NAS on the San Francisco dataset. “max” denotes the max pooling. “sep” is the depthwise-separable convolution. *“x”

TABLE VIII
RESULTS OF USING SEARCHED ARCHITECTURE ON THE
OBERPFAFFENHOFEN DATASET

Flevoland San Francisco

OA 98.94 = 0.09 99.42 £ 0.15

Pol-NAS-1 Kappa 98.56 + 0.12 99.17 + 0.22
OA 99.04 £ 0.07 995 £ 0.07
Pol-NAS-3 Kappa 98.7 + 0.09 99.28 + 0.1

that the searched architecture has a good generalization ability,
because the mean values of OA and Kappa of them are still
higher than those of handcrafted and autodesign models. Thus,
if you do not have enough GPU resources, you can directly use
the searched architecture of Pol-NAS on the Oberpfaffenhofen
instead of searching to avoid using a lot of GPU resources.

7) Results of Different Methods on the Dataset With Various
Degradation Variabilities:
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TABLE IX
RESULTS OF DIFFERENT METHODS ON THE OBERPFAFFENHOFEN DATASET
‘WITH MORE NOISE

Models Auto-design Models

FCN .’ CV-FCN PDAS CV-PDAS POI-NAS-T POI-NAS-2 PoI-NAS3
OA 9841 £027 9837 £023 9744 £ 0.11 [ 96.04 £0.20 96.20 £ 0.14  98.63 £ 041  99.59 £ 0.04  99.61 + 0.02
Kappa | 9729 + 046 9723 +039 9564 +£0.19 | 9325+ 035 93524024 97.66 + 0.70 9930 4 0.06  99.34 + 0.03
* means the input features of the corresponding model are not T matrix in the original paper. We change its features to T matrix

1) When Pol-NAS meets data with the noise effect: In order to
see what will happen if Pol-NAS meets data with the noise
effect, we prepare an additional Oberpfaffenhofen dataset
with more noise by not using refined Lee filter. Then, we
select some models from handcrafted and autodesign ones
with good performances in Table V and test them on this
noisy dataset. The results of them are shown in Table IX.
We can find that most methods suffer from the noise effect
such as FCN*, FCN, PDAS, and CV-PDAS. The mean
values of OA and Kappa of them on the noisy dataset
are lower than those of them on dataset with less noise.
Pol-NAS-1 also suffers from the noise effect but is still
better than other state-of-the-art methods. Surprisingly,
Pol-NAS-2 and Pol-NAS-3 obtain higher OA and Kappa
on the noisy dataset than corresponding models on the
dataset with less noise. This may be because using more
features as input can improve the robustness of a model.

2) When Pol-NAS meets data with other variabilities: As
shown in Table II, the three datasets for testing the per-
formances of Pol-NAS and other state-of-the-art meth-
ods are very different. First, these datasets are acquired
with different platforms and different bands. E-SAR is
an airborne platform, while Radarsat-2 is a spaceborne
platform. Second, they are acquired in different years and
have different resolutions. Therefore, the three datasets
already contain many variabilities. The results in Tables V,
VII, and VIII can prove that Pol-NAS is still effective when
meeting many variabilities.

V. CONCLUSION

In this article, we proposed a NAS method with feature
selection called Pol-NAS for PoISAR image classification, which
could automatically find the optimal network architecture and
the importance of each input feature. With the help of Pol-NAS,
we only need to prepare the data and wait for the result, which
can avoid manually designing network structures and searching
the optimal input features by trial and error, because the manual
designing process is time consuming and disgusting. Experi-
ments on three real PolSAR datasets were conducted to prove
the effectiveness and the good generalization ability of Pol-NAS.
Ablation studies were performed to test the effectiveness of the
proposed layer-num search and our redesigned stem layers (i.e.,
FA block), which make Pol-NAS have the ability of automatically
determining the optimal number of layers and searching the
importance of input features. Besides, Pol-NAS is also effective
when meeting various degradation variabilities, which can prove
the robustness of Pol-NAS.

For our future work, we hope to design a NAS method
considering not only classification accuracy but also model size
and inference latency for PoISAR image classification.
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